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A quantitative phenomenological approach to the thermodynamics of critical phenomena is proposed. The 
equation of state and .all the thermodynamic quantities are expressed in terms of a function which does not 
have singularities in the critical region and which can be expanded in a rapidly converging series in powers 
of a certain effective order parameter. If the first two terms of the expansion are retained, as in the Landau 
theory, one obtains an equation of state which describes the experimental data to within 5-10% accuracy. 
Allowance for the next term improves the agreement with experiment, but the remaining terms are 
insignificant at the present level of experimental accuracy. 

INTRODUCTION 

1. Numerous experimental data point to the fact that the 
equation of state of gases close to the critical point and 
the equation of state of ferromagnets close to the Curie 
point are analogous and possess a scaling property. For 
gases, the scaling hypothesis is usually formulated thus 
(cf., e.g., [1 1): 

p- P, - ( P - p, ) ----! --. 
"til+'.' Til 

(1) 

Here, P is the pressure, p is the density, T is the tem­
perature, and Pc, Pc and Tc are their critical values: 

T =· (T- T,) IT,. 

The critical indices {3 and y characterize respectively 
the critical isobar (coexistence curve of the phases): 

(2) 

and the temperature dependence of the isothermal com­
pressibility: 

(iipliiP)r=C±I-rl-', -r;e:O, P=P,. (3) 

The coefficients Band C"= in the scaling laws (2) and (3) 
are determined by the properties of the function f(x). 

For ferromagnets, an analogous equation of state 
near the Curie point is assumed (cf. t 11 ): 

(4) 

where Hand Mare the magnetic field and magnetic mo­
ment per unit volume in the appropriate units, e.g., in 
units of the saturation field and saturation moment. The 
analog of the critical isobar (2) will be the dependence 
of the spontaneous moment on the temperature: 

M=B(-1)0, -r<O, H=O, (5) 

and the analog of the scaling law (3) for the compressi­
bility will be the scaling :law for the susceptibility in 
zero field: 

(6) 

Experiments give approximately the same values of the 
critical indices for ferro magnets and gases: 

II ""' 0.35, 'V ""' 1.25 (7) 

with small variations for different systems. 
In the following, we shall use the terminology for a 

ferromagnet, it being· implied that we can go over to 

gases by making the replacement 

H ++ P- P" M ++ p- p,, X++ (ilp I i!P)x: 

In the classical theory, i.e., in the Curie-Weiss the­
ory for ferromagnets and in the van der Waals equation 
for gases, the critical indices are 

(8) 

and the function f (x) in (1) and ( 4) has the simple form: 

f,(x) =ax+bx'. (9) 

2. The important fact that the experimental values 
of the indices 2{3 and y (7) are not integers means that 
the equation of state must be considerably more com­
plicated than the classical equation (9). Indeed, it fol­
lows from physical considerations that the equation of 
state should have no singularities in T at H * 0, inas­
much as the magnetic field orders the spins, and the 
states for T > 0 and T < 0 cannot differ in their sym­
metry. For non-integer indices 2{3 andy, this physical 
requirement leads to complicated behavior of the func­
tion f(x) as x - oo :l11 

f(x)-+ /ix(O+vl/0 + il:x(O+v-O/o + ... , x....,.. oo. (10) 

In addition, the function f(x) should have Lee-Yangl21 

singularities at imaginary x, so that states for T < 0 
are obtained by analytic continuation of the function 
f(x) on to another sheet of the Riemann surface. l11 

All these complications have arisen only because 
we chose as the scale factor in formulating the scaling 
hypothesis (4) the unsuitable quantity T, which goes 
to zero at the transition point and becomes negative be­
low the transition point. We propose to circumvent 
these difficulties by the following device. 

3. As the scale factor, we choose a positive-definite 
quantity-the susceptibility x in finite field, 

x= (i!Mii!H)r>O, H=FO, 

i.e., we shall formulate the scaling hypothesis thus: 

Hx(>+v>lv = 'I'(Mx'/'). (11) 

This relation connects H, M and x = (ilM/ilH)T, i.e., is 
an implicit differential equation for the isotherms. The 
equation can be solved in general form and permits us 
to find a parametric equation of state, in which the func­
tion cp(m) appears. After this, all observable quantities 
can be expressed in terms of the function cp(m). 

The advantage of this approach over the usual ap-
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Qualitative form of the isotherm below the Curie point. The thick 
line is the stable branch, the thin lines are the metastable branches, and 
the dashed line is the self-consistent field-theory isotherm. 

proach consists, as we shall see, in the fact that the 
function cp(m) has very simple properties, analogous 
to the properties of the function f 0(x) (9) in the classical 
theory, and can be expanded in a rapidly convergent 
series: 

<p(m) = m +<pam'+ q>,m' +... (12) 

Both the argument m = Mxf:31'Y of the function cp(m) and 
the function itself will turn out to be bounded quantities, 
~ 1 in the whole critical region H, T- 0, and the near­
est Lee-Yang singularities correspond to an essential 
singularity of the function cp(m) at infinity. If there are 
no other singularities, the function cp(m) is an entire 
function. 

The requirement that the equation of state be ana­
lytic as T- 0 in finite field H * 0, which led to compli­
cated properties of the function f(x) as x - oo, does not 
lead to the appearance of singularities of cp(m), but gives 
a relation between the derivative cp'(m0 ) at the point m0 , 

where cp(m0 ) = {:3m0 /({:3 + y), and the critical indices {:3 
and y. This relation has the following striking form: 

~+v=n/(n-1), 

where the quantity 
n moll'' (m,)- m, 

l!'(m,)- m, 
characterizes the convergence of the expansion (12); if 
the n-th term plays the main role, then ii = n. 

If only the first two terms in the function cp(m) are 
retained, as in classical theory, we obtain the relation 
{:3 + y = %, which is fulfilled experimentally to within 
5-10% accuracy. The equation of state in this case dif­
fers from the classical one, if y * 1, and coincides with 
the empirical equation of the so-called linear model, [SJ 

which describes with 5-10% accuracy the experimental 
data on critical points and Curie points. Taking account 
of the next term cp 5 m 5 in cp(m) improves the agreement 
with experiment, while the contribution of the remaining 
terms is insignificant at the present level of experimen­
tal accuracy. 

Interesting results are obtained for the metastable 
region. The isotherms for T < Tc terminate not at the 
point where (aMjaH)T = oo, as do the van der Waals iso­
therms, but at the point where (a2M/aH2)T = (a 2HjaM2)T 
= oo. In the neighborhood of this point, the isotherm 
branches and resembles a beak. In addition, at suffi­
ciently small T, metastable states in which the spon­
taneous moment is several times greater than in the 
stable state are possible (see the figure). 

I. EQUATION FOR THE ISOTHERMS AND ITS SOLU­
TION 

In order to find the equation of state, we need to solve 
the differential equation (11) for the isotherms. This 
equation can be solved in general form, for arbitrary 
function cp(m). We shall seek a solution in parametric 
form, as a function of the parameter m: 

x= (aM;an).=x(m, T), 
(13) 

M = m[x(m, T) J-Ptv, n = <p(m) [x(m, T))-<Hvltv. 

For a known function cp(m), the problem reduces to de­
termining the susceptibility x (m, T). Making the replace­
ment 

!_!!_ = !!!.. j!.!!. an am am' 
we obtain for x (m, T) the equation 

oM/ an 'V'X- ~m ox/om 
X= a;;;" om= X 'VIP' (m)x- (~ + y) IP(m) ox/om . (14) 

This equation reduces to a linear equation and is easily 
solved: 

x(m,T.)= x(O,T)exp{v j (/:~~~~~~1!m}· (15) 

The formulas (13) and (15) solve the problem posed, 
i.e., that of determining the isotherms from the known 
function cp(m). In order that the integral in (15) converge 
as m- 0, it is necessary that cp'(O) = 1, since cp(O) = 0 
and the denominator of the integrand is proportional to 
mas m- 0. One can also arrive at the condition cp'(O) 
= 1 more simply, directly from Eq. (11). In order that 
the moment vanish like xH as H - 0 above the transi­
tion point, it is necessary that cp(m) behave like cp'(O)m 
as m- 0. Then non-integer powers of the susceptibil­
ity cancel on the left and right in (11) and we obtain H 
- x-1 Mcp'(O) = cp'(O)H, whence cp'(O) = 1. 

IT. EQUATION OF STATE IN STRONG AND WEAK 
FIELDS AND RELATION FOR THE INDICES 

We now investigate the equation of state in strong and 
weak fields and express the susceptibilities above and 
below Tc, the moment in a strong field and the sponta­
neous moment in terms of the function cp(m). We first 
consider the region m - 0 in (13) and (15). In this case, 
as is easily seen, 

M-+x(o, T)n-+o. 

This region corresponds to weak fields above the tran­
sition point. The susceptibility X+(T) is found to be equal 
to the quantity x (0, T) in (15): 

(16) 

We now increase m. How does the function cp(m) be­
have as we do this? First, it increases linearly, cp(m) 
= m, and then the terms cp 3 m3 and cp 5 m 5 enter; these 
should lead to the result that cp(m) begins to decrease 
and goes to zero at a certain m = m 1 such that there 
will be a spontaneous moment. However, before cp(m) 
goes to zero, it intersects the straight line cp = {:3m/({:3 + y), 
so that the denominator in (15) goes to zero. We shall 
examine the neighborhood of the point of intersection 

<p(mo) = ~m,/ (~+y). (17) 
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Near this point, the integral in {15) has a logarithmic 
singularity and the susceptibility x (m, T) has the asymp­
totic form: 

t(m, T) --+const · t(O, T) (mo-m)'", 

where we use the notation 

p == [cp'(mo) -1] / [(~ +y)cp'(mo)- ~]. 

When we try to increase m, the susceptibility x (m, T) 
becomes complex, i.e., we fall into the unphysical re­
gion, if we keep T > Tc. But if we make T- Tc simul­
taneously with the passag'e m - m0 , it can be arranged 
that x (m, T) remain finite for T = Tc, m = m0, andre­
main positive forT < Te, m > m0• Since x (0, T) a: T-Y, 
the connection between m 0 - m and T must be the fol­
lowing: 

(mo- m)• = const · T (X= const > 0). 

If m and T are connected by this relation, then the mag­
netic field H in {13) remains finite as T- 0. The mag­
netic moment in {13) also remains finite and is propor­
tional to Hf31 <{3+yl. 

The next term in the expansion of M in powers of T 

will be proportional to m0 - m a: T 11P. On the other 
hand, from analyticity considerations, we expect that the 
expansion in T begins with the linear term. For this it 
is necessary that p = 1, Le., 

(~ + y)cp'(mo;'- ~ = cp'(mo) -1. 

Using Eq. (17) and the expansion {12), we can bring this 
relation to the striking form 

~+y=n/ (n-1). {18) 

Here the quantity 

_ 3cp,m,' + 5cp,m,' + ... 
n= 

cp3m03 + cp,m0' + ... (19) 

characterizes the conver1?;ence of the expansion (12); if 
the term with label k plays the main role, then ii. = k. 

These relations conned the critical indices {3 and y 
with the function cp(m) and guarantee that there is no 
singularity in the equatiolll of state as T- 0, H * 0. The 
physical meaning of this :requirement is clear: the mag­
netic field orders the spins and there is no difference 
in the symmetry of the states at T > 0 and at T < 0; con­
sequently, a second-order phase transition is impossible 
and there need be no singularity at T = 0. In the neigh­
borhood of T = 0, H * 0, the equation of state can be 
written thus: 

M=x.-01'"m,+O(-r), H=x,-<>+v>1"fp(m,)+O(-r), (20) 

where Xo is the susceptibility at T = 0, H * 0. Eliminat­
ing x0, we obtain the scaling law for the moment M in a 
strong field: 

M=DfiOI<O+v>, D=mo[cp(m,)J-<>+vlio. (21) 

We now consider the next region m > m0 • This re­
gion corresponds to the state below Tc. With increas­
ing m, we approach the point m 1 at which cp(m) first goes 
to zero: cp(m 1) = 0. In the neighborhood of this point, the 
equation of state is as follows: 

M--+[x(m,, -r)]l-01'm,+x(m., -r)H, 

H---+- [x(m,, -r)] -t>+vtv>cp' (m.) (m- m.). 
(22) 

The quantity x (m 1, T) is obtained by analytic continua­
tion of the function (15) into the region T < 0, m = m 1 

> m0 • As pointed out above, it can be arranged that 
x (m, T) remain positive in this continuation, i.e., that 
we do not go outside the region of stability. In this case, 
the complex parts of the factors (x {0, T) and the expo­
nential) are mutually eliminated, as we saw above, i.e., 
x (m11 T) can be written thus: 

x-(T)=x(m,,-r)=C+(--r)-'exp{v~C dm(cp'(m)- 1) }· {23) 
~(i>+y)<p(m)-~m 

The integral in (23) is to be understood in the sense of 
the principal value, i.e., as the real part of the integral 
in (15). The formulas (22) and (23) determine the spon­
taneous moment M0( T) and the susceptibility x_ ( T) below 
the transition point. They correspond to the laws (5) and 
{6) with the coefficients C_ and B equal to 

C = C ex { mf, dm(<p'(m)-1) } 
- + P yo (~+y)qi.(m)'-~m' 

B = nt 1C:"" , 
where m1 is the first root of the function cp(m). 

(24) 

(25) 

Now we shall increase m. The following interesting 
phenomena then occur. In the first place, H/M becomes 
negative for m > ml' However, we still do not emerge 
from the region of stability, since x > 0. We simply 
reach the metastable branch of the isotherm H{M, T) 
(see the figure). On further increase of m, we reach 
the point me at which the numerator and denominator 
in (14), i.e., oM/om and oH/om, go to zero simultane­
ously. This occurs for 

(~+y)<p(m,) = ~<p'(m,)m,. 

In the neighborhood of this point, 

M = M(m,) + a(m- m,)' + b(m·-- m,)' + ... , 
H = H(m,) + c(m- m,)' + d(m- m,)'. 

The isotherm bifurcates, having a continuous derivative 
x-1 = (oH/oM)T at the branch point, while the second 
derivative (o2H/oM2)T goes to infinity. Then Hand M 
increase, and if the function cp(m) has one more zero, 
m2, then the quantity H (M, T) goes to zero at m = m2, 

i.e., there exists a metastable state with another spon­
taneous moment. 

m. THE FREE ENERGY IN THE CRITICAL REGION 

We now express the free energy of a ferromagnet in 
terms of the function cp(m). The free energy is con­
nected with the equation of state by the following ob­
vious formula: 

F(H,T)= j'M(H',T)dH'+F(H,,T). {26) 

" 
We shall choose the upper limit H0 to be some constant, 
much greater than H and independent of T. Then 
F (H0, T) corresponds to a ferromagnet in a finite field 
and does not have a singularity at T = Tc. We are in­
terested in the part that is singular as H, T- 0; this 
is contained in the integral 

00 

F,,n,(H, T) = s M (H', T) dH'. 
H (27) 

Here it is necessary to make the following remark. 
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The integral in (27) formally diverges at the upper limit. 
Indeed, for H' >> -rf3+r, i.e., in a strong field, the mo­
ment M (H', -r) is determined by formula (23), and the 
contribution from the upper limit H0 - oo is as follows: 

"• 
SD(H')~IC~+v) dH' -+DH (2Hy)/(HY) II+ y 

' 2P+v' 

Since f3 and y are positive, this contribution, which is 
independent of H and -r, tends to infinity as H0 - oo, 

i.e., the integral (27) diverges. This difficulty can be 
avoided by means of the following device. We shall con­
sider the integral in (27) as an analytic function of the 
indices f3 and 'Y and shall define it for {3, 'Y > 0 as the 
analytic continuation from the side 2{3 + 'Y < 0, where 
the integral converges. It is easily seen that in the ana­
lytic continuation we lose only an unimportant regular 
contribution from the upper limit, but keep the singular 
part. 

Substituting our parametric formulas (13) and (15) 
into (27) and proceeding to the integration over m (dH 
= (ClH/Clm)dm), after simple transformations we obtain 
the final answer: 

-Jm'mdm[x(m, T) J-<•H•>1•[ (P + y)cp(m) -llmcp'(m)] 
F,,n,- m (ll+v)cp(m)-1\m . (28) 

Here, m0 is the first root of Eq. (17), and x (m, -r) is de­
termined by formula (15). As m- m0 , the susceptibil­
ity x (m, -r) behaves like (m0 - m)'>', and the integral for­
mally diverges like 

J dm(m,- m)-•~-•-•. 

As we pointed out above, this divergence must be re­
moved by analytic continuation of the integral in f3 and 
y from the side 2{3 + y < 0. 

A separate analysis is required for the case 2{3 + 'Y 
= 2, which corresponds to a logarithmic specific heat. 
We take the limit a = 2 - 2{3 - 'Y- 0 in (28). For this, 
we must first analytically continue the integral in a 
from the side a > 2. This can be done as follows. 

We write the integrand in (28) in the form 

T,T'H'_(mo- m)-'~-•-'[r, + r,(m,- m)- 'f,A(m,- m)' + R(m) ]. 

Here R(m) is a function which at m = m0 is analytic and 
goes to zero together with its two derivatives; r 0 , r 1 and 
A are certain constants. Then, integrating over m, we 
obtain 

[ 
-- (m,-m)m-• 

F.,.,=T,T'-m /R(m)+ro -
a-2 

+r, (m,-m)"-' A (m,-m)m] 
a-1 2 a 

Here, fR(m) is the contribution from the function R(m), 
which converges and does not have singularities as a 
- 0, m- m0 • Now making a- 0, we obtain 

-----ln--- . 
r, A m,-m] 

m,-m 2 T 

The last term arose after expansion of the indetermi­
nate form [(m0 - m)Cl-r-a- 1]/a; the term TcA-r2/2a, 
which is regular in -r, was added before the passage to 
the limit a - 0: 

We shall find the specific heats cfi=o above and below 
the transition point. Above Tc, as H - 0 the parameter 
m - 0 and we obtain 

aing= e't R 0 ------In- • F + T , {! ( ) r, r, A m, } 
2m,' m, 2 ,; ' 

below Tc, as H- 0 we shall have m - m1 and 

F - T -' {1 ( ) r,_ r, A m, - m, } 
Bing= e"\ R ml- 2 +-----In---. 

2(m,-m,) m,-m, 2 -,; 

The specific heat CH = - T(l Cl 2F /Cl-r2 has a logarithmic 
singularity with the same coefficient A above and below 
Tc· In addition, there is a jump in the specific heat: 

L'lcn = 2{/R(O)- /R(m,)+ r,m,(2m,- m,) 
2m,'(m1 - m,)' 

+~t~} '2 n m, · 

IV. EQUATION OF STATE IN THE FIRST APPROXI­
MATION. THE THREE-HALVES LAW 

In the first approximation of our phenomenological 
theory, we retain only two terms in the expansion (12): 

cp(m) = m+cp,m'. (29) 

Then a relation for the indices f3 and 'Y follows immedi­
ately from the general formula (18): 

ll+y='/,. (30) 

For cp = m + cp 3 m3, the equation of state (13), (15) has 
the simple form 

M = x-~''m, H = x-<Hvl/Vm ( 1 + cp,m')' 

x = c+ ( 1 + ~m'/2y ) •. 
(31) 

In order that a spontaneous moment exist at T < 0, H 
= 0, the coefficient cp 3 must be negative. It can be in­
cluded conveniently in the definition of m: 

--· cp,m' = 8'. 

The equation of state can be rewritten in a parametric 
form that is explicitly analytic as T - 0: 

(-cpa) '1•M = r"8, (- cp,) ''•H = ,.c>+•e (1- 8'), 

C+-''",; = r(1- 38'/2y), X= r-•. 
(32) 

These equations have the same form as the empirical 
equations from the work of Schofield et al. [31 In this 
work, experimental data on critical points and Curie 
points were analyzed by means of the parametric equa­
tion of state 

M = r"!'(8), H = r"+>h(8), 't' = rt(8). 

The experimental data are well described by formulas 
of the type (32) containing the coefficient b2 

= (y - 2{3)/y(1- 2{3) t 31 in place of the coefficient 3/2y. 
H our relation (30) is fulfilled, then b2 = 3j2y and our 
formulas coincide exactly with the empirical formulas 
from [31 • 

We now examine the accuracy with which the rela­
tion (30) is fulfilled experimentally. The values of {3, 'Y 
and 2 ({3 + y)/3 are given in Table I. For the two-dimen­
sional Ising model, the indices are known exactly from 
the Onsager solution. For the three-dimensional Ising 
model, the results of high-temperature expansions have 
been used. For real substances, our knowledge of the 
indices is poor inasmuch as their values depend on the 
choice of the equation of state used to analyze the ex­
perimental data. This indeterminacy has had the con-
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Table I 

Parameter I 
EuO EuS 

'la<lle+v> I 
0.37 0.36 
1.40 1.39 
1.18 1.18 

sequence that the results of different experiments dif­
fer from each other by more than the indicated experi­
mental errors, so that one has to choose which experi­
ment to trust. The most reliable values, given in Table 
I, of the indices for ferromagnets and gases were selec­
ted by A. V. Voronel'. 

V. REFINEMENT OF THE EQUATION OF STATE. 
THE SECOND SPONTANEOUS MOMENT 

We now make the equation of state more precise, by 
including the term cp 5 m5 In the expansion {12): 

qJ(m) = m + qJ3m3 + q>5m'. {33) 

Then the relations {17)-{19) between the indices (3 and 'Y 
and the function cp(m) can be brought to the form 

.!: = (~ -t-y)(~ -t-y-1) (2~ + 2y- 3) 
qJ,' y(4~-t-4y-5)' 

(34)* 

It can be seen that if (3 + ~~ = ~2, then cp 5 = 0, and if (3 + 'Y 
= 'l4, then cp 3 = O, in accordance with formula {18). 

We turn now to the equation of state. The integration 
in {15) is elementary. The result can be written conve­
niently by introducing in place of m the dimensionless 
parameter e, by the formula 

, y(4~ -t- 4y- 5) b'B' 
-cp,m = ~-t-y 1-t-(2~-t-2y-3)b'B' (35) 

Here, b2 is a constant, which will be encountered fre­
quently below: 

b'= (~-t-y)I['V-2~(2~-t-2y-3}]. {36) 
For (3 + y = %, the parameter 9 coincides with the pa­
rameter e in {32). 

Using the parameter tl, we can write the second­
approximation equation of state thus: 

't' = r(i- b'B'), {37) 

M IM, = r'B[i -t- (2~ -t- 2y- 3)b'B']<•H>t<2H•v>, {38) 

HI H, = r'+•a(i- B' -t-AB'}, {39) 

(~) =x= M, r-•[1-t-(2~-t-2y-3)b'a']-'"<''+>•>. (40) an , H, 

The coefficient .\ in {39) is connected with the critical 
indices (3 and y by the relation 

A=.-~-(2~-t-2y-3)'b'. (41) 
~-t-y 

The constants He and Me are phenomenological con­
stants related to the constant cp 3 in the expansion {33): 

,=-H.'J"M,-<•H»ltv y(4~-t-4y-5) (42 ) 
qJ (2~ + 2y- 2)'[y- 2~(2~ + 2y- 3) l 

In its form, the equation of state is completely universal 
and depends only on the critical indices (3 and y. The 
first-approximation equation is obtained if we put (3 + y 
=%. 

*It is noted in ZhETF Pis Red. 16, 255 (1972) [JETP Lett. 16, 179 
(1972) I that a factor 2 was left out of this equation [Trans!. note]. 

System 

co, 3-lsing 2-lsing 

0.35 0.31 1/8 
1,20 1.25 7/4 
1.03 1.04 5/4 

We shall give a formula for the free energy corre­
sponding to Eqs. {37)-(40); this is calculated by the 
method of Sec. IV: 

F,,., = -M,H,r'H•j(1- b'B'). 

Here f(z) is a function that is analytic at z = 0 and can 
be expressed in terms of hypergeometric functions 
F (a, b, c, z): 

~ z'" 
/(z) = t ... lmfm (zj 2~ + y _ m, 

m=O 
(44) 

. (f +e)"'""_,' { - 3TJ ez } 
/,. (z) = 2b' F 5 _'I], m- 2~- y, m + 1- 2~ - y, 1 + 8 , 

(45) 
·where 

R, = 2~(1 -t- e)', R, = 14Ab-' -t- 3b-'- 2 -t- e(2b-' -1 -t- 3A.b-'), 

R,=-eb-'-A.b-'(1-3e), Rs=A.b-'(2-e); (46) 

.\and b are given by formulas (41) and {36) and 

8 =2~-t-2y-3, 
31] 4~-y 

5-'1] = 2~+ 2y' 

For comparison with experiment, it is convenient to 
find the coefficients C+, C_, Band Din the laws {6), (5) 
and {21) for the susceptibility, spontaneous moment and 
high-field moment, and also the coefficients At in the 
specific heat CH = - T(;1 {il2F /ilT2)H=o = A± 1 T 1 2{:1+'>'- 2• 

Our results for C±> B, D and A± are as follows: 

C+ = M, I H,, (47) 

C_ = !:(b'B,'- 1)'(1 -t- eb'B,')-••t.<•o+>v>, (48) 

B = M,B,(b'B.' -1)-0 (1 -t- eb'B,')'•!(•-•>, (49) 

( 
R + ) om+>> 

D =M,H,-ot<H•> T b-•'<H•>(1 + e)'•i<•-•>, (50) 

A M,H, 
+ = z;:;-<2~ + y) (213 + y -1)/(1). (51) 

M,H, 
A_ = ----z;:--(213 -t- y) (2~ -t- y- 1) (b'B,'- 1) -•Hj( 1- b'B,'), {52) 

where 91 is the first (smallest) root of the equation 
1 - 92 + .\94 = 0, i.e., 

8,'=21[1-t- (1-4A.)"']. 

In Table TI, the dimensionless ratios C+ jC_, 

(53) 

C~B'Y jDf3+y from the formulas (47)-{50) are compared 
with experiment and with numerical calculations for the 
Ising models. The "experimental" data shown are taken 
from 13l. It is necessary to bear in mind that the values 
of the indices and critical coefficients depend on the 
equation of state taken to analyze the experiment. There­
fore, all that one can say on the basis of Table II is that 
the equation of state of the linear model and our equa­
tion of state lead to numerically close results and agree 
well with experiment. For a complete comparison with 
experiment, it is necessary to analyze all the experi­
mental curves using our equation of state and assuming 
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Table II 

System 
Parameter"' 

I I I I I Jj-brass I 3-Ising 12-lsing CrBr3 Ni co, Xe He 

p 0.37 0.37 0.35 0.35 0.36 0,30 0.31 .,, 
r 1.21 1.31 1.26 1.26 1.24 1.24 1.25 'I• 

2 (p + r)/3 1.05 1.11 1.07 1.07 1,06 1.03 1.04 'I• -n 2.7 2.5 2.6 2.6 2. 7 2.8 2,7 15f7 

b' 1.44 1.63 1,45 1.45 1.46 1,30 1.33 •;, 
).. 0.01 0.07 0.02 0.02 0.02 0.00 0.00 0.05 

(C.fC_)T 3.8 3. 7 4.4 4.4 4.0 5.5 5.3 48 

(C+fC_)1 3.1 t0.9 2.9± 1.4 4.4 4.1 3.6 5.5 5.2 37 

(C+fC .. Jtm 3.8 3.9 4.2 4.2 4.0 5.5 5.3 60 

( C! B" /D~-1-Y )T 1.17 1,21 1.21 1.21 1.17 1.18 1.20 0.93 

(C!B'fD-'+") 1 1.16+0.07 1.1 +0.1 1.20 1.18 1.15 - 1.20 1.32 

( C!B'fD~+' hm 1.16 1.20 1.18 1. 18 1.17 1.18 1.18 1.27 

*Here, the subscript t denotes date obtained from formulas (47)-(52), the subscript e 
denotes experimental data [3] (for the Ising models, the results of high-temperature ex· 
pansions), and the subscript lm denotes results obtained from the linear model [3]. 

that the critical indices and the coefficients M0 and H0 

are arbitrary parameters. 
In principle, it is also possible to compare other di­

mensionless ratios, e.g., A+ I A_, with experiment. How­
ever, the indices {3 andy are known with insufficient ac­
curacy for this. The point is that, for the experimental 
values of the indices given in Table II, 

a= 2- 2~- y;::; 0,05 (CrBr,), 

3lj 4~- y 
5 -lj = 211 + Zy ;::; 0.08 (CrBr,). 

For such small values of a and TJ, the function f(z) in 
(44) is approximately equal to 

/(z)""' 4~, {Ro ( 1- :~ z') + R, ( z- ~: z')- R, ~2 
}· (54) 

For CrBr 3 , the coefficients R0 , R1 and R2 are of order 

R, ~ 1.0, R, ~ 0.23, R, ~ -0.11. 

For the value z = 1 - b28~ ~- 0.46 (CrBr 3), which deter­
mines the specific heat below Tc, all three terms in (54) 
are of the same order and f(z) depends essentially on 
the ratio TJia, which is known only in order of magnitude. 

Our formulas can be used to refine the values of TJ 
and a, knowing the experimental ratio A+ I A_. 
~ Finally, we give a formula for the metastable moment 
M0 predicted by the equation of state (37)-(41): 

Mo("t") = ~( b'9.' -1) ~ ( ~ + eb'9.') '•W-•> 
M,("r) 9, b'B,'-1 1=teb'9,' · (55) 

Here, M0(T) is the ordinary spontaneous moment, and 

9 , _ 2 1 
2 - 1-(1- 4A.)'t. = 1..9,' 

is the second root of the equation 1 - 82 + Ae 4 = 0. The 
ratio M0 IM 0 depends fairly strongly on the critical in­
dices and can be large. For example, for nickel, M0 

""'3.5M0 • 

VI. DISCUSSION. THE PROBLEM OF JUSTIFICATION 

The phenomenological theory constructed is based on 
two fundamental assumptions: 

1) the scaling hypothesis, from which it follows that 

the function cp(m) must not depend explicitly on temper­
ature, 

2) the hypothesis that the function cp(m) is analytic in 
the critical region, which means that the series cp(m) 
= m + ~cpnmn converges sufficiently rapidly. 

The scaling hypothesis seems to the author to be suf­
ficiently well-founded. Apart from physical reasoning, l11 

there are microscopic justificationsl4• 51 by field-theory 
methods. The microscopic justifications cannot be con­
sidered rigorous, since they operate with divergent se­
ries of Feyman diagrams. In particular, it is difficult 
to understand in the framework of the microscopic ap­
proach how the critical indices {3 and y could be other 
than universal, i.e., depend not only on the symmetry, 
but also on the parameters of the system. This question 
has been analyzed in part in the author's paper, raJ in 
which a field-theory model with interaction gM6 is ana­
lyzed. In the practically attainable subcritical region of 
distances ln (r lr 0 ) ~ 1, the effective indices at the tran­
sition point depend on the non-universal constant g. 

The analyticity hypothesis corresponds to our physi­
cal ideas on critical phenomena and, as was shown above, 
works well in practice. However, from a theoretical 
point of view, this is insufficient, and it would be desir­
able to know the analytic properties of cp(m), if only in 
some model. 

For the Ising model, the Lee- Yang analysisr21 (cf. 
also l11 ) shows that the only singularities of the equation 
of state are branch points at 

H = ± const · iT>+'. 

These branch points determine the radius of convergence 
of the usual series in powers of HT-{3-y. We shall see 
what these branch points mean for our function cp(m). If 
we retain the first terms, cp(m) = m + cp 3 m 3, then, as m 
- ±ioo, as is easily seen from our formulas, the mag­
netic field actually tends to an imaginary value, and the 
susceptibility goes to infinity close to this point. In other 
words, one can obtain singularities of the Lee-Yang 
type by assuming cp(m) to be simply a polynomial. 

It is important, however, that the susceptibility goes 
to infinity near these singularities. This property is 
also conserved in the more general case when cp(m) is 
not a polynomial, but an entire function going to infinity 
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as m- ±ioo. Indeed, making m- ±ioo in {15), we ob­
tain 

x(m,'t')-+·r-•exp (-Y-lnl <p(m) I). 
\ ~ +v const (56) 

If we ?ow substitute (56) in the formula {13) for H, then 
qJ(m) m (13) cancels and 

H-+const · 't'H• <p(m) 
l<p(m) I. 

Form- ±ioo, the function qJ{m) = ±i lqJ(m)l, so that 
these are singularities of the Lee-Yang type. Thus, as­
suming qJ{m) to be an entire function, we can obtain 
those of the Lee-Yang singularities near which the sus­
ceptibility goes to infinity, i.e., the density of zeros of 
the partition function goes to zero no more rapidly than 
linearly. For the Lee-Yang singularity closest to the 
coordinate origin H = 0, this property is fulfilled-the 
density of zeros obeys a scaling law with exponent 1- y 
< 1. If X - oo for the other singularities also, or if the 
latter are situated outside the critical region 1 HI 
a: IT I f3+y- 0, then qJ(m) will be an entire function. 

We shall discuss one more question, which is very 
important for our theory. We have expressed all ob­
servable quantities in the critical region in terms of 
the entire function qJ{m), the Taylor coefficients of which 
we have assumed to be phenomenological parameters. 
Might it not be possible, however, to measure the func­
tion qJ{m) directly in experiments? 

From a geometric point of view, qJ{m) is the isocline 
of a family of isotherms, i.e., the curve along which the 
derivative x = {oM/oH)T is constant. If it were found 
possible to do an experiment in which the dependence 
of the magnetization on the magnetic field at constant 
susceptibility, and not at eonstant temperature, was 
measured, then this would be very important. Since the 
susceptibility is very large in the critical region to hold 
it constant is, at first sight, not difficult. In doin~ this, 
there ~s no necessity to measure and control the temper­
ature 1f a method can be found for controlling the sus-

ceptibility directly. If the scaling hypothesis is correct, 
all the points must lie on one smooth curve qJ(m). After 
this, it will be possible to find all the thermodynamic 
quantities and critical indices with great accuracy from 
our formulas. 

CONCLUSION 

This paper proposes a quantitative approach to the 
thermodynamics of second-order phase transitions· this 
is a development and generalization of Landau's orlginal 
idea of expanding the equation of state in powers of the 
order parameter. In the framework of the scaling hy­
pothesis with arbitrary critical indices, it is possible, 
nevertheless, to generalize the concept of the order pa­
rameter and the external field corresponding to it in 
such a way that for these quantities m and h, unlike the 
usual M and H, the equation of state is universal and is 
defined by a rapidly convergent series. The first two 
terms of the series are found to be sufficient to describe 
all the experimental data, to within a few per cent accu­
racy, by means of only two phenomenological parameters 
-the critical indices {3 and y. 
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