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Effects associated with stimulated Compton scattering of high-intensity radiation by free electrons 
(electron heating, distortion of the radiation spectrum, stimulated radiation pressure) diminish with 
decrease of the spectral width and angular aperture of the radiation. The integral kinetic equation (its 
kernel has been found) permits one to determine the electron heating rate and to find an analytic 
solution for the evolution of intense spectral lines during stimulated Compton interaction for arbitrary 
spectral widths and angular apertures of the radiation beam. 

1. INTRODUCTION 

THE radiation of laboratory lasers and also of cosmic 
masers is concentrated in a narrow range of frequency 
ojv « 1 and solid angle Q « 1 and is distinguished by 
a high intensity lv. The brightness temperatures kTb 
= lvc2 /2v2 of this radiation are much greater than mec 2• 

However, it is just for kTb >> mec 2 (i.e., for very large 
population numbers n = kTb/hv, since hv « kTe « mec 2) 

that the stimulated (induced, enhanced) Compton interac
tion of the radiation with rarefied matter is particularly 
important. As a result of this process a heating of the 
electrons occurs, l 1- 5J accompanied by a decrease in en
ergy of the low-frequency quanta-by a flux of photons 
along the energy axis toward low frequencies. lS-9 J For 
the condition kTb » mec 2 the stimulated radiation pres
sure on the electrons also becomes important. l 10• 11J 

All of the results enumerated above were obtained on 
the assumption of a radiation spectrum broad compared 
to the Doppler profile, o » ~IJD = v v' 2kTe /mec 2 and do 
not depend on the electron temperature Te. The narrow
ness of the spectrum o << ~VD affects the rate of the 
processes, but the main conclusion-the decrease in 
photon energy and heating of the electrons as the result 
of the stimulated Compton interaction-remains in ef
fect. lSJ The photons move downward along the energy 
axis, but if the line is steeply cut off on the low-fre
quency side, stimulated scattering cannot shift the 
photons beyond the limit of the primary profile. The 
line shifts to the low-frequency edge and narrows 
(Fig. 1). Since scattering can occur only within the 
limits of the line, not all electrons take part in the 
process, and its rate decreases in comparison with 
that for a broad radiation spectrum with the same 
brightness temperature. Energy transfer from the 
radiation to the electrons is reduced, and new regu
larities appear. In particular, heating of electrons in 
the field of one laser beam can be no less efficient than 
heating in the field of crossed or colliding beams. With 
narrowing of the spectrum, the stimulated radiation 
pressure also is weakened, but to a lower degree than 
the electron heating. 

2. THE INTEGRAL EQUATION 

For a broad radiation spectrum o » ~IJD the 
Compton interaction of Maxwellian electrons with an 
isotropic radiation field was described by the kinetic 
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FIG. I. Evolution of the profile of a narrow 
intense spectral line in stimulated Compton in
teraction with free electrons: the initial profile 
is the rectangle. 

t-0 

equation, which was simplified to the partial differen
tial equation l12J 

on aTN,h 1 o [ on kT.] 
-=----v' n+n'+-- . ot m,c v' ov av h 

(1) 

Here only the uniform problem was considered; polari
zation effects were neglected. In the general case with 
o ;:;. ~IJD and anisotropy of the radiation, this equation 
is inapplicable and the kinetic equation describing stim
ulated processes must have an integral form:laJ 

on(v,B,<Jl,t) 3 ) 
'--'-...,..--- = -- aTN,cn(v, 8, <Jl, t at 16n 

X J K(v,v',a)n(v',8',<p',t) 

X dv' ( 1 +cos' a) d cos 8' d<Jl'. 

Here Ne is the electron density, 

'/16n-'crr(1 +cos' a) = da / dQ 

is the differential cross section for scattering, 

n(v, 8, <Jl) = c'I.(-v, 8, <p) /2hv' 

is the population number in photon phase space, 

e. ~ c-' ~ J.(v, 8, <Jl)dQ 

(2) 

is the spectral energy density of the radiation, lv(v, e, c,o) 
is the intensity in a given solid angle dQ = dcp d cos e. 
Below 

2:n; &o 

O.o=J d<jlJ dcos8=2n(1-cos8o) 
0 0 



734 ZEL'DOVICH, LEVICH, and SYUNYAEV 

is the solid angle in which the radiation travels, and 28 0 

is the angular aperture of the radiation beam. The ker
nel of the equation K(v', v, a) gives the probability of a 
transition from one phase-space cell dkx dky dkz, I k I 
= v'jc to another cell dqxdqydqz, lq I= vjc. In the 
most general case this function depends on both the 
vectors k and q. In the case of an isotropic distribution 
of electrons, the directions of these vectors are not im
portant, K depends on the quantities I k I = v' /c, I q I 
= v jc, and the scalar product k • q, which also leads to 
a dependence K(v', v, a), where a is the photon scatter
ing angle. Here 

cos a= cos~ cos~'+ sine sin 8' cos (rp- rp'). (3) 

Note that in the case of isotropic radiation, integration 
over d cos a dcp' is equivalent to integration over 
d cos 8' dcp', since the direction of motion of the photon 
before scattering can be taken as one of the coordinate 
axes, and the axis can be chosen in the scattering plane. 
In this case 8 = 0 and cos a = cos 8'. 

We will look for K(v', v, a), using the known kernel 
for the case os spontaneous scattering. 

a) Spontaneous scattering. The kernel of the integral 
equation 

an( v, tl, rp, t) i:l 
a = -axN,cn(v, 8, rp, t) -1- -axN,c· 

t Wn (4) 

X J A (v 1, v, a) n(v 1 , 81 , <p 1 , t) dv' (1 +cos' a) dcos 81 dcp', 

which describes spontaneous Compton scattering and 
which takes into account the Doppler shift of the photon 
frequency in scattering by Maxwellian electrons, ob
tained with neglect of quantum effects, is given in 
Chandrasekhar's book:[13J 

1 [ m,c' ] 'h { m,c'(v- v 1
)' } A ( v , v, a) = 1 exp - ~::----:':-:---'--:-

4nkT,vv (1-cosa) 4kT,vv 1 (1-cosa)~ 

1 { (v-v 1
)' } 

= (2n)'l•~vv(1-cosa)'l• exp - 2~vn'(1-cosa) ' (5) 

where ~VD = v' 2kTe /mec 2 v is the Doppler width of the 
spectrum, which characterizes the broadening of a mon
ochromatic line in scattering by Maxwellian electrons. 
Note that the kernel A(v', v, a) is symmetric with re
spect to replacement of v by v'. 

b) stimulated scattering. When stimulated processes 
are taken into account, Eq. (4) takes the form 

an(v,9,rp,t) 3 s 1 1 1 I l at =- 168 crxN,cn(v,8,rp,t) A(v,v,a)[1-l-n(v,8,rp,t) 

3 
·dv 1 (1 -I-eos' a)dcos 81 dcp 1 -1--axN,c[t + n(v, ~. rp, t)] 

16n 

· J A (v 1 , v, a)n(v 1 , 81 , <p 1 , t)dv 1 (1 +cos' a) d cos 81 dcp 1 • 

Neglecting spontaneous scattering in comparison 
with stimulated scattering, we obtain an equation of the 
type of Eq. (2): 

an(v,8,rp,t) 3 s [ ( I ) A( I )] at =16JtaTNecn(v,e,cp,t) Av,v,a- v,v,a 

X n(v1 , 81 ,cp1 , t)dv 1 (1 +cos' a)dcos 81 dcp1 • 

If the kernel A(v', v, a) were absolutely symmetric with 
respect to replacement of v by v', then the kernel 
K(v', v, a)= A(v', v, a)- A(v, v', a) describing the fre
quency shift of the photons in stimulated scattering by 
free electrons would turn out to be identically zero. 
However, the kernel (5) was found with neglect of quan-

tum corrections of order hv/mec 2, whose inclusion 
leads to a small asymmetry of the kernel A(v', v, a) 
with respect to replacement of v by v' and to a differ
ence from zero of the kernel K(v', v, a). It is possible 
to repeat the calculations carried out by Chandrasekhar 
[l3 J with inclusion of the quantum corrections and to ob
tain the form of the kernel K(v', v, a). Here we will 
limit ourselves to the approximation 

K( I ) A( I ) A I aA(v 1,v,a) v,v,a= v,v,a- (v,v,a)= Dv' ·21\vl 

_ 2hv"(v-v1
) { (v-v 1)'} 

- (2:'1')'1'm,c"(_\\'n)''(1-cosa)'l, exp - 21\"n' ' (6) 

where ~v1 = hv' 2 (1 - cos a)/mec 2 is the quantum cor
rection to the Doppler shift of the frequency for Comp
ton scattering by Maxwellian electrons. We will give 
below a derivation of the formula for electron heating 
in the field of isotropic radiation with a narrow spec
trum, using the kernel K in the form (6). In the Appen
dix we give an independent derivation of this same for
mula, which is an indirect confirmation of the validity 
of the choice of form of the kernel. 

c) Properties of the kernel K(v', v, a). In the case 
of isotropic radiation with a broad spectrum o » ~VD 
the integral equation (2) with the kernel (6), as should 
be expected, is equivalent to the differential equation 
(1) if we discard in the latter the terms proportional to 
n, i.e., responsible for spontaneous processes, 

an axN,h 1 a , , axN,h a (1') 
-=----vn =2--n-v'n 

at m,c v' a>v m,c av . 

Actually, integrating (2) by parts and taking into account 
that 

(y2n ~ v v y1 - cos a) -• exp {- ::-:---(:,-~,....,--"..:..1 )_' -,...} 
2~vn (1-cosa) 

approaches o(v- v') -a delta function for ~VD- 0, it 
is easy to obtain Eq. (1'): 

an(v) 3 s 
--= -axN,cn(v) K(v 1 ,'v, a)n(v 1 )dv 1 (1 +cos' a)dcos tl1drp1 

at 16n · 

3 axN,hn(v) J v"(1v- V1 )n(v1 ) 

= 8n m,c (2n)'h~vv'(1-cosa)'l• 

X exp {- (v- v1
)' } dv 1 (1 +cos' a)dcos adrp1 

2~vn2 (1- cos a) 

3 axN.hn(v) s a [ I I l 1 =- ·-'v'n(v) 
4 m,c av 1 (2n) '/,~\In( 1- cos a)'h 

{ (v-v1) 2 } 

X exp - 2 ~vn'( 1 - cos a) dv1 (1- cos a) (1 +cos' a)dcos a 

-2 axN.hn(v) s a ['" ( l)]ll( l)d I 2 OxN.hn {) 2 - --, v n v v-v v = -----nv. 
m,c av m,c av 

For a narrow spectrum, replacement of K(v', v, a) 
x (v- v')/ ~v:D (1 - cos a) by the derivative of the o 
function is not permissible; here the behavior for small 
(v- v') is important. 

The kernel of the integral equation for spontaneous 
scattering (5) is symmetric with respect to replace
ment of v by v'. The radiation spectrum averaged over 
angle after spontaneous scattering of a monochromatic 
line by Maxwellian electrons has an angular point, i.e., 
a discontinuity of the derivative (see Fig. 2). 

The kernel (6) is antisymmetric with respect to re
placement of v by v'. For the discussion that follows 
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J( 

FIG. 2. Properties of the kernels 
K(v', v, ex) and A(v', v, ex). 

it is important that the function 

Here :Jt = J K (v', v, a) d cos a, 

0 

s4 = J A (v', v, •) d cos a 
0 

( v-v') 2(2n)'i•m,c'/';.vD's"K(' )d F -- = v ,v,a. cos a 
~Vv hv'2 o 

(v-v')' } dcosa 

2/';. v D' ( 1 -cos a) l'1- cos a 

does not have a discontinuity or a break as ll- ll 1 - 0. 
Actually, 

F (x) = -{2 x exp {- x~ } -l'2n x' [ 1 - <D ( ; 2 ) L~o-+ 0 

in view of the antisymmetry with respect to replace
ment of x by - x: F(x) = - F(- x) which for small x can 
be represented in the form 

F(x) = )'2x-)'2nxlxl =l'"Zx(i-l'n lxl), 

where as x- 0 
oF(x) ...... ,i2, o'F(x) ,72 

ax r ---;;;;.---+ =F r n, 

a'F(x) -+ 2)'2n 6(x), 
ox' 

where li(x) is the Dirac delta function and <l>(t) is the 
probability integral. 

In obtaining the Green's function for stimulated scat
tering, the derivative of the spontaneous-scattering 
function is taken and is multiplied by the quantum fre
quency shift; it is essential that this be done for each 
a with inclusion of the dependence of the quantum shift 
on a. The derivative of the averaged-over-angle func
tion, which is shown in Fig. 2, multiplied by the average 
quantum shift, would give an answer with an incorrect 
singularity near ll = ll 1 • Absence of the singularity in 
the kernel K(ll', ll, a) for ll- ll 1 permits, in the prob
lems of interest to us, replacement in the kernel of the 
exponential exp {- (ll- ll') 2/2~liD (1 - cos a)} by unity 
if two conditions are satisfied: 1) the spectral width of 
the radiation beam should be less than the Doppler width 
li « ~liD; 2) the maximum possible scattering angle a 
determined by the beam aperture should be sufficiently 
large: 1 -cos 80 > li/ ~liD· 

When these conditions are satisfied the kernel has 
the form 

K(1v',v,a) 
2hv"(v- v') 

= (2n) '" m,c' /';.vD'(1- cos a)'!. · 

(7) 

We note that the kernel in the form (7) has lost its re
lation to the Maxwellian distribution function of the 
electrons, which is explicitly present in (6); obviously 
it is valid for a broad class of electron velocity-dis-

tribution functions, of course for the condition that li 
<< w jc, where v is the average random velocity of the 
electrons. A rigorous investigation is desirable for an 
arbitrary electron spectrum, and in particular, for the 
spectrum obtained in the action of spectrally narrow 
radiation on a collisionless plasma. (l4 J 

In addition, absence in the kernel K(v', ll, a) of a sin
gularity at ll- v' permits replacement of the scatter
ing angle a by its average value a in the calculation of 
integrals of the type (2). This property of the kernel 
substantially simplifies the numerical evaluations. 

3. ELECTRON HEATING 

As has already been noted, caJ stimulated Compton 
scattering leads to heating of the electrons also in the 
case of a narrow spectrum. The kernel obtained (6) 
permits determination of the heating of electrons in a 
high-intensity spectrally narrow radiation field, 

L+ _ 2h s , on(v; 8,<p) _. 
- - m,c' \1 at uvd cos 8dqJ. (8) 

For the condition li « ~liD, using Eqs. (2) and (7), we 
have 

For 

3 <JTh2 , _ __:_ __ J v'n( v, 8, <p) v"(v- v')n,(v', 8', <p') 
4n y'2n m,c' A v D' 

, d cos 8d cos 8' d<p d<p' ( 1 + cos' a) 
xdv dv . 

l'1- cos a 

1 (J for v < vo, 
n = n, for vo < v < vo + 6, 

0 for v > vo +6 
and an isotropic radiation field, we obtain1> 

L + = - n T o o -- 6. V3 r:r h"v 'n 2 
( 6 )' 

2 m/Jc'* ~vD 

(9) 

(8') 

The cooling of nonrelativistic electrons in a radiation 
field is determined by the spontaneous Compton process 
and therefore does not depend on the form of the radia
tion spectrum. The rate of cooling is proportional to the 
total energy density of the radiation;( 15J for an isotropic 
radiation field we have 

L- = 4r:rTkT, e, = 32nr:rT~T, h J nv' dv. 
mec mec 

For a spectrum of the form (9) we have 

and the equilibrium temperature of electrons in the 
field of isotropic narrow-band radiation of high inten
sity is 

where kTb = nJlllo is the brightness temperature of the 
radiation. We recall that in the case of a broad radiation 
spectrum ll » li »~liD of the form (9) we have(2J 

J v'n'dv 
kT, h 1 kT, 

'meC 2 = 4muC 2 --- = 4-m-,C-2 J v'ndv 

!)This result differs from the simple assumptionl41 that the heating 
decreases in proportion to 8! /';. v0 , i.e., cc T; 112 . 
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Thus, while the electrons are cold the heating occurs 
rapidly, but with increased temperature the condition 
5 > t.v0 is violated and the electron heating rate de
creases rapidly as the result of stimulated Compton 
scattering. Here the electron cooling rate does not de
pend on the ratio 6/ t.vo, i.e., the relative role of cool
ing increases. 

Heating by a radiation beam. In the case of electron 
heating by a laser beam the dependence on the angular 
aperture of the beam becomes important; for the con
dition 

1- cos 8, ~ .S' I 2tlvn2, 8, ~ .S I tlvn (10) 

this dependence becomes dominant. Let us assume a 
beam angular distribution: 

r 0 for 8 > 8, 
n = \ (11) 

n, for 0 < 8 < 8,. 

Integrating (8), using (2) with a kernel Kin the form (6) 
and taking into account that 

1 JK(v', v,a)dv' 
1- cos a 

approaches the Dirac 6 function for eot.vo/6- 0, we 
obtain 

£+ = ~ <hh',J n'v'dv J (1 +cos' a) (1- cos a)dcos Sd cos 8' drp dq/, 
8n m,c (12) 

which for eo« 1 and for an angular and spectral distri
bution of the beam in the form (9) and (11) leads to the 
expression 

(13) 

The case (10) presents interest for astrophysics: rsJ 

at a distance r from a luminous sphere of radius R << r 

3n aTh' ( R )' L + = -~-, J n'v' dv -
16 m,e r 

and with allowance for the decrease of intensity with dis
tance from the sphere Iv(r) = Iv(R )(R/r )2, we obtain 

L+=~~SI.'(R) av(.!!_)'=~~Sv(r) dv(.!!._)' (14) 
64 m, v' r 64 m, v' r · 

For the condition 

(15) 

which is the inverse of (10), the main role is played by 
the spectral width of the beam. From (2), (7), and (8) 
for a beam in the form (9) and (11) we obtain 

£+= 3 aTh'vo'(-6-)'.sJ 1 +cos'adcos8dcos8'drpdrp'. 
8n(2n) 'f, m,e' tlvn l'1- cos a 

We will make an estimate for the central line of the 
beam, assuming e = 0, replacing the integration over 
the initial angles by multiplication by n and integra
tion only over dcose'dcp'. Then cos 01 =cos e' and 

L + 3 ,1 aTno'h'v,'.S ( .S )' 
=-1[2 - 8' 

2 mcc~ .1.'vn o • 
(16) 

Equation (16) differs from (13) by the factor (5je 0 t.vot 
We note that in interaction of electrons with a spectrally 
narrow radiation beam with aperture 1 >> eo ;?:; 5/ t.vo, 
heating by one beam is no less efficient than heating in 

the radiation field of crossed beams. Here there is a 
strong difference from the case of a low-aperture beam 
e « 1 for a spectrum 6 > t.vo, when the presence of the 
factor (1 - cos 01) in Eq. (12) leads to a dependence 

3n J aTh' £+ = -8o'(1 +cos' a) (1- cos a) n,n,v' dv -. 
8 m,c· 

where 01 is the angle between the beams. In this situa
tion the heating in crossed beams is stronger by a fac
tor (1 + cos 2 01)(1- cos 01)je~ than in one beam. The 
rate of cooling in spontaneous Compton scattering of 
anisotropic radiation is practically the same as in the 
isotropic case, 

Equating L + and L-, we find the equilibrium electron 
temperature: for the condition (10) 

and for the condition (15) 

kT: = (~)''• ( kT: )'I• (~)''•a:;.. 
m,.e 512n m,e v 

We will give the formulas for heating and for the 
equilibrium temperature of the electrons in the field 
of a pulsed laser beam of power W/t (ergs/sec) and 
pulse duration t. The linear dimension of the' beam at 
the focus of the lens is r. It is assumed that the spec
trum and angular distribution have the form (9) and (11), 
and that 6 « t.vo. Then the population number is 

n, = We' I 2n'8o'rt.Shv,', 

and the brightness temperature 

kT, = n,hv0 =We' I 2n't8o'r'bvo'. 

For the condition (15) 

3 aTW' 6 )' 
£+ =s;:;;h H,r't'm,vo'.S Ctlvn ' 

kT, 3'1• ( W )'" ( .S )'i• 
'meet.= 4; 8or2tme'Vo3 ~ ' 

and for condition (10) in the field of crossed beams 

£+- 3 aTW' 2 
- 32 , 't' " , (1+cos a)(1-cosa), 

Jt r m('uVo 

9 We' 
. kT, = ---- (1 +cos' a) (1- cos a) 

128n' rt.Svo' . 

(16a) 

The time for establishment of the equilibrium tempera
ture (we recall that all the formulas discussed are valid 
only for kT e « mec 2) 

3 kT, 3 kT, 
't=-~-=--

2 L- 2 £+ 

can be substantially less than t. 
In the stimulated Compton interaction of Maxwellian 

electrons with spectrally narrow radiation or for a 
small beam aperture, only those electrons take part 
whose velocity directions form sufficiently small angles 
with the direction of the radiation beam axis. l 41 In this 
connection Bunkin and Kazakovr41 note that for the con
dition 5 << t.v0 stimulated Compton heating is not effi
cient, since it leads not to heating of the electrons but 
only to a rapid distortion of the electron distribution 
function along the beam axis and to a still sharper de
crease in the exchange of energy between the radiation 
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and the plasma. It would appear that the sole condition 
for validity of the formulas given above is the require
ment that the characteristic relaxation time of the elec
tron distribution function be less than the characteristic 
time of heating of the plasma. In reality, under astro
physical conditions there is always a magnetic field 
(and in the laboratory it can be created) which, rotating 
the electrons, leads to constant presence of electrons 
with momenta directed at small angles to the beam axis. 
A magnetic field strength is necessary for which the 
condition exists 1/t1 < vc < v, where vc = eH/mec is 
the cyclotron frequency, v is the radiation frequency in 
the beam, and t 1 is the characteristic time of distortion 
of the electron distribution function. 

4. EVOLUTION OF SPECTRALLY NARROW RADIA
TION LINES IN INTERACTION WITH FREE ELEC
TRONS 

We discuss spectrally narrow radiation interacting 
with free electrons. The interaction mechanism is the 
stimulated Compton effect. The electrons are assumed 
Maxwellian with a temperature Te, and the spectral 
width of the radiation 15 « AVD for a sufficiently broad 
angular distribution of the radiation e 0 > 15/ A.vD. We 
will use the integral equation (2) with the kernel (7): 

where 

8n(v,t) 

at 
A arN.hn(v,t)fv" (v-v')n(v',t) dv', 

meC ~1Vn3 

A 3 S 1 + cos' a d , d , = cose (j). 
8rr,(2Jt)'/, l'1-cosa 

(17) 

In the case of an isotropic radiation field A = 11/57T1/ 2 

~ 1, and for an angular distribution of the form (11) it 
is easy to make an estimate for the central line of the 
beam, setting e = 0 and a = e'; then A= 38 0 /v'27T ~ 80 • 

We recall that Compton scattering preserves the 
number of photons in the system, i.e., the photon den
sity 

Nv = 2_s v" n(v')dv' d cos e dqJ 
c' 

(18) 

does not depend on time. At the same time the energy 
density of the radiation 

2hs e(t)= Jevdv="? v"n(v',t)dv'dcos9dqJ (19) 

depends on time. Combining Eq. (17)-(19), we obtain 
the equation 

8n(v,t) 
at 

whose solution is 

Bn(v, t) [e(t)- Nvhv], 

n(v, t) = n, (v)exp {B U e(t)dt- N1hvt]}, (20) 

where n1(v) is determined by the initial profile of the 
line, and B = AaTNec 2/2meA.v0. The solution, written 
in the form (20), makes clear the physics of the pro
cess: in the spectral line the number of photons with 
frequency greater than the average at a given moment 
of time 

\1 > h;vt s e(t)dt, 

decreases, and the number with frequencies less than 
the average increases. Another form of the solution 

n(v, t) = n1 (v)¢(t)e-•v', (20') 

where 

a=BhN., 'i'(t)=exp{BSe(t)dt}, 
0 

better demonstrates the law of motion of photons along 
the frequency axis. For illustration we will present a 
series of solutions for definite n1(v). 

a) Gaussian line profile. The line initially had a 
Gaussian profile 

n1 (v)=~exp{- {v-v,)' }• 6«l;t1vv, 
l'2n 6 26' 

and then 

1 { [v-,(v,-'/,.S'BNvth)]' + ( l} 
n(v, t) = --=-exp - <p t , 

y2n 6 26' 

where 
<p(t)/B =- v,Nvt + '/, 6'N,'Bt' + s e(t)dt. 

It follows from (21) that a Gaussian profile with 15 

(21) 

<< A.vD is not distorted as the result of the stimulated 
interaction with electrons, but is shifted toward low 
frequencies with a rate 

dv 4 arhc' 6' A Ore' 6' s 8 
-=---N,Nv--=---N,-- ....:!dv 

dt 2 m, t1vv' 2 m, t1vD' v · 
(22) 

This answer, in principle, can be obtained also without 
recourse to the language of quantum mechanics; it does 
not depend on Planck's constant h. For a broad spec
trum 15 » A.vD, it follows from Eq. (1) that 

(23) 

i.e., because of the narrowness of the line, for the same 
brightness temperature of the radiation the rate of mo
tion of the photons downward along the energy axis de
creases by a factor (A.vD/15)3• 

b) Lorentz profile. For an initial spectrum 

1 
n, = -:-~· --:-:-....,.--,= 

(v-v,)'+f' 

the solution (20) has the form 
e-a .. vt 

n{t)=~JJ(t) (v-v.)'+f' 

from which it is evident .that the line spreads, becomes 
asymmetric, and gradually disappears as the result of 
transition of photons to the low-frequency wing. 

c) Rectangular line profile. The case in which the 
line has infinite derivatives at the edges of the line is 
also interesting for applications. We will present a 
series of results from solution (20). In those regions 
where 

hv < -!\: S e(t)dt, 
.. t 

the intensity increases, and where the reverse relation 
holds, it decreases. The line narrows and shifts toward 
the low-frequency edge. The characteristic time of nar
rowing of the line is 

Tc~_2~_1 t1vv3 =~-1-( m,c')(t1"v)'(~)' (24 ) 
A arc'h N,N1 6 A arN,c kT, v 6 · 



738 ZEL'DOVICH, LEVICH, and SYUNYAEV 

The line narrows substantially (~v ~ 5) when 

(25) 

where l ~ r/8 0 is the characteristic length of the inter
action. 

Is it possible to observe this effect in the laboratory? 
For a pulsed laser (see the designations near the end of 
Sec. 3) spectral narrowing of the beam will occur for the 
condition 

_f!':;;::;: 8n'f, B,'rm,v,' (!!!:..)';, ~. 
t 3 axN, m,c' b 

(26) 

Substituting the optimal parameters 80 = 5/ ~VD and Ne 
= 7Tme5 2/4e2 (when 5 = 2v 1; Vpl is the Langmuir plasma 
frequency) into (26) and (~6a), we see that a substantial 
change of the radiation spectrum sets in only for the 
condition 30rr 0 /A 2 » 1, where r 0 is the classical elec
tron radius and A is the wavelength of the radiation. In 
the opposite case the electrons are heated to relativis
tic temperatures before the spectrum is distorted. 
Therefore only cosmic masers can apparently satisfy 
the condition r »A 2/30r 0 • Another formulation of the 
problem is also possible: a laser cannot during a pulse 
heat electrons to relativistic temperatures 

WB,bf), 
kT, = ---< m,c'. 

nr'N,. 
(27) 

Combining (26) and (27) for the optimal 80 , we obtain the 
c:ondition 

( 3 ) •;, ( v ) ' ). ( v ) 2 m c' W > n' - 2 m,c' - (tb)'"- for r' > 3 - (tb)J.'~'-, 
b r, b kT,. 

which can be satisfied only for experimentally large W. 

5. STIMULATED PRESSURE ON THE ELECTRONS 
OF A SPECTRALLY NARROW RADIATION BEAM 

Before turning to calculation of the stimulated radi
ation pressure on a cluster of low-density ionized plas
ma, we will consider the force of spectrally narrow ra
diation on a single free electron moving with velocity 
v 0 = p 0 /me in the direction of the radiation flux, chosen 
as the x axis. We will assume also that the angular 
aperture of the beam is small, 80 << 1. The expression 
for this force in the rest system of the electron is eas
ily obtained from the general formula for stimulated 
radiation pressure :[lOJ 

3 h'v' dv 
1,.,:::::; -. axe Jn(v, l)n(v, 1')1' (1-ll') [1 +(II')'],___..,-, dQ dx, 

ion m,c c 
(28) 

where 1, 1' are unit vectors in the direction of propaga
tion of the photon before and after scattering, dx 
= d cos (1·1') dql = d cos a dcp'. The stimulated radia
tion pressure in the radiation beam (28) is directed in 
the same direction as the energy flux of the radiation, 
although in the general case (for example, colliding 
beams) its direction may not be related to the direction 
of the radiant energy flux. [lOJ 

In the laboratory system of coordinates, in scatter
ing by a moving electron the frequency of a photon 
changes as a result of the Doppler effect. Here the 
change in photon frequency ~Vp ~ vp 0 (I- I')/mec may 
exceed the spectral width 5 of the radiation. In this 
case, obviously, large-angle scatterings corresponding 

to a large Doppler shift do not contribute to the stimu
lated processes; therefore interest is presented only 
by small-angle scattering: 

(29) 

where the inequality ~lip ;S 5 is satisfied. The radiation 
pressure is associated with transfer of longitudinal mo
mentum of the photons in the scattering, while the heat
ing-a collection of random energy-occurs in transfer 
of the lateral component of the photon momentum (per
pendicular to the direction of the radiation flux). In the 
case of the transverse Doppler effect in the problems 
of interest to us, a more rigid condition (15) is imposed 
on the angle between the initial and final directions of 
propagation of the photon than for the longitudinal 
Doppler effect (29). 

Two situations are possible: 

pofJo'/m,c < b/v, 

pofJ,'/ m,c > b I v. 

(29a) 

(29b) 

In the first case, when the angular aperture of the beam 
is small, its spectrum can be considered broad and, 
using the fact that the maximum possible photon-scat
tering angle <l'max ~ 28 0 is equal in order of magnitude 
to the angular aperture of the beam, it is easy to find 
from (28) for n in the form (9) and (11) 

(30a) 

For a laser with power W /t with a focusing zone ra
dius r we obtain from this 

At a distance r from a radiating sphere of luminosity L 
and radius R we have 

j,., = 3axL2 (R/r) 6 

128n ( 4nR') 'm,cv,'l\ 

In the second case the scattering angle a is limited 
by the inequality a:Uax = mec5/vp 0 « 1 and 

(30b) 

Hence for a laser 

and for a luminous sphere 

3axL' ( 1\ m,c )' ( r )' 
f,,., = 128n(4rtR')'m,cv,'b -;,;p;- R · 

From (30a) and (30b) it can be seen that for accelera
tion of free cold electrons to a velocity v 0 = p 0 /me the 
optimum angular apertures of the beams are 80 

~ v'p 05/v0mec, for which find is maximal. 
The rate of energy transfer from the radiation to 

cold electrons (having negligible thermal velocities) 
due to radiation pressure, 

(31) 

in the second case (29b) is related to the rate of heating 
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(16) as (v0 /5) x (vT/v0)3e~1 ; in the first case (29a) it is 
always less than (13) by a factor m 0c/p0 • What change 
occurs in these derivations in transition to discussion 
of stimulated radiation pressure on a plasma cluster 
in which the electrons have appreciable thermal veloci
ties? 

Let the electron momentum distribution 

ti> ( ) = 1 ex { _ p,' + P.' + (Px +Po) 2 
} 

p (2nm,kT,)'1• p 2m,kT, 

describe both the random motion of the electrons with 
thermal velocities VT and the systematic motion of the 
plasma as a whole with velocity v 0 = p 0 /me. We will 
assume also that in interaction of electrons with the 
radiation the shape of their momentum distribution does 
not change, and only Te and T 0 are variable. Here the 
pressure on each moving electron taken individually 
will be described by the formula 

f,~• = - 3-uxcf n(v, I) n[v + (1\v. + 1\vv) (cos e- cos 8'), I'] 
16n 

h'' dv 
X 1'[1-(11')] [1 +(11')']-v--dQ dx 

mec3 c3 

(where as before D.vD = v 0 v' 2kTe /mec2 , and D.vp 

(28') 

= p0v0 /mec) and by the analogs (30a) and (30b); however, 
the conditions of applicability of these formulas and the 
specific values of the force will be different for each 
electron, depending on the magnitude of its momentum 
and its direction of motion relative to the radiation 
beam axis. The radiation pressure on the plasma 
cluster in the sum of the forces acting on the individual 
electrons. 

We will look for the average stimulated radiation 
force acting on a thermal electron. In the case of inter
est, the force acting on each electron taken individually 
is directed along the axis of the radiation beam; the 
average force must have the same direction 

find= S f<natD(p)d'p. 

After some straightforward calculations we obtain by 
analogy with l 131 

f<nd = - 3- <Jx_!!_f n(v, 8, t:p)n[ V + (1\Vp + L\ Vn) (cos 8- COS 8'); 8', t:p'j 
16>1 m,c' 

1 { (v'-v[1+p,(1-cosa)/m,c]) 2 } 'd d, x exp - v v v 
l'2nl\vv(1- cos a)'/, 21\vv'(1- cos a) 

X (1- cos a) (1 +cos' a)dQ dx. (32) 

In the limit e0 > 6/ D.vD the exponential in (32) can be 
replaced by unity. Then for e~ < 6/(D.vp + D.vD) < eo 
we obtain 

For a laser we have 

and for a luminous sphere 

n'!.u L' v m c' ( R ) ' 
f,,, = 4l'2(4nR';'v,'m,c k~, --; · 

(30c) 

At the same time for a:Uax ~ 6/(D.vp + D.vD) < e~ we 
have 

- lt 1/:z oThzvo4no26 6 ( 6 ) ·'/2 

f<nd""' e 2 

8 mcC5 L\vD 1\Vp + 1\Vv O • 

(30d) 

For a laser 
- <JxW' v m,c' ( 6 ) '1, 1 
1'"' = 32y2n'1zt'r'v 02m,c kT, v0 (p,fm,c + ykT,fm,c') ~ 

and for a luminous sphere 

_ n'l'uxL' v m,c' ( 6 ) '1, ( R )' 
1'"' = 32y2(4nR')'vo'm,c kT, v,(p,/m,c+l'kT,fm,c') --; . 

In the limit e0 < 6/ D.vD the exponential in (32) can 
be replaced by a o function and for the additional con
dition e~ < 6/(D.vD+ Avp) we obtain (30a). In the case 
6/ D.vD > e0 » e~ > 6/(D.vD + D.vp), which occurs for 
D.vp » D.vD, Eq. (32) reduces to (30b). Thus, for e0 

< 6/ D.vD the average force on the electrons is equal 
to the force acting on an individual electron. 

The energy transferred per unit time to a plasma 
cluster with p 0 > v'kTeme as the result of the action 
of stimulated radiation pressure, 

L.,+ = f f, .. J2tl>(p)d'p, 
m, 

in the case 
62 meC2 mec 2 6 mec -----<e.<--
vo' kT, Po V Po 

exceeds the energy expended in electron heating (16), 
which opens up the possibility of a number of applica
tions. 

We note that for p 0 << v'kTeme the collection of en
ergy in acceleration of electrons moving in the direction 
of the radiation beam is compensated by the giving up of 
energy to the plasma in slowing down of electrons mov
ing in the opposite direction. 

6. LIMITS OF APPLICABILITY OF THE RESULTS 
OBTAINED 

Collective effects can be neglected when the change 
in photon frequency in scattering exceeds the Langmuir 
frequency vpl = v' e2Ne j1rme . For a broad spectrum o 
>> D.vD of isotropic radiation we have D.vD > Vpl or v 
> Vplc/vT, and for a narrow spectrum we have o > Vpl· 
For a small angular aperture of the beam we obtain in 
the case of heating v > vplclvTeo, when eo< 5/ AvD, 
and in the case of pressure v > vp1c/vTeo, when e~ 
< 6/(D.vD + D.vp). A limitation on the frequency leads 
to a limitation on the electron density; thus, for exam
ple, for a narrow spectrum when o > Vpl. we have Ne 
< 7Tme52/e2. 

The formulas presented were obtained in the non
relativistic approximation kTe « mec2, Po« mec. In 
derivation of these formulas we did not take into ac
count effects arising in the relativistic oscillatory mo
tion of the electrons in the radiation field, when 
eE/27Tvmec > 1. Here E is the electric field intensity. 
Finally, the phases of the waves are assumed to be 
random. 

APPENDIX 

ELECTRON HEATING BY HIGH-INTENSITY ISO
TROPIC RADIATION 

The Fokker-Planck equation for the distribution 
function of nonrelativistic Maxwellian electrons in an 
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isotropic radiation field and interacting with it by the 
Compton mechanism has the form llSJ 

a<D a a<D a 
-=-D .. -+-A,<D, (A.l) 

at ap, ap, op, 

where Pi and Pk are the components of the electron mo
mentum. The second term on the right depends only on 
spontaneous processes and describes the slowing down 
of electrons in the radiation field-electron cooling. The 
first term on the right depends both on spontaneous and 
on stimulated processes and describes the heating of 
electrons as the result of their Compton interaction with 
the radiation. Assuming a large population number in 
photon phase space, we will neglect spontaneous pro
cesses in the first term. Then the diffusion coefficient 
is 

(A.2) 

where adn = a (0') d cos 0' dcp is the differential cross 
section for scattering, fadn =aT, and t.pi =Pi- Pi 
= hki - hk{; approximately 

dp,:::::; hv(l-1') I c; (A.3) 

1 is a unit vector in the photon propagation direction. 
Here we neglect t.v, i.e., corrections for the Doppler 
effect (of order phv/mec 2) and quantum effects (of order 
(hv)2/mec 3). 

By definition, 

3 dT, dE, _ s p' fJ<D d _ £+ _ L-
-k-=-- -- p- ' 

2 dt dt 2m, at 
(A.4) 

laws in Compton scattering impose a definite relation 
on them. If we choose the x, y plane as the scattering 
plane, in the classical approximation and for I pI « mec 
this relation has the form 

( 1 - cos a) Px - p, sin a = m,c ( v I v' - 1). (A.6) 

Here, as previously, 0' is the photon scattering angle. 
Excluding integration over dpx = (opx jov) dv', where 
the derivative opx/ov = mec/v'(l- cos 0') and Px itself 
are calculated according to (A.6), and substituting <I> in 
the form of a Maxwellian function, it is easy to integrate 
(A.5) over dpy, dpz and obtain 

3nh'ur J 1 £+ =-- (v -v')'v"n(v)n(v')-....,..,.,.------....,.,.-
c'kT, (2n)'h6.vn(1-cosa)'h 

{ (v-v')' } 
X exp - dv dv' ( 1 + cos' a) d cos a. 

26.vn'(1- cos a) 

(A.7) 

In the case of a broad spectrum o » t.vD of iso
tropic radiation, it is easy to carry out the integration 
in (A.7) over dv', dcos 0', and obtain the well known 
formula for electron heating in the field of low-fre
quency radiation of high intensityl1' 2 J 

16nh'or J £+=--- n'(v)v'dv. 
meet,_ 

(A. B) 

In the case of a narrow spectrum o :S t.vD of iso
tropic radiation, Eq. (A. B) is inapplicable and Eq. (A. 7) 
must be used in calculations. If o << t.vD, then (A.7) is 
simplified: the exponential can be replaced by unity 
(see the proof of validity of this substitution above) and 
the integral can be taken over the scattering angles. 

In this case (A.7) reduces to Eq. (8') which is an in
direct demonstration of the validity of the choice of the 
kernel in the form (7). 
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hv , p 
pd1.p, =pdp,:::::; p-(1-1) = --(1-1') vhm,,:::::; hm,(v- v') 

c mec 

describes the Doppler shift in photon frequency in scat
tering; therefore 

ch' 
£+ =-J o(v- v')'n(k)n(k')<Ddk' dpdQ. 

kT, 

Since the radiation is assumed isotropic and unpolar
ized, dk = 81rc-3v2 dv and 

8nh' 
£+ = c'kT, J o(v- v')'v"n(v)n(v')<D dv' dpdQ. (A.5) 

The method of calculating these integrals is well known 
and is discussed in Chandrasekhar's book;l13 J we will 
follow this method below. 
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