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A kinetic theory of the transformation of electromagnetic energy into sound on the surface of a metal in the 
presence of specular reflection of the electrons from the boundary is constructed. It is shown that the 
coefficient of the transformation has a sharp maximum associated with the frequency at which the 
wavelength of the sound coincides either with the mean free path or else with the depth of the skin layer. It 
is ascertained that, in the presence of specular reflection, all of the electrons with the Fermi energy 
participate in the transformation process, even under the conditions of the anomalous skin effect. 

THE transformation of electromagnetic energy into 
sound by electrons has been repeatedly observed ex
perimentally[ 1- 71 and has been theoretically ex-
plained. [7- 101 In the cited articles (both theoretical and 
experimental) the question is the excitation in the metal 
of a sound wave of frequency w by an electromagnetic 
wave (EMW) which is incident on the surface of the 
metal-that is, a linear transformation of the waves. 
The amplitude of the excited sound wave is proportional 
to the amplitude of the incident EMW. The electro
magnetic field in the metal essentially does not depend 
on the angle of incidence. This makes it possible to 
consider the transformation for normal incidence of 
the EMW on the metal ( z > 0 ). 

If the surface of the metal, z = 0, does not coincide 
with a plane of symmetry of the crystal (it possesses 
larger crystallographic indices), then three sound 
waves are excited upon the incidence of an EMW of 
arbitrary polarization on the surface. In this case the 
eg_uation describing the excitation and propagation of 
sound has the form (i = 1, 2, 3) 

d'u, ' -I ' -IF ( ) --+ (J) p"', u, = "'" l z . 
dz' 

(1) 

Here Ui is the vector displacement, p is the density of 
the metal, the tensor Ail = Azilz (Aiklm is the modu
lus of elasticity tensor), and Fi(z) is the density of the 
force due to the EMW incident on the metal. The prin
cipal values of the tensor pAiz coincide with 1/ sj, 

where Sj is the velocity of sound polarized along the j 
axis. The boundary condition on Eqs. (1) is the vanish
ing of the field intensities on a free boundary, where an 
"entanglement" of the waves is possible on the bound
ary, viz, the EMW excites a wave of only one polariza
tion, but waves of the other polarizations are excited 
at the boundary. If the thickness of the sample is much 
larger than the attenuation length of the sound waves, 
then only waves traveling from the surface of the metal 
should exist in the interior of the metal, and the prob
lem of the transformation of electromagnetic energy 
into sound reduces to a calculation of the amplitudes 
of the sound waves in the interior of the metal (as 
z -00 ). 

In the present article we shall assume that the z 
axis coincides with one of the "good" directions of the 
crystal. The EMW does not give rise to an electric 
field normal to the surface of the metal, and the elec
tromagnetic energy is transformed into a single sound 
wave whose velocity is given by st = s. The problem 
is reduced thereby to the calculation of u~ = Uoo. 
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Major attention will be given to the excitation of 
hypersound-that is, long wavelength phonons. The 
utilization of the macroscopic equations of the theory 
of elasticity naturally limits our investigation to fre
quencies w « wn ( wn is the Debye frequency of the 
lattice vibrations of the metal, WD ~ 1013 sec-1). It 
should be emphasized that the transformation mecha
nism studied here is not intrinsically limited to low 
frequencies. The decrease of the transformation co
efficient with increasing frequency (see below) is due 
to the electronic properties of the metal. The formulas 
given below enable us to estimate the feasibility of the 
excitation of a coherent stream of phonons by an EMW. 

The excitation of sound is associated due to the 
forces acting on the ionic lattice of the metal. There
fore it is natural to separate the excitation mechanisms 
in accordance with the nature of the forces that re
sponsible for generation of the sound. In metals, as is 
well known,[ 11- 12l besides the direct action of the elec
tric field on the lattice, the forces exerted on the lat
tice by the electrons, which are driven out of the equil
ibrium state by the EMW, 1> also play an essential role. 
Therefore, in investigating the nature of the forces re
sponsible for the transformation of electromagnetic 
energy into sound, it is natural to pose the question of 
the role of the various groups of conduction electrons 
in the transformation mechanism. 

Collisions of the electrons with the surface of the 
metal, accompanied by transfer of the momentum ac
quired from the electric field of the EMW, create a 
o -shaped surface force; however, the surface force 
vanishes if the electrons are specularly reflected from 
the boundary (in this article we shall consider only this 
case).2> The volume force in the right hand side of (1) 
the equation of dynamical theory of elasticity (Eq. (1 )) 
can be expressed in the form of two terms: 

F = F1+F,. (2) 

The first force is given by 

1lThe interaction of the equilibrium electrons with the lattice enters into 
the "renormalized" moduli of elasticity.l121 

2lThe reflection of electrons from a metal-vacuum interface depends 
essentially on the structure of the interface (see, for example, the 
review article by Andreevl151). If the interface coincides with a 
crystallographic symmetry plane and has the period of the bulk 
crystal, then the projection of the momentum on the surface should be 
conserved during reflection (in the absence of Umklapp processes), and 
the reflection will be specular. Besides its simplicity, the choice of 
specular reflection is dictated by the desire to clarify the role of 
volume forces in the transformation. 
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(3) 

where m 0 and e denote the mass and charge of a free 
electron, and j is the current density excited in the 
metal by the EMW. If the metal is located in a constant 
magnetic field Ho, then it necessary to add to this 
term the pondermotive force c-1 H0 x j due to the 
electromagnetic pressure, and 

2 J IJf,(z) 
F,« =- (2nli)' A.,------a;:-d'p. (4) 

Here and in what follows f1 is the nonequilibrium 
correction to the Fermi distribution function f0 , and 
Aik = Aik( p) is a tensor of the second rank whose com
ponents depend on the quasimomentum p of the elec
trons. Calculation of the components of the tensor 
Aik(P) is possible, of course, only by using a specific 
model for the metal. This problem is outside the scope 
of the present article. 

We note that the tensor Aik(P) formally combines 
two physically-different mechanisms producing forces 
exerted on the lattice by the electrons: the interaction 
of the electrons with the deformed latticer 11J and the 
transport of quasimomentum by the electrons.f12l In the 
free electron approximation, in the absence of a mag
netic field and in a constant electric field, the trans
port of momentum to the surface of the metal turns out 
to be the only mechanism producing the forces and the 
effects associated with them.fl3 l It is convenient to use 
the tensor Aik(P) in those cases when the necessity to 
distinguish between both mechanisms does not arise. 
Since f 1 contains the factor of0 /o£ (see[14l), it is es
sential to know the value of Aik( p) on the Fermi sur
face. From general considerations it is clear that for 
Fermi electrons 1 Aik I ~ £ F ( £ F denotes the Fermi 
energy). Unfortunately, this assertion is not enough to 
estimate the transformation coefficient, since its value 
depends on the anisotropy of the tensor Aik(P) (see 
below). We emphasize that the nature of the forces of 
interaction between the electrons and the lattice be
comes manifest only if the dependence Aik = Aik( p) is 
concretely specified. If the tensor Aik is assumed to 
be known, then in limiting cases one is able to solve 
the problem in general form, without making any kind 
of special assumptions (more precisely, one can ex
press the limiting values of the transformation coef
ficient in terms of integrals of the components of the 
tensor Aik( p) over the Fermi surface, see below). 

The current density j( z) and the electron distribu
tion function f 1( z) in expression (2) for the force (see 
also (3) and ( 4)) should be found from the kinetic theory 
of the skin effect ([ 141, part IV). Assuming that the 
electrons are specularly reflected from the boundary 
(later on we shall make a few remarks about the role 
of diffuse scattering in the transformation), and by 
using the kinetic equation with the collision integral in 
the T-approximation ( 1/T == v denotes the average 
frequency of the collisions), one can easily obtain 
( v = V£; £ denotes the energy of an electron with 
quasimomentum p) 

2weH (0) dfF s~ (v- iw) COS kz + kv, sin kz 
f,(z)=----v.- ----P,k 

inc de 0 [k'-4ni01(w,k)w/c'][(kv,)'+(v-iw)'] ' 
(5) 

. 2wH(O) s~ a(w,k)coskzdk 
Jx(z)=~ k'-4nia(w,k)w/c' ' 

0 

(6) 

where H(O) denotes the value of the magnetic field of 
the EMW on the boundary of the metal; 

a(w, k) == a.,(w, k) 
2e'(v-iw) ,r, dS v.' . (7) 

(2nli)' J v (kv,)'+(v-iw)' 
r=eF 

The x axis is chosen along the direction of the electric 
field in the EMW, where, as we have already mentioned, 
it is assumed that the electric field is directed along 
one of the principal directions of the crystal.3 > The 
integration in the last formula is carried out over the 
Fermi surface, where dS denotes the element of area 
on this surface. Using formulas (2)-(7), let us deter
mine the nonvanishing component of the force density 
Fx = F, Fy = Fz = 0: 

weH(O) +~ e,.' dk 

F = -n-c-]
00 
k'- 4nia(w, k)w/c' 

2 p dS mowv.'(v- iw)- A., kv.('v- iw- ikv,) 
X-- . 

(2nli)' v (kv,)'+(v-iw)' 
e=eF 

The solution of Eq. (1 ), subject to the additional 
boundary condition 

iJu/ilz=O for z = o, 
has the following form: 

{J)eH(O) (k' 4nia(w, k)w) -• 
<D(k)=--- ---- . 

ncps2 c2 

(8) 

(9) 

(10) 

X _2_ ,r, dS m0wv.'(v- iw)- A.,kv,( v- iw- ikv,) . (11 ) 
(2nli)' J v (kv,)'+(v-iw)' 

e=eF 

We are interested in the asymptotic value of the func
tion u(z) for large values of the coordinate z. One can 
show that 

lim u(z) = Uoo e'"'i'; (12) 

=·~ (~)-~J~k<Do(k)-wr'<Do(w/s) dk 
u~ w <D, s w k'- w'/s' ' (13) 

0 

2(!}, = <D(k) +<D{-k), 2<Do = <D(k)- <D(-k). (14) 

According to Eq. (11) 

weH(O) (15) 
<D,(k)=- ncps' k'-4nia(w,k)w/c' 

2 p dS m,wv,'(v- iw) + iA .. v,v,k' x--
(2nli)' v (kv,)'+(v-iw)' 

F 

weH(O) k 2 p dS A.,v.(v- iw) 
<Do(k) =· • 

ncps' k'-4nia(w,k)w/c' (2nli)' v (kv,)'+(v-iw)' 
'~'F (16) 

By virtue of the boundary (formally because of the 
second integral term in formula (13)), the nonresonant 
transformation of an EMW into a sound is possible 
without conservation of the wave vector (k = w/s). 
However, comparison of formulas (16) and (15) shows 
that always <l>s(k) .,t 0 not only on account of the term 
containing the mass of the free electron, but also be
cause the tensor Axz necessarily contains a part of 
the parity 4> of vxvz. Therefore the integral of this 

3lThe geometry is such that jy=j,=O, and the axes x, y, and z coincide 
with the principal directions of the tensors A.ik, erik• and of the 
impedance 'ik· 
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term over the Fermi surface certainly does not vanish. 
In the symmetric case under consideration, <I> a( k) then 
evidently vanishes for any arbitrary Fermi surface. 
The feasibility and consequences of the nonresonant 
nature of the bulk transformation will be analyzed in a 
special article (see the remarks at the end of this 
communication). 

Thus, here we shall investigate only the resonant 
part of the amplitude of the excited sound wave (the 
first term in formula (13)): 

_ ,., __ ieH(O) l(w,k) k=.!!!_, (17) 
u~ = u~ - pes k 2 - 4nia·(w, k)·wlc2 ' s 

_ 2 rf, dS m,w(v- iw)v.2 + ik2.i\.,, v.v, 
l(w,k)- (2nli)' 'f v (kv,) 2 +(v-iw) 2 • 

e=eP' 

(18) 

From formulas (17) and (18) it is evident that there are 
a large number of characteristic frequencies in the 
problem, and consequently the dependence of Uoo on the 
frequency is extremely complicated. In addition to the 
frequencies characterizing the electron gas proper, 
namely, v, sv/vF, s 2v/vF (vF denotes the Fermi 
velocity of the electrons, s « VF), and the plasma 
frequency 5> w 0 = ( 41Tne2/ m) 112 , there is also the charac
teristic "electrodynamic" frequency Wem at which the 
wavelength s/ w of the sound coincides with the skin 
depth 1i = 1/1 kern 1 (kern is the root of the equation 
k2 = 41TiO"(w, k)w/c 2 ). If w « Wem, then it is necessary 
to keep in the denominator of formula (17) the term 
containing the conductivity, and in the opposite case 
one keeps the k2 term. In calculating the electrical 
conductivity (according to formula (8)) it is, of course, 
necessary to take into account the relation between the 
frequency w of the EMW and the characteristic fre
quencies of an electron gas (v, sv/vF, and so forth). 
Depending on the magnitude of the mean free path l, 
the electrodynamic frequency wem falls in one fre
quency interval or another: 

w,M <;;:; S2v I vl for l <;;:; ll, = c I w,, 

s2vlv/·<;;:;w,M<;;:;svlv, for ll,<;;:;l<;;:;ll,(vFis)'l•, 

svlvF<;;:;w,M<;;:;·v for ll,(vFis)'1•<;;:;l. 

Now let us go on to the evaluation of the integral 
(18 ). At low frequencies we can neglect the term 

(19) 

(kvz)2 in the denominator and the frequency w in com
parison with v , 

2 ~ 2 dS (. 2 W2 
) l(w,k);:::;;-- 't- m,wvv. +2 A.,v.v, . 

(2rrli)' P s 

At extremely low fre~:~ncies w « vs 2/vF 

( w) 2 ~ dS m, J ro- ~--- -r-v:x:2m0ro=-aow, 
' s (2nli)' v e' 

e=~ F 

where a 0 is the static electrical conductivity. At 
higher frequencies (s 2v/vj;. « w « sv/vF) 

2i ~ dS w2 

/;:::;;-- 't 2 -AxxVxV:;-. 
(2nli)' ,~,F lJ s' 

(20) 

(21) 

(22) 

•>we refer to that part of the tensor Ax, which is connected with the 
transport of quasimomentum. For this mechanism Ax,=Pxv,.[131 

5>For all estimates we assume a quadratic dispersion law, an effective 
mass m:::::m0 , and a radius of the Fermi sphere PF=mvF:::::hn113, where 
n is the density of the electrons. 

In order to estimate J one can utilize the expressions 

J;:::;; nw lv for (21') 

J;:::;;n(wv,lvs)' for vs 2 lv.'<;;:;(f)<;;:;vslv,. (22') 

In these estimates we have taken into consideration the 
fact that 1 Axz I ~ t F on the Fermi surface. 

In the range of frequencies w « vs/ VF under con
sideration, the electrical conductivity a( w, k) coin
cides with its static value 

a ( w, :) ;:::;; a,;:::;; w,'l4nv, w<;;:; svlvF. (23) 

The last expression is convenient for estimates. Elec
trons with small values of Vz begin to play a specific 
role at comparatively high frequencies vs/vF << w 
« v: 

( 
(J) ) 2nse2 s'· 2 ( n ) 2 ( ) a w,--;- ;:::;; (2nli) 'w • p, z, cp cos cp dcp, 24 

where pj;.( (), cp) denotes the Gaussian curvature of the 
Fermi surface. The integration is carried out over the 
"strip" on which Vz = 0 (see[ 14l, Sec. 33 ). 

Expression (24) takes into consideration only the 
spatial dispersion of the electrical conductivity: in this 
case a(w/s) RJ (0, w/s). Frequency dispersion appears 
at higher frequencies w >> v, when 

( w) 2ne 2s '" 
a w,--;- ;:::;; (2nli)'w J p/(cp)cos'cpdcp, (25) 

where PF( cp) = pj;.( () ( cp ), cp ]. The "strip" over which 
the integration is carried out ( () ( cp) = ()) is determined 
by the condition 

s 1 vF(e, <r) =cos e. (26) 

since s/vF « 1, expressions (24) and (25) differ in
significantly from each other. For estimates one can 
utilize one and the same value 

a (w, ~) ;:::;; wo's' w ;;;...__.:_ v. (24') 
S WVF VF 

Now let us return to an investigation of the integral 
J(w, k). It is convenient to rewrite formula (18) by 
separating the specific electrical conductivity: 

I ( w, : ) = m;~ a ( w, ~ ) + J, ( w, ; ) , (27) 

( w ) w2 2 rf, dS A,.v.v, 
1• w,-; =i--;z (2nli)' .'t.:;- (kv,) 2 +(v-iw)' 

(27') 

Since the numerator vanishes at Vz = 0, the anomalous 
role of the grazing electrons (with Vz = 0) is signifi
cantly underestimated. If it is assumed that 

(28) 

then for vs/ VF « w « v 

2i dS 
'·;:::;; (2rrli)' ~ mv.'-v-. (29) 

E=EF 

Comparison of J 1 with the term containing the electri
cal conductivity indicates that J 1 is VF/ s times 
larger. Thus, formula (29) gives an approximate value 
of the entire integral J. For estimates one can as
sume that m = m. Then 

J ;:::;; n for v s I v, <;;:; w <;;:; v. (29') 

Finally, let us consider J( w, w/ s) for extremely 
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high frequencies (for w >> v) assuming, of course, 
that v « w << wo. As a rule the condition v « WD is 
satisfied at low temperatures in comparatively pure 
metal samples. The collision frequency v = WD cor
responds to an electron mean free path l equal to 
VFal s ~ 10-5 em. It is convenient to separate the non
resonant term in J: 

( ro) 2t rf,dS 
l ro,---;- ~ (2nli) 3 ,!, ---;- vx' m 

-F 

2t pdS, m-m, +-- -v 
(2nli)',~, v • (v,/s)'-1-2W/ro 

F 

(30) 

Now one can easily show that thanks to the inequality 
VF >> s the contribution of the nonresonant term is 
considerably larger than that of the resonant term (the 
second term). Therefore formulas (29) and (29') are 
also valid for w » v. Thus we see that the quantity 
J( w, wl s) is determined by all of the electrons on the 
Fermi surface even under the conditions of the ex
tremely anomalous skin effect, when the electrodynamic 
characteristics (conductivity, impedance) are deter
mined only by the electrons in the "strip" ( Vz = 0). 

The found values of J( w, wl s) and of the electrical 
conductivity a(w, wls) permits us to calculate U00 for 
any arbitrary ratio of the parameters. We restrict our 
attention to presenting order of magnitude values (com· 
plex factors of the order of unity are omitted) of u00 , 

and also of the transformation coefficient y. 
The transformation coefficient is defined as the 

ratio of the current density Qs 0 of the sound energy to 
the current density Qem of the electromagnetic energy 
incident on the metal: 6> 

(31) 

If l « Oo = clwo, then wem = s 2w~lc 2v is the smallest 
of the characteristic frequencies of the problem, and 

u~ roerr/ro, 
~::::::::: ro v 2/s'v em F ' 

ro<i{ ~m; 
<»em<!{ ro<i{ s'v/v/ 

s'v /v/ <!{ ro <!{ sv /vF; 
1

1 

ro v /ro', sv /vP <!{ ro <!{ ron. em 
Under these same conditions 

w~roem; 

y (ro /ron)', 
-:::::::: ern I ro'/ron', 

Yo (ro ffiVp2/s'vron)', em 

roe~ ro<i{ s'v(vp2 ; 

s'v/vF'<!{ ro<!{sv/vF; 

sv /vF <!{ ro. ("<\m v/ronro)', 

Here and in what follows 
me 

u~' = --H(O), 
pse 

m mvz/· sc 
V11 = M e2'/a ~' 

(32) 

(33) 

where H ( 0) denotes the value of the magnetic field of 
the EMW on the boundary of the sample, M = pa3 , 

where a denotes the size of the crystal cell. In the 
present case ( l « 00 ) the transformation coefficient 
reaches its maximum value for w = svlvF, that is, 

6>0ne can characterize the transformation by the ratio y' of the acoustic 
energy flux density Q,0 to the flux density Q.mRe' of the energy 
entering into the crystal, where ' denotes the impedance (Re' <I for 
metals): 

y'=y/Re~. 

When y' is close to unity, a more rigorous investigation of the 
transformation process is required than is given in this article, namely, 
a self-consistent solution of the equations of electrodynamics and 
elasticity. The condition for the method utilized here is y<Re,. It is 
essentially satisfied at all frequencies (see, however, below). 

l/lo 

f:::";;J'~ 
( w !l!z I 
w;/ -- I I : 

0 wz (sz )z f,S ~z .z wZ ~z em -z y Vv 11 
u, F 

FIG. I. Frequency dependence of the transformation coefficient for 
I~ 80 . 

when the mean free path l and the wavelength "-so 
= sl w of the sound are equal (see Fig. 1 ). The maxi
mum value of the transformation coefficient is given 
by 

{34) 

if it is assumed that mvic ~ e 21a and sc ~ vy. 
If Oo « l « Oo (vFis)112 , then Wem is determined 

by the previous formula, but under these conditions 
s 2vlvy « Wem « svlvF and 

w ~ s2 v/vF2; 

s'v/v/<1{ ro<i{ "lorn; 
ffiem<i{ ro <!{ IN/vF; 

sv/vF<!{ ro; 

(35) 

ro <!{ s'v/v/; 

s'v/vF 2 <!{ ro <!{ "l,m; 
(J),M <!{ (J) <!{ SV/VF; 

SV /VF <!{ ffi. 

(36) 

The maximum value of the transformation coefficient 
occurs, just as in the previous case, when w = svlvF 
(see Fig. 2) and is determined by the same formula (34). 

If Oo( VF Is )112 « l (( Oo( VF Is )312 , then 
s ( s ) .,, 

Wem=- - Wo, 
C Vp 

s 
-v~ Werrf{v, 
Vp 

and the amplitude and the transformation coefficient 
are given by the formulas 

= ~ ~· ~v//vs', 
Uoo 0 Vp/S, 

vFwerJ.lsffi2, 

ro <!{ s'v /v/, 

s'v /v/ <!{ ro <!{ sv /vF, 

SV /VF <!{ (J) <!{ "lorn• 
Wem~w; 

w~s2v/vF\ I ro'/wn', 

u/"v/"/wD2v2s", 

ro 2v//wD2S2, 
Weni'VF2/Wn2W2S2' 

s'v/vF' <!{ ro <!{ sv/vF,, 

SV/Vp <!{ (J) <!{ ':lm, 
ffiem<i{ ro. 

(37) 

(38) 

The maximum value of y occurs for w ~ wem· It is 
given by 

But since mvy ~ e 21a and a2w~ ~ vF (we note that 

FIG. 2. Frequency dependence of the transformation coefficient for 
50 ~I~ 50 (vF/s)Y2• 
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FIG. 3. Frequency dependence of the transformation coefficient for 
c5o(VF/s)'lz ~ l ~ c5 0 (vF/s) 3/2 . 

e2 ::::l tivF), it follows that Ymax ::::l mvF/Mc (see Fig. 3). 
Finally, if l >> ( VF/ s )312 1io, then the difference from 

the previous case only consists in the fact that Wem 
» v (see Fig. 4). 

Formulas (32)-(38) show that the transformation 
coefficient significantly depends on the frequency, 
reaching its maximum either for w ::::l sv/vF (for 
l < 1io(vF/s)112) or for w ::::l Wem (for l > 1io(VF/s)112). 
Ymax increases with increasing mean free path. Just 
as in all acoustic phenomena in metals (seeP4J, Appen
dix II), the limiting frequency is not the collision fre
quency v, but the considerably smaller frequency 
sv/vF-a manifestation of spatial dispersion. 

The linear nature of the problem permits us to con
sider the different transformation mechanisms sep
arately, for example, to calculate independently the 
amplitude of the sound wave excited by the nonresonant 
transformation mechanism (see formula (13)). This 
remark does not pertain to allowance for the diffuse 
scattering of electrons on the metal's boundary, since 
the form of the scattering essentially determines the 
nonequilibrium correction to the electron distribution 
function and by the same token has an influence on all 
of the transformation mechanisms. Although a detailed 
analysis of the role of diffusivity will be the subject of 
a separate communication, we wish to make several 
remarks: 

1. The appearance of a surface force-as a conse
quence of the diffuse scattering of electrons-signifi
cantly increases the transformation coefficient for 
large frequencies, since here the amplitude of the 
force acting on the ion lattice of the metal does not 
tend to zero with increasing values of k = w/ s. 

2. Even for partially diffuse scattering of the elec
trons, the electron distribution function includes a 
proper solution of the homogeneous kinetic equation 
( f1 contains a term that depends on the z coordinate 
like exp[v- iw)z/vz] for Vz > 0). This fact disting
uishes the electrons moving away from the boundary, 
and leads to the possibility of resonant 7> excitation of 
sound by the electrons for which vz = s (for wl/ s 
» 1). 

Let us return once more to the nonresonant trans
formation of sound (the second term in formula (13)). 
The estimate indicates that at large frequencies allow
ance for the resonant excitation does not substantially 
change the amplitude of the sound (even if it is as
sumed that ~a ::::l ~s) but allowance for the nonresonant 

7>We refer here to velocity resonance between the electrons and the 
sound wave, whereas the term "resonance" was used above (and will 
be used below) for the interaction of the electromagnetic wave with 
the sound, denoting equality of the wavelengths. 

1'/jo 

(-tlt':i:fl/h. 

~sz )z f-S ,iz vz w.Z wZ w' vzv (tiF "/ m D 
r 

FIG. 4. Frequency dependence of the transformation coefficient for 
c5o(vF/s) 3/2 ~ l. 

excitation substantially increases the amplitude of the 
sound: Uoe tends to infinity8> as w -- 0. This indicates 
that in this case either a self-consistent (exact) solu
tion of the equations of electrodynamics and elasticity 
is required, but not the solution in stages (approximate 
solution) which we have used, or else we need to take 
the finite thickness of the plate into consideration 
(since 6 - oo as w- 0). 

One can observe the transformation of electromag
netic energy into sound not only by measuring directly 
the amplitude of the sound wave, but also from the 
surface impedance of the metal (more precisely, from 
the deviation of the latter from the purely electrody
namical value). For a rigorous calculation of the im
pedance (its real and imaginary parts) one needs, of 
course, a self-consistent solution; however, if the cor
rection 6.!; to the transformation is small, then the 
change in the real part of the impedance coincides with 
the transformation coefficient (6.!; ::::l y ). The utiliza
tion of metal plates of finite thickness d may lead to a 
number of interesting effects that accompany the trans
formation, for example: a resonant (ford = ( 7'2).\N, 
,\ = 27Ts/ w, N is an integer) intensification of the role 
of the transformation; nonexponential transparency of 
the metallic plate to the EMW, etc. A detailed compari
son of the theory with experiment is impossible since 
there are no experimental data for a single sample over 
a wide range of frequencies. The temperature depend
ence of the transformation coefficient is very sensitive 
to the frequency of the EMW. 

In conclusion we express our gratitude to G. Ivanov
ski'i and I. Lifshitz for helpful discussions. 
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