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A new method in the theory of the turbulent dynamo is proposed. A functional approach is formulated and 
a variational differential equation is derived for the characteristic functional, and is an analog of the 
Schwinger equation in quantum mechanics. The equation is solved by expansion into a functional series. It is 
shown that already the first approximation is equivalent to summation of an infinite set of 
perturbation-theory diagrams. New results are obtained in the second approximation in the functional series. 
The turbulence diffusion coefficient for a regular magnetic field is obtained with higher accuracy. It is shown 
that in this approximation the nongyrotropic (reflection-invariant) turbulence does not induce field 
generation. The new approximation is equivalent to summation of a broader diagram set and hence to a 
definite method of diagram summations. On the other hand the second approximation can be obtained by 
equating to zero the semi-invariants, a procedure which is extensively employed in other branches of 
theoretical physics. 

BY now there are many known theories of the turbulent 
dynamo. Thus, for example, it has been demonstrated 
that it is possible to generate regular magnetic 
fields[1, 2 J. The question of the excitation of random 
fields has also been considered[J-s]. In essence, the 
problem reduces in the cited papers to a search of the 
statistical properties of H knowing the statistical prop
erties of v, using the equation 

au 
at=rot[vHJ+vm~H, (1)* 

where Vm is the magnetic viscosity. In the general case 
it is impossible to express H analytically in terms of v, 
and in this lies the main difficulty. It is therefore cus
tomary to use a perturbation-theory series in the veloc
ity. In the applications one is usually interested in a 
situation in which the magnetic Reynolds number Rm 
» 1. But in this case it is no longer possible to termin
ate the perturbation-theory series in v (except in the 
case of acoustic turbulenceC 5J), and a complete summa
tion of the series is, naturally, impossible. KazantsevC4 J, 
nevertheless, was able to sum successfully by using a 
turbulence model with a 15-like correlation in time. 
There is also another method, wherein the chain for the 
moments is terminated with the aid of Millionshchikov's 
hypothesises]. It would be of interest, of course to carry 
out a selective summation of the series, using various 
diagram methods. 

The functional approach proposed in this article is 
frequently equivalent to the aforementioned methods, 
and is at the same time more compact. It will be shown 
that this approach can be regarded as the next step in 
the theory of the turbulent dynamo, since the earlier 
problems follow from it as particular cases. In addition 
to the proposed method, certain concrete results of im
portance to applications are also obtained (the coeffi
cient of turbulent diffusion is determined). In view of 
the large computational difficulties, the functional ap
proach could be used so far to obtain new results only 
for regular magnetic field. The method described below 
is close to the theory of scattering of electromagnetic 
waves by inhomogeneities[?]. 

*[vH]="vXH. 
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1. DERIVATION OF VARIATIONAL DIFFERENTIAL 
EQUATION 

We shall be operating in Fourier space. We there
fore change over to H(k, t) and u(k, t), the Fourier trans
forms of the magnetic field and of the velocity. We in
troduce the vector-functional and the tensor-functional 

G,(k, t, O) = ( H,(k~ t) exp [ i J n,(q, -r)8J(q, ,;) dqd-r]) (2) 

G,J(k, k', t, 0) = .< H,(k, t)HJ(k', t) exp [is n,(q, ,;) 8J(q, -r) dq d-r] ) ; (3) 

G, G,j < [ h,=<D, g,i=(i)• lD= exp iJnJ(q,-r)8J(q,-r)"dqd,;J) 

(8 is the argument of the functional). Introducing Gi, we 
assume naturally that the field has a regular component 
whose dynamics is indeed the object of the study. In the 
problem in which Gij is introduced there is no regular 
component, and the spectral function is investigated. It 
is clear that if the velocity field is assumed to be a 
homogeneous and isotropic random field, then 

G,(O)= g,(O)= (II,)= B,, G,;(O) = g,J(O) 

=(H,(k, t)HJ(k', t))=F(k, t)6(k+k')(.S,j-k,k/k'). 

It will be shown below that the functionals (2) and (3) 
are fully sufficient for the turbulent-dynamo problem. 
We shall use the Fourier transform of (1) 

aH(k,t) J at =i [k[u(p,t)H(q,t)J]dq-vmk'll, p=k-q. (4) 

We note that 

<H·(k t)n·(k' t)- 1 liG;(a) I 
' ' 1 ' ) - i 1\S;(k',t') a-o' (5) 

<H (k. t) H (k' I) u (k" t")> = _!_ 6G;; (6) I 
i I ' 1 ' i 681 (k", t") &"='0. ( 6) 

We multiply first the i-th component of (4) by 
expli Juj(q, T)ej(q, r)dqdT] and average, and then by 
Hj(k', t)exp[ijuf(q, T)ef(q, T)dqdT] and add to the j-th 
component of (4) multiplied by 
Hi(k, t)exp[ijuf(q, T)Bf(q, T)dqdT] and averaged; this 
yields 

oh,(:, t, 9 ) = E.mnBnafkm J,dq (~'(q, t, 9 ) 
( t . . . bflo(p, t) 

blntD(8)) (7) 
+h,(q,t,9) ~o( -vmk'h,(k,t,e), 

v " p, t) 
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1 ag,1(k,k',t,9) . J ( 6g/j)(q,k',t,9) 
2 Ot = f(m•nEnatkm dq 68a(p, t) 

+ ( k' )6ln(J>(9)) k' ( , ) 
gfj) q, t, 8 + Vm g(ii) k, k, t, 9 , 

68.(p, t) 
(8) 

The employed symbolism is that universally used (for 
example, in relativity theory): the parentheses contain 
that part of the tensor which is symmetrical with res
pect to the indices. It should be borne in mind that ac
cording to (9) if the substitution i - j is made, it is 
necessary to make simultaneously the substitution 
k- k' (and of course also in the right-hand side of (8)!): 

T,1(k, k')= '/2 (T,1(k, k')+ Tii(k', k)). 

It is clear that (7) and (8) are analogous to the Schwinger 
equation in quantum field theory. We call attention to 
the obvious property of gij: 

g;;(k, k', t, 9)= gii(k', k, t, 9). (9) 

2. CONSTRUCTION OF THE SOLUTIONS OF (7) AND (8) 

Of course, it is possible to set up a perturbation
theory series for (7) and (8), but this would be equiva
lent to the usual iteration theory. It is more useful to 
expand the solution in the functional series 

h,(k, t, 8) = h;'(k, t) + s h~il (k, t, q, T) 8;(q, 't')dqd't' 
(10) 

+ •;, J h,~;> (k, t, q, 't', q,, -r,J 8;(q, 't') e, (q,, 't',) dq a, dq, a,, 

gu(k,k',t,9)=g,;'(k,k',t)+ J g~:J (k,k',t,q,r:)e1 (q,r:)dqdT 

+ '/, s g,:;! (~, k', t, q, r:, q,, ,,) e,(q, ,;) em(q,, 't,)dq d,; dq, dr;, (ll) 

We shall terminate the series (10) at (11) at certain 
terms. The physical meaning of such a procedure will 
be explained later. Naturally, the expression I) lncl>/oe 
will also be expanded in a functional series 

6ln,(J> f 
68,(k,t) =- T;;(k,t,q,-.;)e,(q,-r)dqd't' (12) 

+if Fifl(k, t, q,T, q,T,) 8;(q, 't)9,(q, 't,)dqd,;dq, d,;, 

Terminating the functional series and equating the 
coefficients of like powers, we obtain in lieu of (7) and 
(8) a closed system of integro-differential equations. 
The first trivial result is obtained by putting gu> = 0 
and h< 1 > = 0 (zeroth approximation) 

~~ + Vmk'B = 0, ~~ + 2vmk'F = 0. {13) 

In this approximation the turbulence is not taken into 
account at all. Assume now that g<2 > = 0 and h <2 > = 0. 
We then have the following systems: 

1 ag,~~ (k, k', t) 
2 at 

ag,~;/,(k,t,b,t') fa '" ( k' )T < t h t') 
2 ot = - £(>mnEnork~ qglil q, , t "' p, , , 

- Vmk'g':i,dk, t, b, t'), (14) 

The system for h is similar to (14), but has neither the 
subscript j nor symmetrization. The velocity field is 
assumed homogeneous and isotropic 

T.;(k, t, k', t')= 6(k + k') cr,1(k, _t- t'), 

a,1(k, t- t')= u(k, t- t') (~u- k,k;jk'). 
(15) 

When solving the system (14) and similar systems, we 

shall assume that at t = 0 we have 

g;1: (k, t, b, t') = o, g''1 = 0 etc., 
(!) (16) 

h'0 =0, h''l = o etc. 

The initial conditions (16) correspond to an initial sta
tistical independence of the magnetic field and the veloc
ity field. To obtain real equations it is necessary to 
consider all quantities at t :::?> T, where Tis the corre
lation time, such that the system has "forgotten" the 
initial data. 

The second equation of (14) can be easily solved with 
respect to g<1> by expressing g< 11 in terms of g< 0 >; we 
substitute gu' in the first equation of (14). The time de
pendence of the right- hand side can be determined by 
assuming t >> T, i.e., by considering the asymptotic ex
pression. This yields the following equations: 

DB/ ot +(X+ vm)k'B = 0, (17) 

a~+ 2(x + Vm)k'F = f F(p)" (q) ( k'- (kq) ~~! (pq)) dq; (18) 

+~ 

v (k)= f u(k, s)ds, x = •;, J v (k)dk. 

It is clear that ( 18) is the equation obtained in l3 ' 4l. Thus, 
the first approximation yields immediately the sum of 
the infinite series. A similar circumstance arises in 
the theory of the propagation of electromagnetic waves 
in the presence of inhomogeneities l7l . 

3. PHYSICAL MEANING OF THE FIRST APPROXIMA
TION AND OF EQ. (18) 

It is easily seen that g< 2 > = 0 (h <2 > = 0) is equivalent 
to the Millionshchikov-Chandrasekhar hypothesises]. 
Indeed, the functional coefficients gm> are something 
like the semi-invariants in magnetohydrodynamics 
(cf., e.g.,C8J); in addition, it follows from g< 2 > = 0 that 

(19) 

The Millionshchikov hypothesis should yield also corre
lations of the type (Hiuj)(Hjum), but according to 

Chandrasekhar (ujHi) = 0. We note that Chandrasekhar 

did not solve the dynamo problem, but considered the 
stationary state and obtained an equation for a station
ary space-time correlation function. Nonetheless, by 
using the hypothesis (19) it is also possible to obtain 
(18). In fact, 

o(H,(x,, t)H1(x,, t))/ at= (H,(x,, t)rot,[v(x,, t)H(x,, t))J 

+ (ll;(x,, t)rot,[v(x,, t)H(x,, t)]), (20) 

o(H,(x,, t)H;(x,, t) v1(x,, t') )/ot=(rot;[v(x,, t)H (x,, t) )H;(x,, t) v,(x,, t')) 

+ (H,(x,, t)rot1[v(x,, t)H(x,, t) )v1 (x3, t') ). 

Equations (2) demonstrate the usual situation in turbu
lence theory, where the second moments are expressed 
in terms of the third, the third in terms of the fourth, 
etc. Using the hypothesis (19) and taking the Fourier 
transform of (20), we obtain a system equivalent to (14), 
and consequently also Eq. (18). Finally, if we write 
down the system for the moments not in the form (20), 
but as follows: 

(H'H) = (H'H,) + ( H' I rol [ vH] dt,), 
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(B' rot(vB]) = (H' rot[vB,]) + ( B' rot[ v J rot[vH]dt,]) 
0 

etc., then the obtained chain can be terminated with, say, 
the fourth-order moment (vivjvfHmHb) = 0[ 1 ' 3 J. This 
approximation is usually called ''allowance for the quad
ratic correction" (since the highest-order term contains 
the square of the velocity). In this case we again obtain 
(18). All the foregoing pertains equally well to (17), and 
therefore the hypothesis (19) is replaced by 

(21) 

The hypotheses (19) and (21) can also be treated as sta
tistical independence of the magnetic field and the veloc
ity fields at the corresponding moments. 

Let us summariz the physical meaning and the jus
tification of Eqs. (1' and (18). They are obtained under 
the following conditions: 

1) The chain is terminated and the quadratic correc
tion taken into account (seeC1 ' 3J). The method is valid 
for small perturbations, and in our case if Rm << 1 or 
if VT/l « 1, where v = ((v2 ))112 and lis the correlation 
length. 

2) The following turbulence model is used: a Gauss
ian distribution of the velocity field and o-like correla
tion in time[4 J. It is natural to use the case when T is 
much smaller than the period of the process. The fact 
that (1) and (2) yield an equivalent result is a situation 
usually encountered in problems of this type. 

3) The Chandrasekhar hypothesis (19) is used; 
Chandrasekhar himself did not derive the equation. The 
hypothesis has a purely statistical character. 

4) The functional series is terminated at g<2 > = 0, 
as was done in Sec. 2. The physical meaning of this ac
tion is the same hypothesis (19). 

4. THE NEXT STEP IN THE THEORY OF THE 
TURBULENT DYNAMO 

It is of interest to determine the result of the quad
ratic correction of the functional series: g<3 > = 0, 
h <J> = 0. We shall need in what follows those terms of 
the series (12) which are quadratic in e, i.e., essentially 
the third moments of the velocity field. We shall as
sume for simplicity that the series (12) is limited to 
only the first term. This is the situation for a Gaussian 
distribution (of the velocity field only!), when the entire 
random process is described by the correlation tensor. 
We note that introduction of the third moment and, in 
general, deviations from a Gaussian distribution, cause 
no fundamental difficulty. This is one of the advantages 
of the functional approach; in perturbation theory it is 
quite difficult to use a non-Gaussian process. It seems 
that the use of a Gaussian velocity field in the problem 
of the turbulent dynamo imposes hardly any fundamental 
limitations on the general character of the solution. 

We write out a system for the second- approximation 
hi (the system for gij is analogous): 

a h.' (k, t) S <•> 
ot = Eimn EnM km dq hta (q, t, p, t)- \'mk'h,'(k, t) 

ah"(t) (k, t, b, t') I at = Eimn Enot km J dq {hr~' ( q, t, p, b, t') 

- h/(q, t) T.,(p, t, b, t')} - Vmk'h,! 0 (k, t, b, t'); 

•;, ahi(:,'i (k, t, b, t', d, t") ;at 

= -Eimn Enat km J dq h,\~) (q, t, b, t') Tal) (p, t, d, t") 

- 1/z Vmk'h,~:;, (k, t, b, t', d, t"); 

k,h,' = 0, k,h,~'' = 0, k,h,~~) = 0. (22) 

Notice should be taken of the following mnemonic 
rule, which may be useful for the higher approximations. 
It is easily noted that in all the equations like indices 
correspond to like arguments of the tensors. This may 
make it easier to write down the system, and also sim
plify its derivation. We write the correspondence rela-

' tions: 

i-+k, t, a-+p, t, l-+d, t", f-+q, t, c-+b, t'. 

The symmetrization symbols( ... ) denote simultaneous 
permutation of the indices in the corresponding argu
ments. The system of second-approximation equations 
for g, while having the same form as (22), has additional 
symmetrization with respect to the indices i and j, so 
that the number of terms in the right-hand sides of the 
equations is doubled. We shall therefore solve only the 
system (22), and determine by the same token the be
havior of the regular magnetic fields, and solve only 
half-way, as it were, the problem of the pulsating fields. 
We shall assume henceforth for simplicity that vm = 0, 
i.e., the plasma is highly conducting. It is clear that vm 
should combine in this case with the turbulent diffusion 
both in ( 17) and in (18). We shall not calculate the ohmic 
diffusion more precisely, since this is not the major 
part of our problem. 

We proceed to solve the system (22). Substituting 
h <Z> from the third equation of (22) into the second we 
obtain an equation for h <1 >. The complicated time depen
dence in the equation can be simplified by specifying the 
following temporal correlation: 

u(k, t- t') = u,(k)e-•ll-t'l-r(k)a. (23) 

In this expression a does not depend on k. In the 
"Kolmogorov" turbulence the time depends on k, but if 
it is assumed that a depends on k, then the problem 
cannot be solved in final form. The situation is simpli
fied by the fact that u(k, s) itself enters only under the 
integral sign with respect to s, so that we can introduce 
a dimensionless coefficient ("weight") aT(k) which 
makes the integral with respect to the temporal part 
Je-asT(k)ads already dependent on'k. We note that in 
such a model the first-order approximation in the func
tional series yields again Eqs. (17) and (18), and v(k) 
must be calculated by using (23). 

To use (23), let us determine the time dependence of 
h~~(k, t, b, t'). It is clear that h <1 > corresponds to 

(H,(x, t)v,(x', t')) = R". 

Once the system "forgets" the initial data, i.e., at 
t >> T, Ric becomes invariant to shifts with respect to 
t' and x' if x and t are fixed, i.e., 

R,=M,1(B(x,t)}f, 1(r,s); r=x-x', s=t-t'; 

h,,<•> (k, t, b, t')= mii(B(k + b, t) )f,1(b, s). 
(24) 

The regular component B(k, t) varies slowly in com
parison with the pulsations, and it is therefore natural 
to subdivide h <o into a slow component (mij) and a 
rapidly varying (correlation) component fij(b, s). Exam
ination of the equation for h <o at t >> T and at t << t' 
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(this is perfectly sufficient, since we shall need only 
h <1> at t = t'), we can see that the substitution 

fii(b, s)= f,/e"', s .s;; 0 

satisfies the correlation dependence of the equation, i.e., 
such a substitution causes the entire dependence on s to 
disappear. This is indeed the simplification resulting 
from the correlation dependence (23). 

We write out the equation for the slow variation of 
h (1), (1) 

• iJh,, (k, t, b, t') I +. ( + k') Ji.(') (k t b t) at a X !C ' ' ' 

J (!) <•=< (0) (25) 
+2a-'kn dqqph[p[;(q+b.t,p,t)O'n]Jo(b)= -2k.hr. (k+b,t)O';J,(b). 

To abbreviate the notation, we have used in (25) the 
universal symbol [ ] in the subscript, designating the 
part of the tensor that is antisymmetrical in the indices 
in the brackets: 

Tr,;J = '/,(-Tij- T,.). 

The double brackets (as in the third term from the left 
in (25)) cannot be expanded unambiguously, and this 
constitutes an inconvenience. To determine the indices 
of the tensor we can stipulate that its form is antisym
metrical in the indices i and n, just as the tensor in the 
right-hand side of (25), i.e., the brackets are expanded 
in the following manner: 

[p [in]]= '/,([pin]- [pni]). 

It is clear that when t » T = a-1 the quantity hu>(t, t) 
assumes a quasistationary behavior determined by the 
inhomogeneous part of Eq. (25), i.e., by the right-hand 
part. The time dependence in the right- hand part is con
tained in h0 = B, which varies slowly, and this causes 
the quasistationary behavior. To determine h <1> at these 
values of t we use that form of the equation which follows 
from (25) at t » T: 

(a+ xk'Jh,~!) (k, b)+ 2a-'k. J qph[~~,(q + b, p) O'n]]o (b)aT (b) dq (26) 

= -2k.hr~' (k + b)O'<Jo(b) 

(the dependence on t has been omitted). If we assume 
that the right-hand side is known, then Eq. (26) has the 
structure of an integral tensor equation with respect to 
h <1> or, equivalently, a system of nine integral equations 
with respect to h! 1 >. The solution of (26) can be substi
tuted in the exprJ~sion 

2k. J dq hr~!J (q, p) 

(we have used antisymmetrization) in the first equation 
of the system (22). Bearing this in mind, we make the 
following changes of arguments in (26): k- q, b- p, 
q- q'- p (q' is a new integration variable). Calculation 
of the second term of the left- hand side of (26) gives 
rise to the following integrals: 

T,,(k)= Jh,j0 (q', k- q')dq', B,r,,l (k)= J q/ hr~:/ (q', k- q')dq'. (27) 

We can solve (26) by specifying h{~ in a certain gen
eral form and stipulating that this form satisfy (26). It 
is simpler, however, to specify a general form of the 
tensors (27): 

T,,(k) =A (k)h,0 (k) k, + B(k)h/'> (k)k,, 

(28) 

Substituting (28) in (26), we obtain an expression for 
hi~ in terms of the functions A, B, C, and D, and then 
form the tensors Tij and Bcij in accordance with formu
las (29) from this expression for hi~. Comparing the 
obtained tensors with (28), we obtain a system of equa
tions for A, B, C, and D. If a solution of the system 
exists, then the form (28) has been chosen correctly. 
We omit these rather cumbersome calculations, and 
write out only the tensors in terms of which A, B, C, 
and D are expressed: 

,..!. J cr,1(q)aT(q)dq= a 6 + ~ k,k,. (29) 
2a a + XP' o '' o k' , 

~S q,cr,,(q)aT(q)dq , k,k;k, 
2a a+ XP' y,6,,k, + y, (6,,k, + 6,,k,) + 6, ~; 

~ J q,q,cr"(q)aT(q)dq 
2a a+ XP' 

a,6,,6,, + a,' ( 6,,6,, + 6.;11") 

+ ~,6,,k,k, + ~: ( 6,,k,k, + 6,,k,k, + o,,k,k, + 15"k,k, + 6,,k,k,) 

+ y,k,k,k,k;/k'. 

All the coefficients (ao, 80, y1, etc.) here are functions 
of k. 

A solution of the system for A, B, C, and D actually 
exists, but is very cumbersome; we therefore write out 
only the expression for A - B, which is the only one con
tained in the first equation of (22) and plays the role of 
turbulent viscosity. It is interesting that A- B, gener
ally speaking, depends on k, so that strictly speaking, 
the equations for Bare no longer of the diffusion type 
such as (17). To be sure this dependence is weak at 
small values of k. But the regular component consti
tutes precisely the Fourier components at small values 
of k, i.e., k « 1/Z. At such values of k we have 

A -B = 2aa0• (30) 

Substituting this expression in the first equation of (22), 
we obtain 

iJB 2 
-+x,kB=O 
i)t ' 

_ 2 J u(q)aT(q) d 
i(z - 3 a + xq' q. (31) 

For comparison with (17), we express X2 in terms of 
v(k): 

1 J av (q) d 
x·=3 a+xq' q. (32) 

5. PHYSICAL MEANING OF THE SECOND APPROXI
MATION AND POSSIBLE APPLICATIONS OF THE 
RESULTS 

First, it is immediately seen from (32) that X2 differs 
strongly from the first-approximation x (a has the phys
ical meaning of the reciprocal correlation time: 
a= 1/T), although they have the same order of magni
tude. This indicates that if this result were to be ob
tained by summing diagrams, then it would be necessary 
to add an infinite set of diagrams to those summed 
in[2 ,3] • 

Another important physical conclusion is that in the 
second approximation, when using the spectral tensor 
(15) (there is no gyrotropy), there is no turbulent 
dynamo, and all we have is turbulent damping of the 
field. We can therefore advance the hypothesis that 
turbulent generation of regular fields can occur only in 
the presence of gyrotropy. 

The second'approximation is obtained under the as
sumption that h <3> = 0. If we take the third variational 
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derivative of the vector-functional hi ate = 0 and equate 
it to zero, then we can see that this assumption corre
sponds to the form 

(ll,vp,vn) = (ll,v;)(vtVn) + (l/,vl)(vpn) + (H,vn)(V;Vt) (33) 

If there is no regular component and we are solving the 
pulsating-field problem, then the assumption g< 3 ) = 0 
corresponds- to the form 

(l/,HpnVm) = (l/,l/;VJ)(VnVm) + (H.H;Vn)(V,Vm) 

+ (ll.llpm)(v,v,). 
(34) 

It is interesting to note that hypotheses (19), (21), (33), 
and (34) can be formulated as the splitting of the mo
ments of the corresponding orders into a sum of all 
possible combination of the moments, and also as the 
vanishing of the semi-invariants of certain definite 
order. Such hypotheses are frequently used also in other 
branches of the theory (cf., e.g.,C 9 J). Expanding Hi in 
(33) and (34) in perturbation-theory series in the veloc
ity in terms of the initial perturbation H0i and recogniz
ing that H0 is not correlated with the field v, we obtain 
in lieu of (33) and (34) a number of relations that con
nect moments of only the velocity field. In particular, 
it follows from the zeroth, first, and second approxima
tions that the third, fourth, fifth, and in general all odd 
moments of the velocity field behave like Gaussian mo
ments. A deviation from the Gaussian law occurs 
already in the sixth moment. It is of great interest to 
choose a statistical distribution law (no longer Gaussian) 
for the velocity field, or, equivalently, a characteristic 
functional such that all the indicated relations are valid. 

This would mean that for such a distribution Eq. (31) is 
the exact solution of the problem (there is no small 
parameter in the problem!). 

As to applications, it can be stated that in astrophys
ics one frequently encounters situations wherein regular 
(large- scale) magnetic fields coexist with turbulence, 
for example on the sun, on stars, and in the interstellar 
gas of the galaxy. Then the turbulent damping frequently 
competes with the generation mechanisms. It is there
fore important to know more than just the order of mag
nitude of the diffusion coefficient. In particular, there 
are hopes at present to obtain experimentally the space
time spectrum of the velocity field on the surface of the 
sun, and formula (31) may be useful for this case. 
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