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The structure of a "superconducting" layer covering the inner surface of a hollow cylindrical superconductor 
with a current is elucidated. The electromagnetic impedance of the inner surface is calculated. The behavior 
of the system in a transverse external magnetic field is investigated. 

A singly-connected type I superconductor, in which an 
electric current is flowing, can exist in three possible 
states, depending on the value of the current: super
conducting, normal, and intermediate. The intermediate 
state isfl-SJ a set of macroscopic (i.e., large in com
parison with the superconducting coherence length) 
regions occupied alternately by normal and supercon
ducting phases. The situation changes markedly if we 
are dealing with a multiply-connected superconductor 
with a current. In this case, in addition to the inter
mediate state, there also ought to exist the so-called 
surface "mixed" state. The conditions for the emer
gence of a "mixed" state are realized, for example, in 
a hollow superconducting cylinder with a current flow
ing along its axis. As was noted by L. D. Landau, £41 the 
intermediate state vanishes in a hollow cylinder if the 
current exceeds Ii = Ic(r~ + d)/2rlr2, where Ic 
= cHcrd2 is the critical field, and r1 and r2 are the 
respective radii of the inner and outer surfaces of the 
specimen. However, for I> Ii, the purely normal 
state also cannot exist. Actually, for an arbitrary value 
of the current, the magnetic field inside the opening is 
equal to zero and is therefore small close to the inner 
surface. It is then clear that even at I>> Ii the normal 
state is unstable against the onset of superconductivity 
close to the internal surface. 

It could be thought that a macroscopic superconduct
ing layer would be formed on the inner surface of the 
specimen, but this is impossible, since the separation 
boundary of the normal and superconducting phases 
would be in this case in a state of neutral equilibrium 
and the presence of an electric field of even small mag
nitude in the normal phase would lead to continuous 
motion of the boundary in the direction of the inner 
surface of the sample. In this connection, L. D. 
Landauf4l assumed that the metal undergoes near the 
inner surface a transition into some "mixed" state, in 
which superconductivity and an electric field exist 
simultaneously. The existence of this state was demon
strated experimentally by I. Landau and Sharvin,fsJ 

The presence of the "mixed" state plays an impor
tant role also in the current range Ic < I < Ii, when the 
sample is found in the intermediate state. That is, 
normal layers, which appear on the inner surface, 
should be covered by a layer of the "mixed" state. In 
the work of one of the authors, (sJ the structure of the 
intermediate state which appears under these condi
tions was elucidated. The problem of the structure of 
the mixed state itself was not studied in that case. The 
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goal of the present research is the clarification of the 
structure of the surface "mixed" state. We shall con
sider the range of currents I> Ii, where the inter
mediate state is absent and the properties of the sam
ple as a whole are determined by the presence of the 
mixed state. 

1. THE STRUCTURE OF THE SURFACE LAYER 

We shall consider a massive hollow cylindrical 
sample of a pure type-I superconductor, i.e., we shall 
assume that the characteristic radius of the sample R 
and the free path length of the electrons l are suffi
ciently large. The range of values of the total current I 
begins with I ~ Ii ~ cHcR and extends to I ~ Im 
~ cHcR2 / ~, where Im is the value of the current above 
which the surface mixed state disappears, as we shall 
see;~= HT) is the coherence length. The indicated 
values of the current are not small in the sense of the 
magnetic field produced by them. This magnetic field 
of the current exceeds the characteristic value of He 
for the superconductor. It is essential, however, that 
the electric field E ~ I/R2a (a is the conductivity of 
the normal phase) is proportional to 1/Rl for I~ Ii, 
and is proportional to 1/l for I~ Im. Expressed in 
terms of units that are natural for the superconductor, 
the electric field is therefore small. We should thus 
consider the problem in which the electric field is 
finite but the electric field tends to zero. In the case 
of a superconductor, the problem of the effect of an 
infinitesimally small electric field is not trivial-an 
infinitesimally small static field can in principle pro
duce finite changes in the properties of the system. A 
similar situation arises in the flow of a superfluid 
under the action of a pressure gradient. In the latter 
case, the general picture of the flow is well known. 
Vortex filaments are formed in the liquid, the interac
tion of which with the walls of the vessel balances the 
pressure gradient. If the pressure gradient tends to 
zero, then the number of vortex filaments also tends to 
zero, and therefore the properties of the liquid in a 
particular part of the volume are identical with the 
properties of a liquid in thermodynamic equilibrium. 
We shall assume that a similar situation applies in our 
case, and shall neglect the electric field everywhere, 
and consider a system that is in equilibrium for a given 
value of the current. 

As shown above, the purely normal state of a hollow 
cylinder is unstable against the onset of superconduc
tivity near the inner surface of the sample. To ascer
tain the structure of the resultant surface of the 
"superconducting" layer, we write out the Ginzburg
Landau equation with account of the normal current 
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-6' ~~ +(A'-1)¢+11''=0, 

d'A Bne 
A'a;z=Aijl'- A'6h;;'j., 

(1) 

where l/J is the ratio of the ordering parameter to its 
equilibrium value in a bulk superconductor, A is the 
vector potential of the magnetic field, expressed in 
units of 21/ 2 Hc.X, .X the penetration depth of the mag
netic field in the superconductor, e the charge of the 
electron, and jn the density of the normal current. The 
coordinate x is measured from the inner surface of 
the cylinder into the interior of the sample. The solu
tion of interest to us is shown qualitatively in Fig. 1. 
The layer thickness d, as we see, is always greater 
than or of the order of ~ . Inasmuch as the parameter 
K of the Ginzburg-Landau theory is usually small in 
pure type I superconductors, the thickness d is large 
in comparison with the penetration depth .X. The mag
netic field near x = d changes from zero to some value 
Ho. 

Since .X« d, then the value of the potential of the 
magnetic field A in the basic part of the volume of the 
layer is determined by the condition of the vanishing of 
the right-hand side of the second equation of (1). 
Recognizing that jn ~ I/R2 , I S cHcR2/ ~ and, as we 
see, l/J ~ 1, we find 

A - ~ ej. :r;;/'H,e - ~- x. 
ljl' lie' lie 6 

This means that the effect of the normal current can be 
neglected in the case under consideration when K << 1, 
a.pd we can solve the ordinary equations of Ginzburg
Landau, i.e., Eq. (1) with jn = 0. The vector potential 
A for x < d is then virtually equal to zero, and there
fore the function l/J is determined by the equation 
-~ 2 lf;" - l/J + lf; 3 = 0, with the boundary conditions l/J' ( 0) 
= 0, lf;(d) = 0. The first of these is the ordinary Ginz
burg-Landau equation on the boundary of the supercon
ductor-vacuum, the meaning of the second is clear from 
Eq. (1). The solution is expressed in terms of the 
elliptical sine: 

2''•k . ( d- z ) 
¢= (1+k')"' sn s(1+k')"' ,k • 

and the parameter k entering into (2) ( 0 < k < 1) is 
connected with the layer thickness by the relation 

d/6(1 + k')'l• = K(k), 

where K( k) is the complete elliptical integral of the 
first kind. 

(2) 

The magnetic field H0 is most simply determined if 
we use the well-known first integral of the Ginzburg
Landau equation: 

(1·- A')11''- 1/211'' + A'A" + 6'11'" = const. (3) 

As x -ao, we have l/J = 0, l/J' = 0, A'= H0/2112 Hc.X; if 
also x = 0, then A' =A= 0, l/J' = 0. Equating the values 
of the first integral at z = 0 and x = ao, we find 

Ho' = 2Ho'['i''(O)- 1/2'i''(O)]. 

These formulas allow us to express all the charac
teristics of the "superconducting" layer in terms of 
the single parameter k: 

d=W+k')"'K(k), '!'(0)= (i~~')"', ~: = 1 ~k'. (4) 

j/J(:r) /l(:r) 

-·-------He 
1/(z) Ho 

FIG. I 

The same parameter k remains arbitrary in this case. 
The fact that the solution of the Ginzburg-Landau equa
tions contains an arbitrary parameter in the given case 
becomes clear if we note that the solution we have ob
tained describes, in particular, the macroscopic super
conducting layer, whose thickness can of course be 
arbitrary. The value of the parameter k will be deter
mined below from the condition that the thermodynamic 
potential of the system be minimal. 

2. DEPENDENCE OF THE LAYER PARAMETERS ON 
THE CURRENT 

For a given value of the total current through the 
sample, the thermodynamic potential fT should tend 
toward its minimal value (seer7l, where this potential 
is denoted by 9·), the density of which in the normal 
phase can be assumed to be equal to ( H~ - H2)/ 81r, if 
we take the initial measuring point of the energy such 
that in the superconducting phase the value of fT is 
equal to zero. 

We use a cylindrical set of coordinates (r, qJ, z) 
with an axis coinciding with the axis of the sample. By 
virtue of the symmetry of the problem, the only mag
netic field component differing from zero is H (/) = H. 
In the normal metal, this satisfies the equation 

d'H 1 dH H 
-;;;:z-+7Tr--;;-= o, 

whence it follows that 

H=a!r+br, (5) 

where a and b are arbitrary constants. One condition 
for their determination is obtained from the connection 
between the magnetic field on the external surface of 
the sample and the total current I: H(r2) = 2I/cr2. The 
other follows from the properties, set forth in the 
preceding section, of the "superconducting" layer that 
covers the inner surface of the sample: H(rl +d)= Ho. 
As a result, we find 

a=- 2I (r,+d)' +H (r,+d)r,' 
c r1'-(r1 +d)' 'r,•-(r1 +d)'' (6) 

b = 21 1 H r, +d 
e r,'-(r,+d)' 'r,'-(r,+d)' 

The total thermodynamic potential per unit length 
of the sample is equal to the sum rr = ;rn + ifs, where 

is the contribution of the normal region r2 > r > r 1 + d, 
and 

H,· s· { 1 ·+'~'' + '·} (7) fr,=r,-2- dz 2 -11' 2 \jl 
0 
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is the contribution of the superconducting region. The 
appearance of the term }'2 in the curly brackets of this 
latter equation is connected with the fact that we 
reckon the potential from the value in the superconduct
ing phase. 

We shall carry out further calculations separately 
for two overlapping regions of currents. First, let the 
current satisfy the inequality I 4:: Ic ( R/ ~ ). In this case, 
as we shall see below, the parameter k is close to 
unity, and the field H0 is close to He. Let f1F no be the 
value of the potential ET n for d = 0 and H = He. The 
difference .'Tn - fT no can be expanded in powers of the 
small quantities (He - H0 )/Hc and d/ r 1 and limited to 
the first nonvanishing terms. As a result, we get 

or _or- _ _.!.._ r,r.' ( 1 r, + b r,'- r,' a, r,•- r,' 
iTn iT no- 2-,-- ao n- o--------r, - r,' r, 2 2 r1' 

b, r,•- r, • ) { ( a,) d } -4-r-,'- b,- r,' T+H,-H, ' 

where the quantities a 0 and b 0 are obtained from a 
and b if we set d = 0 and Ho = He. For the potential 
~Ts, we find from Eq. (7) 

1 ·{d[1 2k'] 
fF,=2r,6/f, T 2- (1+k')' 

4k' . l 

+ (1+k')'"f [(1-w')(1-k'w')]"'dw}; 

(8) 

(9) 

the ratio of the potential f1F s to the difference .:T n - T no 
is of the order of ~/r1 « 1; therefore, to determine the 
equilibrium value of the parameter k, it suffices to 
minimize the expression in the curly brackets of Eq. 
(8 ). Using the asymptotic formula K( k) = }'2 ln 8/ ( 1 - K), 
which is valid for k - 1, we find 

The thickness of the layer in the region of currents 
under consideration is large in comparison with the 
coherence length 

d = ..;,_1n { 32;f2(r11 - r,') I. } 
2j2 r,s I -I, 

(10) 

in connection with which the energy gap ll. on the inner 
surface ( r = r 1) is close to the value ll.o in the bulk 
superconductor, and the field H0 is close to He: 

!J.,-!J. ={ r,s(I-I,) }''• H,-H,= 2(!J.,-!J.)'. 
!J., 2Y2(r.'-r,')I, ' H, !J., 

In the case of large currents I >.> Ic, it is convenient 
to calculate the difference between the potential .'T n 
and the potential .'TN of a sample located in a purely 
normal state. The latter is obtained from the formula 

1 •• 
fFN= 4 f rdr(H,'-H'), 

'• 
where the field H has the previous value (5) but the 
constants a and b are equal to 

2I r,• 21 1 
aN= ---,--2 , bN = --2--2 • 

C Tz - Tt C Tz - Tt 

We have 

fF.-fFN=!._, r.'r,' (r,•-r,• -4ln~){ 41 --d--H} 
4c (rz2 - Tt 2 ) 2 Tt2T22 Tt c Tz2 - Tt.2 0 

• 

(11) 

r'f:r) 
{1,60 

{/,7J 

U,7!1 

1/,oJ 

IJ.5D 

li {l,q:t 

FIG. 2 

The potential .:Ts can again be neglected, and the con
dition for equilibrium written as the condition of the 
minimum of the expression in the curly brackets of 
Eq. (11), i.e., 

2I r,6 2k ( ) 
--,--, (1+k')''•K(k)---=min. 12 
I, r, -r, i+k' 

Then the parameter k is determined as a function of the 
current: 

(13) 

A plot of the function f(x), obtained as a result of 
numerical calculation, is shown in Fig. 2. We note that 
the result obtained from (12) for ~/IcR « 1 agrees 
with Eq. (10), as was to be expected. The relations (13) 
and (4) completely determine the parameters of the 
surface layer in the region of large currents. 

The current I = Im above which the surface mixed 
state vanishes and the sample undergoes a transition 
to the purely normal state is determined from the con
dition of the vanishing of the difference g-n - JN or, 
what is the same thing, from the condition of the vanish
ing of the minimum of the expression (12). The corre
sponding limiting value of the parameter k is a root of 
the equation 

(1 + k')E(k)- (2- 3k' -t k')K(k) = 0, 

as is easily seen. Here E(k) is a complete elliptic 
integral of the second kind. Numerical calculation 
yields k = 0.58. The ratio of the current Im of transi
tion to the normal state to the critical current is ex
pressed in terms of the limiting value of k by the 
formula 

lm rl- Ttz k 1 r22 - r 12 

[.;"'=~(1 +k')''• K- (k)~0,21----;::y-. (14) 

We note that Im greatly exceeds the previously calcu
lated value(BJ Ic2, at which the fluctuations of the 
superconducting ordering parameter increase when 
approaches from above in the normal state. From the 
point of view of the thermodynamic theory developed 
here, the current lc2 determines the limit below which 
the normal state is absolutely unstable against the 
superconducting fluctuations. Actually, even at I = Im 
a first-order transition into the mixed state should take 
place. 

In concluding this section, we write down the formu
las obtained for the electromagnetic impedance Z of 
the inner surface of the sample. If the frequency of the 
alternating field is not too large, the surface impedance 
of the superconductor is uniquely determined (see[7l) 
by the penetration depth .X. Since the thickness of the 
"superconducting" layer is large in comparison with 
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A, the difference between the field penetration depth in 
the sample and the value that is characteristic for the 
infinite superconductor is wholly due to the difference 
between the energy gap t:.. on the inner surface and t:.. o· 
Recognizing that the surface impedance is proportional 
to the penetration depth, which is in turn is inversely 
proportional to the energy gap, we find 

Z _A, -(1+k2
)''• 

z.-~- 2k' ' 
where Zs is the surface impedance of the bulk super
conductor. If the current is weak, i.e., I<::: Ic(R/1;), 
then the impedance Z is dose to Zs: 

Z- Z, { r26 I- I, }''• z:--= ~:(r22 -r.') h_ 
The quantity Z increases: with increasing current, 
reaching 1.4 Zs at I = Im, after which it changes jump
wise to the value characteristic for the metal in the 
normal state. 

3. THE EFFECT OF NONCOAXIALITY OF THE 
SURFACES OF THE SAMPLE 

The behavior of the system in a region of large cur
rents is shown to be very sensitive to a displacement 
6 of the axes of the inner and outer cylindrical surfaces 
relative to one another. For the validity of the fornlU
las of the previous section, therefore, it is necessary 
that the very rigorous inequality 6 « !; be satisfied. 
In this section, we shall consider the case in which 
6 » !; but still 6 « r 1• The problem under study is 
also interesting for another reason. The fact is that, 
in the presence of the noncoaxiality 6 in the normal 
metal, a homogeneous magnetic field 

H.= 2J,5/c (r,'- r.') 

appears on the inner surface. It then follows that the 
behavior of the noncoaxial sample is equivalent to the 
behavior of a sample with 6 = 0, placed in an external 
magnetic field Ho perpendicular to the axis. 

We have seen above that if the current is not too 
great, i.e., I« Im, then the thickess of the "super
conducting" layer that covers the inner surface is 
large in comparison with !; • Since the magnetic field 
on the outer surface of such a layer should be tangen
tial everywhere and equal in magnitude to He, then it 
is clear that this surface will have a cylindrical shape 
and will be coaxial with the outer surface of the sam
ple. Moreover, if we note that it is energywise ad
vantageous to choose the :radius of the surface of the 
layer to be as small as possible, we arrive at the con
figuration shown in Fig. 3. As is clear from the draw
ing, the distribution of the magnetic field in the normal 
phase in this case is idenltical with the distribution 
arising in the coaxial sample, whose inner surface is 
covered by a superconducting layer, with the parame
ters d = 6 and H0 =He. l1t is therefore easy to write 
down the difference iT- :TN, where :TN is the poten
tial of the coaxial normal sample for I>> Lc, using 
Eq. (11). Noting that the difference of the potentials 
for the noncoaxial and coaxial normal samples is pro-

FIG. 3 

portional to ( 6/R )2 and is therefore negligibly small, 
we have 

I 2 3 Z 2 4l R 

_ - r,r, (~-4ln~){--u --n} fT g:' N - 4 ( 2 ') 2 Z 2 Z 2 c • c r, - r, r, r2 r, c r2 - r, 

If I < I1 = cHc ( r~ - rD/ 41T, then the given expression 
is negative, i.e., the formation of the layer is energy
wise advantageous. For I = I1, the potential PT is com
parable with S"N; however, if the sample were to 
undergo here a transition to the normal state, the mag
netic field inside the opening would be equal to H6 
= Hc/2, i.e., significantly less than He· The normal 
state for I1 < I< 2I1 is more advantageous than the 
state with a homogeneous "superconducting" layer, 
but not stable relative to the appearance of supercon
ductivity close to the inner surface of the sample. We 
therefore reach the conclusion that the surface layer 
cannot be homogeneous in the interval of currents from 
some value up to 2I1, and should represent a system of 
alternating regions of superconducting and normal 
phase. For I> 2I1 the superconducting regions close 
to the surface disappear and the metal goes over into 
the purely normal state. We emphasize that, since 
6 » ; , this takes place for currents significantly 
smaller than Im. 

In conclusion, we express our gratitude to I. L. 
Landau and Yu. V. Sharvin for stimulating comments 
and advice, and to L. P. Gor'kov and I. M. Lifshitz for 
attention to the work and useful discussion. 
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