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Dissipative instability of a monochromatic relativistic beam in a plasma with frequent collisions v < 8 (8 is 
the beam instability increment) is investigated in the quasilinear approximation in the absence as well as in 
the presence of a strong external magnetic field. It is shown that the energy lost by the beam during 
development of such an instability is mainly expended in increasing the thermal energy of the plasma 
particles. The energy of the oscillations generated during the instability is lower (by a factor 8/v). 

1. In connection with experiments on the interaction of 
a beam of relativistic charged particles with a dense 
plasma, great interest attaches to the study of the dis­
sipative instability of an electron beam in a plasma, 
which sets in at high collision frequencies v > 5 ( 5 is 
the growth increment of the oscillations). At relativis­
tic energies, this instability becomes significant also 
because the collisionless-instability increments de­
crease with the increasing relativism parameter y 0 

= ( 1 - v~/ c 2 t 112 • The dissipative instability results 
from the fact that the system made up of the plasma 
and the monochromatic beam has a negative energy 
proportional to wOE/ Ow ( E ( w) is the dielectric con­
stant of the system), and the presence of collisions in 
such a system leads to instability of these waves. Such 
an instability is possible only when the condition 6. v 
< 5/k is satisfied ( 6. v is the thermal-velocity spread 
in the beam, and k is the wave number of the unstable 
harmonic), and at a large spread the beam does not 
influence the dispersion of the wave, so that there is 
no dissipative instability. The main stabilizing effect 
in the instability development is therefore the smearing 
of the velocity distribution function of the beam. 

We confine ourselves to the instability of a beam of 
low density n1 << n0 ( n1 and n0 are the beam and 
plasma densities, respectively), and assume also that 
the condition wa » v » 1i is satisfied. In this case the 
maximum growth increment is possessed by the elec­
trostatic oscillations, whose frequency is close to the 
natural frequency of the plasma. In the absence of an 
external magnetic field, the increment of the most 
stable harmonic with kz = w 0 /v0 (kz is the wave­
vector component along the beam velocity v0 , and w 0 

is the electron Langmuir plasma frequency) is deter­
mined by the relation 

(1) 

where w1 is the Langmuir frequency of the beam. Just 
as in the collisionless case (see, e.g.,(l, 2l), when y 0 

> 1 the oscillations having the largest increment are 
those propagating at large angles to the beam, k1 
» kz. Taking into account the thermal motion in the 
beam at large values of k1 /kz, we can determine the 
optimal angle at which the increment is maximal: 

(1 I) 

where 

The parameter in the right-hand side of (1') is large, 
since 

by virtue of the initial monochromaticity of the beam. 
In the presence of a strong external magnetic field 

WH » wo ( WH = eHa/ me), the growth increment at y 0 

> 1 is much smaller: 

~>.=~~(~)'/,(~)''• (2) 
2112Vo3/2 'V k . 

The maximum of the increment corresponds to oscilla­
tions propagating along the magnetic field, kz ~ k, i.e., 
the oscillation spectrum is close to one-dimensional. 
The growth increment is of the order of the maximal 
one determined by formulas (1) and (2) in a wide inter­
val of kz: 

V 1 Emax ~ 
Ilk,~ -In-1•-- ::J>-

v, E(O) v, 

(E(O) and Emax are respectively the initial value of 
the field amplitude and its maximum value determined 
from (11)). In the long-wave region of the spectrum, 
kz < w0 /v0 , the instability in question goes over into 
the weaker nonresonant collisionless instability, and 
in the short-wave region the increment decreases to 
zero. We assume that many harmonics fall into the 
region 6-kz of the most unstable wave numbers, and 
use the equations of the quasilinear approximation for 
the investigation of the nonlinear stage of development 
of the instability. 

2. We consider first a one-dimensional case corre­
sponding to the presence of a strong external magnetic 
field Ho 11 v0 in the plasma. We use the following equa­
tions to describe the variation of the ''background" 
beam distribution function f0 and the energy of the 
oscillations generated during the course of the insta­
bility[3l: 

here 

iJf, ,~ 26,IE•I' a'f, 
---at"= e l...J (kv,- w,)' + 6,' iJp' 

k>O 

, ~ 26.(kv,- w,)kiE•I' iJ [ ) iJj,] 
- e l...J (v- v, -

»• [(kv,-w,;)'+6,']' iJp iJp ' 

iJIE I' 'I• --·- == 26 IE I'= 2'1•~(~) IE I'· at • • v'/, ( t) " • ' 

(t)- [ 1 s dpf0 (t,p) ]-'I• 
V - -;;: (p'/m'c'+1)'1• 

(3) 

(4) 

where f0 (t, p)''is the beam-electron distribution func­
tion averaged over distances that are large in compari-
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son with the wavelength of the oscillations. By deter­
mining with the aid of (3) the change of the moments of 
the beam-electron distribution function, we obtain 
ultimately the following system of equations describing 
the relaxation of the beam in the plasma in the case 
under consideration: 

d1 d 2 
- = --J [(p'c' + m'c')'" -(ji'c2 + m2c')'lz]j,dp 

dt dt n, · 

1 ul! ( v ) '/• = 23;2--.1 - W, 
n1 \' 12 Wo 

dfi d 1 J w -=-- pf,dp = -2v-, 
dt dt n, n,c 

dW = 2'/,_~(ro•)'"w. 
dt y'1• v 

In these equations 

where p is the average beam-electron momentum, 
p = Po at t = 0. 

(5) 

(6) 

(7) 

From (5)-(7) it follows that excitation of the oscil­
lations brings about a thermal smearing of the beam 
and a deceleration of the beam particles, determined 
by the relations 

v(v)'" W !'.fi""" -2'/,_ - y,''•--, 
Wt Wo n 1C 

Our analysis will pertain to the case of not too high 
energies yn1 /n0 << v/w 0 , when the change of momen­
tum at the maximum oscillation energy is small: 

(8) 

I Ap I« Po· To determine at which velocity scatter Av 
in the beam the dissipative instability becomes 
stabilized, we use the linear-theory dispersion equa­
tion in the kinetic approximation. Assuming that the 
beam-particle distribution function with respect to the 
relative momentum p - Po is Maxwellian 1), and con­
sidering oscillations of frequency close to w 0 , we 
write this equation in the form 

k'(!'.v)' y,'v 
-, -,---+xU(x,O)= yV(x,O). 
nhuh Wo 

In this equation 

x = (w.- kv,) /2"•kl!.v, y = 6/2'/•k/!,.v; 

U(x, y) and V(x, y) are respectively the real and 
imaginary parts of the probability integral w( x + iy ). 
We have assumed in its derivation that y « 1. 

(9) 

It follows from (9) that the threshold value of A v, at 
which stabilization of the dissipative instability takes 
place, is determined by the relation 

(l) 2 (() 2 

k'(/!,.v)' = n'h~--".[-xU(x,O)]m,r,::::; 0,8~~. {10) 
Vo '\' Vo 3 V 

With the aid of (8) and (10) we find that the energy of 
the oscillations excited during the dissipative instabil­
ity is of the order of 

W- n,mc2w,'/v'. (11) 

The losses of the translational motion of the beam 
particles are obtained by using the first relation of (8): 

!)With the aid of Eq. (3), in which we neglect the small second term, 
we can show that a symmetrical smearing of the distribution function 
with respect to the momenta p- p0 takes place during the course of 
the beam relaxation, and that the distribution remains Maxwellian in 
the course of time. 

1 (1)1 'IJ 
!!.ill""" -i!f,y,l•------w (ro,v) 'I• 6 ' 

(12) 

where i!f 0 = n 1mc 2 y 0 is the initial beam energy. It 
follows from (12) that the energy lost by the beam in 
the case of dissipative instability is much larger than 
the energy of the excited oscillations. This energy 
goes mainly to increase the thermal energy of the 
plasma electrons, through collision heating by the 

. high-frequency field excited during the instability, 

(13) 

We note that, unlike the collisionless instability, where 
the plasma particles interact adiabatically with the 
fields, in the present case there is an irreversible 
increase of the kinetic energy of the plasma particles. 

3. We consider now the excitation of a three-dimen­
sional oscillation spectrum (the case when there is no 
external magnetic field). The relaxation of a mono­
chromatic beam can be investigated in this case with 
the aid of the equations 

at, 1 o [ of, s.c' of,] 
a:;-=~iJs~ s.ciJsj_ -a (V+~.L2 +1)'1• ii£, , 

(14) 

(15) 

where f0 ( t, p) is the background distribution function 
of the beam electrons, 

N=(2w,vy,)'/, (k/)""' 3 l!.v.c ~ , , ~=2- ,::::--,a-. 
(1)1 k.1.2 21~ c 

In (14) we have introduced the dimensionless variables 
~1 = P1/mc, ~z. = Pz/mc and r, the latter connected 
with t by the relation 

(16) 

In the derivation of (14) and (15) we have used the beam 
monochromaticity condition k1 v 1 / Ok « 1 and replaced 
the quantities wk and 6k by the values for the most 
unstable harmonic of the spectrum with k1 ~ kz: 

"' . 1 . w, ( ro0 ) •;, ro.+z6.=k,v,+-(1+z)--2,12 Yo,/z '\' • 

From (14) we can easily obtain a system of equations 
for the moments of the distribution function f0 • When 
(15) is taken into account, the system of equations de­
scribing the beam relaxation during the dissipative 
instability takes the form 

(17) 

d(!:J.p,)'_ m2c's (< t )2 of, d -4 2 2 ( k,') opt . 
----- b:-bo - p..- me -

dT n 1 iJT k.c' ' 
(18) 

dill of (w v)'l• n me' 
-=me's (1 + s.c' + s.') 'h_' dp""" -2'1•-

0
----

1 
,-. (19) 

dT OT ro, y,f, 

dW , 2 Wo 1 
-=2n,mc --. 

dT V Yo 
(20) 

Here APz is the spread of the longitudinal momenta of 
the beam particles, A e is the angle spread of the 
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momenta of the beam particles. The longitudinal and 
transverse velocity spreads connected with ~Pz and 
~ e are determined by the relations r2• 3 l 

tw.c ~ c~e. Av, ~ c!:;.p, I py'- c(A9)'. 

The angle spread in the beam, needed to stabilize the 
"oblique" oscillations with maximum increment (1'), 
is determined by the relation 

(M)' ~ 6~= ~ ~ w.' _!_(!:l...) ••'. 
k'c' 2 w,v Yo k.c' 

According to (17), this corresponds to 

l'max ~_!_~'Yo ( kz:) opt • 

8 w,v kl. 

The energy of these oscillations is of the order of 
1 (l) 2 ( k 2 opt 

W ,_ -n1mc2- 1 -' ) . 
4 v' k1.' 

(21) 

When k1~v1 ~ 0 in the spectrum of the excited oscil­
lations, according to (1'), we have k1 ~ kz and the 
oscillation energy determined by (21) is the same as in 
the one-dimensional case (see (11 )). 

The energy lost by the beam at this stage of the 
instability is lower by a factor y 0 than in the one­
dimensional case: 

" w, 1 AB ~ --W ~ -B,-----. 
6 (w,v)'" yo'" 

(22) 

The transverse-momentum spread, which is connected 
with the buildup of the "oblique" oscillations, is de­
termined from (18): 

(23) 

During this stage of the instability, at the energies 
under consideration (which satisfy the condition 
y 0 n1/n0 << ll/w 0), the beam remains monochromatic 
with respect to the longitudinal velocities and the 
buildup of almost one-dimensional oscillations with 
k1 ~ 0 continues. The energy of these oscillations is 
of the same order as in (11), i.e., the spectrum of the 
oscillations excited in the dissipative instability is 
nearly isotropic, unlike the collisionless case con­
sidered in f31 • 

Excitation of oscillations with k1 ~ 0 is accom­
panied by a considerable deceleration of the beam. The 
energy loss in this case is determined by formula (12). 
The energy lost by the beam, according to (13), goes 
to increase the longitudinal temperature of the plasma 
electrons. 

The authors are grateful to Ya. B. Fa'inberg and 
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