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The problem of stationary injection of an ultrarelativistic electron beam into a half-space filled with a plasma 
is considered. The problem is solved within the framework of the weak turbulence theory for conditions 
when the interaction between oscillations excited by the beam is significant. The main interaction mechanism 
(induced scattering of the oscillations by plasma ions) is determined and the beam slowing-down length with 
allowance of the process is found. It is demonstrated that as relaxation proceeds the angular spreading of the 
beam increases up to 66- I. Variation of the plasma parameters under action of the beam is investigated. It 
is found that in a dense plasma disruption of relaxation due to the produced density inhomogeneities may 
lead to the formation of a so-called relaxation wave which propagates in the plasma with ultrasonic velocity. 

1. INTRODUCTION 

Q NE of the methods of heating a plasma to thermo­
nuclear temperatures is to impart to it the energy 
stored in a powerful beam of relativistic electrons. To 
estimate the prospects of such a heating method it is 
necessary to investigate the collective mechanisms of 
interaction between the beam and the plasma, since the 
deceleration of the beam by paired collisions is usually 
extremely ineffective. Recognizing that the character­
istic time of variation of the plasma parameters under 
the influence of the beam under real conditions is much 
longer than the time of development of the two- stream 
instability, the theoretical description of the heating 
process can be divided into two parts. The first is to 
solve the problem of the relaxation of a beam in a 
plasma having parameters that are fixed in time and 
find the energy lost by the beam per unit length of its 
path in the plasma. The second is to investigate, on the 
basis of the results, the change in the state of the plasma 
when heated by the beam, and to ascertain how this 
change affects the character of the relaxation. 

The first part of the problem has been solved within 
the framework of the quasilinear approximation in a 
number of papers[l-4], for both a homogeneous and an 
inhomogeneous plasma. In many cases of practical in­
terest, however, the criterion for the applicability of the 
quasilinear approximation is not satisfied[ 3 ' 5J, and 
therefore particular interest attaches to an investigation 
of the nonlinear relaxation regime. As shown by 
Tsytovich and Shapiro[aJ, the processes of nonlinear 
transformation of the spectrum of the oscillations ex­
cited by the beam can lead to stabilization of the two­
stream instability. The energy of the oscillations inter­
acting with the beam electrons turns out in fact to be 
"frozen" at a very low level, and the beam deceleration 
length increases in comparison with the quasilinear one. 

As applied to the problem of heating a dense plasma 
target by an ultrarelativistic beam, the role of the non­
linear effects was investigated by Rudakov[3 J • He regar­
ded the mechanism of nonlinear stabilization to be in­
duced scattering of the oscillations by the plasma parti­
cles. The relaxation model constructed by Rudakov[3 J 
is based on the assumption that the long-wave Langmuir 
oscillations (k < wp/c, where k is the wave number, wp 
is the plasma frequency, and c is the speed of light), 
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which do not interact with the beam, suppress the insta­
bility almost completely in the ''resonant'' region 
(k ~ w /c), owing to the induced scattering of the p 
"resonant" oscillations by the plasma electrons. The 
residual instability only compensates for the collision 
damping of the "nonresonant" oscillations. The role of 
the scattering of the oscillations by ions is actually dis­
regarded in such a model, although scattering by ions 
leads to a rather faster transfer of the oscillations into 
the long-wave region than does scattering by electrons. 
As will be shown in the present paper, scattering by 
ions alters significantly the dynamics of the relaxation 
in comparison with Rudakov's model[3 J. In particular, 
the relaxation ceases to be quasi-one-dimensional, and 
the beam slowing-down length increases appreciably. 

The investigation of the nonlinear relaxation regime 
in a plasma with fixed parameters is the subject of Sec. 
2. The change induced in the plasma parameters by the 
beam is considered in Sees. 3 and 4. It is shown there 
that under certain conditions the process of heating a 
dense plasma target consists of propagation in the 
plasma of a wave on whose front the beam energy is 
converted into heat. This phenomenon is called in the 
article a relaxation wave. 

2. NONLINEAR RELAXATION REGIME 

Assume that a monoenergetic ultrarelativistic beam 
( E » mc2) is injected into a half- space z > 0 filled 
with a homogeneous plasma. The distribution function 
of the beam as it enters the plasma is given by 

n,g.(S) 
f=-.2--, b(p-p,), 

rtPo 
(1) 

where nb is the beam concentration, Po is the electron 
momentum, and g0(f1) is the angular distribution of the 
particles. We assume that the angular spread 611 of the 
beam is not too small: 

i>M>mc'/E. (2) 
We can then neglect the difference between the absolute 
value of the beam particle velocity and c, and put 
v = cp/p. If in addition 

M »max { ( ~ ";' )"' , ( ~ )"' ( m;' )"'} (3) 

(n is the plasma concentration), then the instability can 
be regarded as kinetic. 
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Within the framework of the quasilinear approxima­
tion, the quasistationary state of the plasma + beam sys­
tem is established because the excitation of the 
Langmuir waves over the scale of the relaxation is 
compensated for by their drift into the interior of the 
plasma. At the same time, in the case of two- stream 
instability there is also another possible mechanism 
whereby the quasistationary state can set in, viz., gen­
eration of Langmuir oscillations in that region of k-space 
where they are at resonance with the beam, i.e., at 

I k Wp I Wp 
~~--c- ~-c-t.S'+k.c<'.8 (4) 

(k 11 and k 1 are respectively the longitudinal and trans­
verse components of the beam relative to the wave vec­
tor), can be offset by their transfer to the "nonresonant'' 
part of the spectrum as a result of the nonlinear proc­
esses. To this end it is necessary to satisfy the condi­
tion y NL <: y, where y NL is the reciprocal time of the 
spectral redistribution and y is the instability incre­
ment. 

In the investigation of such a (nonlinear) relaxation 
regime, we confine ourselves for concreteness to the 
case of an almost-isothermal plasma (Ti ~ Te)· Then, 
as shown by simple estimates, the main mechanism of 
nonlinear interaction is the scattering of the Langmuir 
oscillations by the plasma ions. Excitation of the os­
cillations by the beam and the evolution of their spec­
trum as a result of the induced scattering are described 
by the equationu 

aw;at = 2(v + y,)W, (5) 

where W(k, z, t) is the spectral density of the oscillation 
energy and y i is the scattering frequency; according 
toC 7J, we have 

, = 3(2n)'/, T,jT, f d'k' W(k') (kk')' k"- k' 
'\' 16 (1+TJT,)' nmvr,k'k"lk-k'l (B) 

( 1 ( 3 Vr.' k" - k' 2 

X exp -- ------) ) 
2 2 WpVTi I k- k' I . 

The scattering process is due to Cerenkov interaction 
of the plasma ions with the beats, each of which is made 
up of two Langmuir oscillations (w, k; w', k'). In order 
for an appreciable fraction of the ions to participate in 
the scattering, the phase velocity of the beats should be 
smaller than the ion thermal velocity vTi: 

(w-w')/lk- k'l ::(; vTi. (7) 

If we recognize now that the characteristic value of the 
wave vector of the oscillations generated by the beam is 
equal to wp/c, then we can estimate with the aid of (7) 
the decrease of the frequency .ll.w = w- w' and the 
modulus of the wave vector .ll.k = k- k' in one scatter­
ing act 

L'.w ~ ulpVrJc, 

L'.k ~ ·WpVr./vre'. 

(8) 

(9) 

In a hot plasma (Te > (m/M)112 (Timc 2) 112) the ratio 
.ll.k/k is small: .ll.k/k .Z:: 1. Scattering therefore pro­
duces primarily isotropization of the oscillation spec­
trum. In addition, the oscillations are transferred into 
a region of low k (w/k > c), where they cease to inter-

'>we neglect the drift of the oscillations, since their group velocity is 
very low. 

FIG. I. Illustrating the theory of relaxation of an ultrarelativistic 
beam in a plasma. The wave-vector region in which there is interaction 
between the oscillations and the beam is shown shaded. The concentric 
circles represent the lines along which isotropization of the oscillation 
spectrum takes place. The arrows indicate the direction of the spectral 
transfer. 

act with the beam (see Fig. 1). Although this mechan­
ism does limit the energy level of the "resonant" 
(w/k < c) oscillations, it need not necessarily lead to 
an establishment of a stationary noise spectrum. In­
deed, the stationary spectrum should satisfy the equation 

W(v,+v)=O. 

This is an integral equation of the first kind and gener­
ally speaking has no regular solutions. Thus, the spec­
tral transfer can cancel out the generation of the os­
cillations only in the mean, and the oscillation spec­
trum should in general be pulsating. To find the time­
averaged W(k) dependence, we use the following reason­
ing. 

We separate in k- space a spherical layer 

k, - M < k < k, + t.k. 

Since the change of the wave vector in one scattering 
act is equal to .ll.k, the oscillations inside the layer inter­
act primarily with one another, and much more weakly 
with all the other oscillations. We note further that if 
W(ko) is sufficiently small, so that -yi(ko) < y(ko), then 
the energy density of the oscillations inside the layer 
will be increased by the two-stream instability. On the 
other hand, if-yi(k0 ) > y(k0), then W(ko) is decreased 
as a result of the transfer of the oscillation energy into 
the long-wave region. Therefore, even in the absence 
of a truly stationary solution, the following condition 
should be satisfied for each k0 on the average (with 
respect to the time) 

.Yw + v.w = o (10) 

(the superior bar denotes averaging with respect to the 
time). It is impossible to find a formal solution of Eq. 
(10), but simple estimates enable us to find the form of 
the averaged function W. 

In the absence of a true stationary solution, the esti­
mate of Yi depends essentially on the ratio of Lllk to the 
width of the region of instability with respect to k, we 
shall denote by ok: 

W ( T, )-' { !'J.k, t.k > ok 
'\'< ~ w, nT, i +f. k' t.k'/Ok, t.k < 6k . 

(11) 

The quantity ok, in turn, is given by 

\ 

k't.w8c, ~<k<~ 
Bk = , c ct.S 

k k > ..::2_ 
' ct.8 

(12) 
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Using the estimate o( the increment of the two- stream 
instability 

and relation (10), we obtain2 > W(k): 

nb mc2 ( T, ) 2 Wp2 

W~--- 1+- nT,--
n E T, k'c' 

1'18' k/l,.k' 

for e:,.() < ct:;,.k/wp, and 

Wp k (1'1kwp)'/, 
-c-< < ~ 

( 1'1kwp ) •;, w. 
~ < k< c/'18 

k > .!:!.!._ 
c/'10 

W n,me' ( 1 T,)' w? 
~-- +- nT-

n E T, ' k'c' 

( 1'1kw.) '!, w. 
-- <k<--

e/'18 cL'!8 

k > ...'!!!..._ 
c/'18 

(13) 

(14) 

for t::,.() > ct:;,.k/wp. In the region k < wp /c, the function 
W(k) is determined from the condition that the energy 
flux over the spectrum be constant: 

n, me' ( T, )' W ~ ---nT, 1 +-
n E T, 

\ 

_1 ___ 1 L'!O < L'lkc 
X k'!'1k L'!O'' Wp 

1 Wp 1 1'1 8 > !'1ke 
k'/l,.k' -e-M' Wp 

(15) 

A spectrum of this type indicates that the Langmuir os­
cillations will accumulate in the region of small k. The 
problem of their dissipation will be considered later on. 

We obtain now the spatial dependence of the angular 
spread t:;,.()(z) of the beam and of the average electron 
energy E(z). This can be done with the aid of the quasi­
linear equation 

at 1 a ( at Dp, at ) 
ccosO-=--p' DPP-+----

az p' ap ap p ae (16) 

+-1-~sin8 (np,.!!!_+ D, .!.!__)· 
psin8 ae ap p a9 

Knowing the spectrum of the oscillations interacting with 
the beam we can easily estimate the components of the 
diffusion tensor ( seeC4 J): 

L'!O< L'!kc. (17) 
Ulp 

L'lke 
1'18 >-

Ulv 

From the meaning of the quantity Dee we have 

2>In the calculation of the oscillation energy density U =47T JWk2dk 
with the aid of (13) and (14), we obtain an integral that diverges 
logarithmically at large values of k. This integral is cut off at the 
upper limit because the increment of the two-stream instability is very 
small at large k, and the instability can be suppressed by weak 
dissipative processes such as Coulomb collisions, emergence of the 
oscillations to the outside of the relaxation region, etc. 

( e )' d E D, ~ eaz-L'l8'(z). 

Hence 

L'!e(z) ~ ~· (cleo'+-~~:~) '•' 
(--Tf'· ( Vr·e)' 

l -·-, <z<l 
Vre I 

1 = _e ~~ (~ ), 3 
( me' ):i( 1 T,) _, 

lup no M me' T, + T, 

(18) 

(19) 

where e:,.{lo is the angular scatter of the beam on entering 
the plasma. 

Since all the elements of the diffusion tensor are of 
the same order of magnitude if the spectrum is iso­
tropic, the relative change of the energy of the electron 
beam during the relaxation process is approximately 
equal to the change of the angular scatter: 

( L'! ' zv,.e) '/, ! e, +-1-, - 1'!8,, 
L'!E Vy, 

Eo 

(+f· 
(20) 

As seen from the foregoing estimates, l is the beam 
deceleration length in the target. At a distance l from 
the plasma boundary the beam loses an energy on the 
order of E0 , and its angular scatter reaches a value 
C,.(J ~ 1. 

In the constructed relaxation scheme, the energy lost 
by the beam is transferred to the long-wave part of the 
spectrum. We shall indicate below some of the mechan­
isms that limit the level of the long-wave oscillations. 
The question of which of them is the principal one 
should be solved with the concrete experimental condi­
tions taken into account. We emphasize, however, that 
if the removal of the energy from the long-wave part of 
the spectrum is efficient enough, then the results per­
taining to the relaxation of the beam do not depend on 
the mechanism whereby the long-wave oscillations are 
annihilated. The words "efficient enough" mean that the 
characteristic time of annihilation of the Langmuir os­
cillations does not exceed the time during which they 
are transferred from the region k > wp/c into the reg­
ion k « w.P/c as a result of scattering by the ions (the 
transfer tlme is of the order of w-1(nT/U)(k/t:;,.k) 2 , where 
U is the energy density of the sho~t-wave (k > w /c) 
oscillations) 3 >. p 

The absorption of the long-wave oscillations may be 
due, in particular, to pair collisions (if v > wp(U/nT) 
x (t:;,.k/k) 2). There is also another possibility, namely 
transformation of Langmuir oscillations with k < wp/c 
and oscillations with k > wp/c. The electromagnetic 
radiation has in this case a frequency ~ 2 wp. 

An estimate of the rate of this process (an expression 
for the probability is given, for example, in the book by 
TsytovichC7 J) shows that it can hinder the accumulation 
of the oscillations in the long-wave region under the con­
dition 

T, ( T,) ( m ) •;, - 1+- >-me' T, M · 

3>We note that in those cases when the time of the experiment is 
shorter than the characteristic transfer time, the question of the 
accumulation of the oscillations in the long-wave region of the 
spectrum does not arise at all. 
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The electromagnetic waves can either leave the plasma, 
or (in the case of a dense plasma) be absorbed as a re­
sult of pair collisions. If the removal of the energy 
from the long-wave (k < wp/c) region is not efficient 

enough, then the spectral transfer in the course of scat­
tering of the Langmuir oscillations by the ions causes 
these oscillations to be accumulated in the region 
k ::; ~k, where a very high energy concentration is pro­
duced. One of the mechanisms limiting this effect may 
be the builduy of sound, a process considered by Vedenov 
and Rudakovl8J. One cannot exclude the possibility that 
the buildup of the sound can change into a strong turbu­
lence[lo]. Then, as shown by ZakharovC10J , local con­
centration perturbations (caverns) in which the Langmuir 
oscillations are ''locked'' can be produced in the 
plasma. The caverns collapse after a finite time, and 
the oscillation energy is transferred to the electrons 
and ions of the plasma. We note that excitation of the 
low-frequency oscillations can strongly distort the pic­
ture of the beam relaxation, since the acoustic wave 
modulates the concentration of the plasma and thereby 
causes the Langmuir oscillations to be diffused over the 
spectrum. 

In concluding this section, let us indicate the condi­
tion for the applicability of the presented description of 
the relaxation. Formulas (18)-(20) were obtained by us 
under the assumption that the collective processes 
responsible for the relaxation of the beam can be con­
sidered within the framework of the theory of weak tur­
buelnce. To this end it is necessary that the beat fre­
quency ~w ~ wpvTi/c exceed the frequency of the scat­
tering of the oscillations by the ions 

Using the expression for Yi (see (11)-(14)), this criter­
ion can be written in the form of a limitation on the 
beam and plasma parameters: 

nb mc2 1 Vri ---<-. 
n E !!.6' c 

(21) 

On the other hand, if the inequality (21) is not satisfied, 
then an important role is assumed, besides the scatter­
ing, also by nonlinear processes of lower orders and 
the investigation of the relaxation becomes much more 
complicated. 

3. THE RELAXATION WAVE (FORMULATION OF 
PROBLEM AND QUALITATIVE TREATMENT) 

In the investigation of the relaxation of the electron 
beam, we have assumed that the plasma parameters 
(concentration profile, temperature) are fixed. If the 
beam is used to heat the plasma, we can confine our­
selves to this approximation only for a sufficiently small 
time interval, until the plasma parameters become 
noticeably altered by the action of the beam. To des­
cribe the entire heating process it is necessary to solve 
the self- consistent problem of beam relaxation and mo­
tion of the plasma heated by the beam. This is the prob­
lem we proceed to consider. 

We confine ourselves to an investigation of the heat­
ing of a dense plasma target in which the electrons and 
the ions exchange energy rapidly with each other via 
Coulomb collisions (Ti = Te = T). In addition we bear 

in mind that the heating takes place in a quasi- stationary 
regime, i.e., the characteristic time of establishment of 
the stationary solution in the problem of beam relaxa­
tion is much smaller than the time of variation of the 
plasma parameters4 ). 

Under the foregoing assumptions, the plasma motion 
can be described by the following system of gas dynamic 
equations: 

iJv 1 
-+(vV)v = --VnT (22) 

iJt Mn ' 
iJn 
at+ divnv = 0, (23) 

nMT(~: +vgrads)=div(xgradT)+Q. (24) 

Here s is the entropy per unit mass of the plasma, Q is 
the energy released by the beam per unit volume and 
per unit time; the remaining symbols are standard5 l. 

We shall investigate with the aid of (22)-(24) the be­
havior of a plasma occupying the half- space z > 0, into 
which a symmetrical electron beam of radius R is injec­
ted. At the initial instant, the plasma is assumed to be 
immobile, and its concentration nand the temperature 
T are homogeneous and equal to no and T0 , respectively. 
The dynamics of plasma heating is determined entirely 
by the properties of the heat source Q, which \lnters in 
Eq. (24). Denoting by l the deceleration length of the 
beam in the homogeneous plasma, we can estimate the 
characteristic value of Q with the aid of the formula6l 

Q ~ n,Ec/l (25) 

We recall now that the relaxation of the beam in an in­
homogeneous plasma is much less effective than in a 
homogeneous one[2,4J. Yet inhomogeneity of the con­
centration (even if absent initially) must set in during 
the course of the heating. As shown in[2 J, the relaxation 
is completely terminated if the plasma concentration 
gradient in the direction of the beam injection exceeds 
a certain critical value, which we denote here by 
(an/az)max· From this we can estimate how much the 
concentration must drop over a scale l in order for the 
inhomogeneity to "turn off" the heating: 

(26) 

The role of the inhomogeneity becomes particularly pro­
nounced if 

(tl.n/n)m=~1. (27) 

We shall henceforth assume this inequality to be satis­
fied. 

We consider first the case when the thermal conduc­
tivity of the plasma is low and the heating is produced 
with a broad (R » l) beam. It will then become easy to 
understand how the thermal conductivity of the plasma 
and the radial limits of the beam influence the result. 

4lThis should be the situation, in particular, in the experiments 
proposed in[ltl. 

5lGenerally speaking, it is necessary to include in (22) the momentum 
delivered by the beam to the plasma, but estimates show it to be 
negligibly small. 

6lDepending on the concrete conditions, I is given by different relations. 
Thus, for example in the case of a nonlinear relaxation mode (see Sec. 
2), formula (19) is valid. 
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Under the assumptions made, the dynamics of the heat­
ing is described by the linearized (with respect to the 
small parameter (t.n/n)max) system of equations 
(22)-(24), in which all the quantities depend only on z 
and t: 

au, 1 ar 
at = - M """'fh ' (28) 

an av, 
-+n,-=0, at az (29) 

ar 
n,Mc.- = Q (30) at 

(cv is the specific heat per un~t mass of the plasma at 
constant volume). To solve th1s system exactly we would 
need to know the exact form of the function A. Although 
we have only its "gross" characteristics, these suffice 
to obtain a qualitative description of the process. The 
physical picture of the heating is the following: 

The beam, which is turned on at the instant t = 0, be­
gins to heat the plasma inside a layer 0 < z < l. Owing 
to the inhomogeneity of the heat release, the plasma 
temperature in the layer becomes inhomogeneous. The 
characteristic value of the temperature gradient can be 
easily estimated with the aid of (30): 

I ar I tQ n,Ec 
Tz ~ n,Mc,l ~ n,Mc.l' t. 

Under the influence of the pressure gradient 
(aP/az = n<PT/az) the plasma is set in motion and its 
concentration also becomes inhomogeneous: 

I an I n,Ec , 
Tz ~ M'c,l' t · 

After the lapse of a time 

t ~ t, = ( M"'c. ) '" l'1• [ (!.!:..) ] 't. 
nuEc 8z max 

the concentration differential inside the layer reaches 
the value (t.n/n)max· Then the effectiveness of the heat­
ing in the layer actually drops to zero and the next sec­
tion of the plasma 

l<z<2l 

( n,E )'1'[' l (an) ]'!. T=T,+Mc' -- , 
n0Mc 2Mcv no iJz max 

To is the initial plasma temperature. Since the relaxa­
tion length l usually depends on the plasma tempera­
ture, the relation (31) determines the temperature 
behind the wave in implicit form. As seen from (31), 
the wave can be either strong (T :» To) or weak 
(T- To« T0), depending on the beam and plasma 
parameters. The temperature behind the front of the 
strong wave is determined by the equation 

T=Mc' -- . ( n,E )'1• [ l(T) ( an) ] •t, 
n0McaMcv no az max 

(32) 

In a weak wave we have 

_!-To= Me' ( n,E )'1•[l(T,) (!!!.) ]''• « 1. (33) 
To To n0MczMcv no az max 

We now obtain the wave propagation velocity u. To 
this end, we note that during the time t ~ to the beam 
negotiates the distance z ~ l. It is convenient to ex­
press the wave velocity in terms of the speed of sound 
behind its front: 

u = c, ( T- T, )''• [ ~(!!!.._) ]-'I•. 
T . n0 az max 

(34) 

We see from this that the propagation velocity of either 
a strong or a weak wave greatly exceeds the speed of 
sound under the conditions in question. Indeed, when 
linearizing (22), we assume t.n/n « t.T/T, but the ratio 
u/c is of the same order of magnitude as nt.T/Tt.n (see 
(34)), i.e., u/cs » 1. 

We consider now the influence of the thermal conduc­
tivity of the plasma on the character of the wave propa­
gation. Owing to heat conduction, the energy released 
by the beam on entering the plasma penetrates into the 
interior in accordance with the law 

z ~ (xt In,)"'. 

If the temperature equalization is fast enough, then the 
temperature profile inside the layer 0 < z < l, and 
consequently the concentration profile, remain homo­
geneous at all times. The described wave can obviously 
not occur in this case, and the mechanism whereby heat 
penetrates into the interior of the plasma is ordinary 
heat conduction. In other words, in order for the wave 
to arise it is necessary that the thermal conductivity of 
the plasma be low enough: 

X~ n,l'/ t,; 

then the thermal conductivity will only smooth out some­
what the temperature profile behind the wave, without 
changing qualitatively the character of its propagation. 

In concluding this section we note that the relaxation 
wave can exist also in the case when the radius of the 
beam is small in comparison with l (R « l). The entire 
picture of the phenomenon remains the same, except 
that the longitudinal inhomogeneity of the concentration 
results from radial motion of the plasma. We therefore 
confine ourselves only to an estimate of the propagation 
velocity of the strong wave, and of the temperature to 
which the plasma is heated behind the front: 

u = (!.__) '/, _!_[!J!]_ (.!.::_) ]-'I•, (35) 
M R n, az mox 

T=Mc'( n~ )'i'(!!._)'i,[!J!l(!!:..) ]'/• (36) 
n0Mc Mev l no Jz max 

At the limit of its applicability (at R ~ l), these formu­
las, as expected, give velocity and temperature values 
corresponding to the case of an unbounded beam. 

4. RELAXATION WAVE (QUANTITATIVE MODEL) 

An attempt to construct a consistent quantitative 
description of the relaxation wave encounters the fol­
lowing difficulty: it is necessary to know first of all the 
detailed form of the function Q. It is therefore reason­
able to obtain a model for the power released Q in ac­
cordance with those "gross" features of the beam re­
laxation process which are known to us, and then inves­
tigate such a model quantitatively. We consider here 
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only one case, namely the weak relaxation wave. It is 
incidentally not difficult to apply a similar procedure to 
the strong wave. 

We specify, to be specific, the concrete form of the 
radial distribution of the beam concentration on entering 
the plasma: 

() { n,• cos2 (nri2R), 
nb r = 

0, 
r<R 
r>R 

To abbreviate the notation, it is convenient to use in the 
solution of the system (22)-(24) dimensionless quanti­
ties introduced in the following manner: 

r-+ l(T,)r, 

t-+ l(:,) (____!!::_)'1• (Me' )'" [ l(T,) (!!!_) ]''• 
2c n,Mc,. E n, az m= t, 

v-+ 2c (~) '" (_!____) 'I• [ ~ (!!!__) ] •!, v 
noMCv Mc 2 no az max I 

T- T,-r4E (~ )'1, (Me' )'" [ l(T,) (!!!_) ]''• T 
no31c1; E no az mox I 

Q-+ 8 n,Ec Q n- n,-+ [!S!3l (!!!_) ] n, 
l(T,) ' n n, az "'"" 

X-+ 2l(T,)n,c (____!!::_)-'!, (~) 'I• [ l(T,) (!!!_) ]-'I• X· 
n,Mc, Me n, az '"X 

The new variables r, t, v, Q, T, n, and x, on the right 
hand sides of the equations, are chosen on the basis of 
the qualitative description such that all the main param­
eters for the propagating wave (the width of the front, 
the propagation, velocity, and the perturbations of the 
concentration and of the temperature) are of the order 
of unity. In terms of the new notation, the linearized 
system of equations (22)-(24) takes the form 

avlat =-\IT, 

an I at + div v = o, 

aTiat=xb.T+Q. 

We now specify the heat release power Q(r, t): 

Q ) i , r L . , z-z, (r, z, t =-cos n- . sm :n---. 
3 2R z,+>- z, 

<=t,2, ... 

(37) 

(38) 

(39) 

· 8(z- z,) e (z,+,- z) e ( 1- I ~~ I) e [ 1-I e ( 1 -I ~~' I) dz'] , 

e(x)= { 1' 
0, 

x>O 
x<O' 

where zi ( r, t) are the roots of the equation 

z ( 1 -I ~~ I) ( 1-j e ( 1 -I ~:,I) dz') = o. 

(40) 

and are numbered in increasing order. All the multiple 
roots have the same subscript i. It is easy to verify that 
the function Q defined by the relation ( 40) reflects cor­
rectly the characteristic features of heat release in an 
inhomogeneous plasma. Thus, for example, at those 
points where jan/azj > 1, there is no heat release. This 
corresponds to the presence of a critical value of the 
plasma concentration gradient, at which the beam relax­
ation is interrupted. The fact that Q = 0 if 

~ e ( 1 -I ::,I) dz' > 1, 

~(~Z) Ja(~Z) 2 t=l /12 t=l 
1 . 0.1 

=I 1 2 J 4 z 0 I 2 3 4 2 

n(2) 
4 
J t=J 

2 
I 
OH-~~~Tf~74~2 

-1 
-2 
-a 
-4 

FIG. 2. Plasma temperature and concentration profiles in a one-di­
mensional relaxation wave. The dimensionless variables introduced in 
Sec. 4 are used, and X = I I I 0. 

t=l Jl~Z) t=l az 
U1 
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Q3 t=2 . a2 
Ql 

I 2 3 4 2 

n(z) 
3 t=J 
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FIG. 3. Plasma temperature and concentration profiles in a one-di­
mensional relaxation wave, x= 1/3. 

~~~21 
t=1 Q~(~z) · t=l· 2 Q2 

I Ql 

-~ ' 2 J ' z 0 1 2 3 4 z 
-2 

;~(Z) Q~(~Z) t 2 2 1=2 Q2 = 

1 Q1 j IZ34z 0 1234z 

n(z) t =3 
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-2 

a:r~zJ t=J 
Q2 
Ql 
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FIG. 4. Plasma temperature and concentration profiles in a one-di­
mensional relaxation wave, x = I. 
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t=l 

4 z 

po 
t=J 

"10 

FIG. 5. Distribution of plasma temperature in relaxation wave. The 
beam radius R is chosen equal to unity, and x = 1/3. 

FIG. 6. Plasma temperature distribution in a relaxation wave, R = I, 
X= 1/10. 

also has a simple meaning: it means that the heating is 
most intense near the plasma boundary (of course, only 
in the case when the plasma is sufficiently homogeneous 
in this region). Finally, the factor cos2 (JTr/2R), where 
R is the dimensionless radius of the beam, takes into 
account the radial inhomogeneity of the heat release. 

We supplement the system (37)- (39) with boundary 
and initial conditions. We assume that the heat flux 
through the plasma boundary is equal to zero, i.e., 
aT/a z = 0 at z = 0. It is then seen from (37) that the 
particle flux also vanishes, Vz = 0, at z = 0. On the 
beam boundary (r = R) the heat flux is also assumed 

equal to zero: aT/arlr=R = 0. The initial conditions 
formulated above have the following form in the dimen­
sionless variables: n = 0, v = 0, and T = 0 at t = 0. 

In spite of the fact that the obtained system of equa­
tions is much simpler than the original one, it can be 
integrated only numerically. The calculations were per­
formed both for the case of a one- dimensional model 
(R-oo) and with allowance for the radial limits of the 
plasma (R ~ 1). We chose here different values of the 
plasma heat conductivity in the interval 0 < x < 1. The 
results of the calculations are shown in Figs. 2-6. 
Examination of these figures reveals the following regu­
larities. At a low plasma temperature conductivity 
(x = 1/10, x = 1/3) the beam produces a relaxation wave 
with a steep temperature front 7 >. The temperature be­
hind the front varies slowly (in space and in time), owing 
to the small amount of heat released near the extrema 
of the concentration profile. The concentration distri­
bution behind the front has an oscillatory character, and 
the spatial scale of the oscillations decreases with time. 
The wave propagation velocity is of the order of unity. 
The temperature front becomes more and more smeared 
out with increasing temperature conductivity, and the 
wave velocity decreases. 

All these conclusions are in full agreement with the 
result of the qualitative analysis. 
-- --~---

7)1 t is easy to verify that the heating of a plasma of low heat 
conductivity must lead to a critical density gradient ~anh~= I) by 
putting x~o. 
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