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Expressions for the particle and energy fluxes perpendicular to a strong magnetic field are obtained for the 
case of a weak collision plasma and axially symmetric toroidal systems. Besides the longitudinal solenoidal 
and radial potential electric fields, allowance is made for deviations of the equipotential surfaces from the 
magnetic surfaces caused both by equilibrium variations of the potential and by low frequency plasma 
oscillations. An equation is derived which defines the magnitude of the self-consistent radial electric field. It 
is shown that diffusion involves the appearance of a velocity of the plasma as a whole along the magnetic 
field force lines; the magnitude of the velocity varies with time. 

MANY recent papers have been devoted to ~ifferent 
problems in the theory of transport processes across a 
strong magnetic field in a toroidal system. Most of 
these papers, however, conside,. the case when the sys
tem parameters are such that the self-consistent elec
tric field that is produced in the quasistationary diffu
sion regime exerts no influence on the character of the 
motion of the individual particles, and its equipotentials 
coincide with the magnetic surfaces2 >. In addition, the 
question of determining the self- consistent radial field 
produced in the plasma still remains open, since the 
condition of ambipolar diffusion is automatically satis
fied for a fully- ionized plasma in the lowest order in 
the Larmor radius (i.e., in 1/B), and consequently this 
condition cannot serve as an equation for the determina
tion of this field. 

The purpose of the present paper was to fill the indi
cated gaps, i.e., to obtain expressions for the particle 
and energy fluxes with allowance both for the possible 
deviations of the equipotentials from the magnetic sur
faces and for the radial electric field. It is also our 
aim to derive an equation for the value of this field, 
confining ourselves in the solution of the kinetic equa
tion to the first approximation in the toroidality and in 
the Larmor radius. We limit ourselves here to the case 
of axially- symmetrical magnetic traps and sufficiently 
low collision frequencies, when the hydrodynamics 
equations no longer hold. 

1. FORMULATION OF PROBLEM AND EQUATION 
FOR LONGITUDINAL VELOCITY 

Thus, we consider axially- symmetrical magnetic 
traps characterized by longitudinal and azimuthal 
(poloidal) magnetic field components B!; 
= B0 /[1 + (r/R)cos q:>] and Bq:>, respectively, and assume 
that the ratio(} = Bcp/B~; is much smaller than unity 
and is independent of the small azimuth q:>. 3 > We assume 
furthermore that there exists in the system a longitud
inal solenoidal electric field E~; = E 0 /ll + (r/R)cos q:>] 

I) A somewhat abbreviated version of this paper was delivered at the 
Fourth International Conference on Plasma Physics and Controlled 
Fusion (paper CN-28/C-5, Madison, Wisconsin, June 1971). 

2>Exceptions are Stringer's investigations, where similar problems were 
considered within the framework of the hydrodynamic approximation 
(see, for exampJellJ). 

3>For convenience, we use here exactly the same notation as in the 
earlier papers12•3l. 
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that produces a longitudinal current and is responsible 
for the production of the stabilizing field B<p and a 
"proper" electric field produced by the plasma itself 
and characterized by a potential 

<D(r, <p) =<Do(r) +<D(r, qo), <D = <D,(r)cosqo+<D.(r)sinrp, (1) 

which is assumed for concreteness to consist only of 
the zeroth and first harmonics <I>c S> while the amplitude 
of the first harmonic is assumed t'o be low enough so 
that the ratio lej~c,si/Tj is much smaller than unity 
(Tj is the temperature of the particles of type j). 

It should be indicated that within the framework of 
the quasistationary theory considered here there exist 
two mechanisms of entirely different nature leading to 
the appearance of azimuthal variations of the potential. 
The first mechanism is connected with the deviation of 
the system from symmetry with respect to the small 
azimuth, a result of the toroidality. The amplitude of 
these so to speak equilibrium deviations is proportional 
to the Larmor radius and to the toroidal ratio o = r/R, 
and can be consistently calculated within the framework 
of the theory considered here from the quasineutrality 
condition for the corrections Nj to the density: 

(for details see[2 J). The second source of azimuthal 
variations of the potential are plasma oscillations. The 
high-frequency oscillations, whose frequency n greatly 
exceeds the collision frequency, cannot lead directly to 
an increase of the diffusion or of the thermal conductiv
ity, although in the case of turbulence they can cause an 
increase of the effective collision frequencies. However, 
oscillations of sufficiently low frequency- much lower 
than either the collision frequencies or the characteris
tic frequencies of the azimuthal motion of the trapped 
particles-can obviously be regarded as quasistatic ones 
and consequently can be accounted for with sufficient 
rigor within the framework of the theory in questionC2 ' 4 J. 
The amplitude of the variation of the potential is regar
ded here as specified (say, determined from experi
ment)[sJ. 

We start from the drift kinetic equation[2 J 

a~ a~ .a~ a~ a~ (2) 
-+r-+rp-+u-+w-=St ot or a,p au ow " 

where u and w are the longitudinal and transverse com
ponents of the particle velocity relative to the magnetic 
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field, Stj is the collision integral, the dot denotes th~ 
total derivative with respect to time, and the subscript 
j = e, i indicates the type of particle (electron or ion) to 
which the particular quantity pertains. Multiplying this 
equation by h2u, where h = 1 + (r/R) cos <.p, averaging 
with respect to cp, and integrating with respect to the 
velocity, we readily obtain4 > 

h'< F)• -- --- e --- 1 d---
d u ' = w Bh(rF )• + lt'(uSt,)• + _:__E h'(F,)•- --rh'(urF,)•, 

iJt ' ' m, r iJr 

where the angle brackets denote the operation of inte
gration in velocity space, so that, for example, (Fj), 
(uF.), and (rF.) are the density and longitudinal and 
radlal fluxes ot the particles, etc., while the bar with 
the superscript cp denotes averaging with respect to the 
azimuth cp, In deriving (3) we have neglected for sim
plicity quantities of order 82 « 1 and the electric parti
cle drift connected with the solenoidal electric field (the 
drift velocity is eE~ /B~) in comparison with the toroidal 
drift; this corresponds, in particular, to neglecting the 
rate of plasma contraction as a result of the usual pinch 
effect in comparison with the velocity of the diffusion 
motion. 

Since the radial drift velocity r is a quantity of first 
order of smallness in the toroidality ll = r/R and in 
1/B (i.e., in the Larmor radius), it suffices, to deter
mine the particle and energy fluxes in the first non
vanishing approximation, to determine the distribution 
function likewise only in first order in ll and 1/ B. Ac
cordingly, we can neglect in the kinetic equation the de
pendence of all the quantities on the time and the cor
rections to the azimuthal motion, necessitated by the 
toroidal drift; in the equation for the electrons we can 
neglect also the corrections due to the electric drift5 >. 
If we assume furthermore that the solenoidal field E~; 
is small enough so that there are no runaway electrons, 
and that the energy acquired in this field by the trapped 
particles is much smaller than the thermal energy, 
then we can rewirte Eq. (2) after changing over from the 
variables u and w to the variables 

ft = w'/2B, 0 = 1/. (u' + w') + e;<t> I m; 

in the form 

where 

u {)hu aF, +[e - v ]_.!:_ aF,- e;E~u FM + St· 
----- U E -- J H 

T<O; {)cp ar r {)cp T; 

e;B, 
Wi=--, 

m, 

1 {}<lJ, v =---· 
E Bo ar ' 

N, { (f)- e,<D/m; } FM- ---exp ------
1 - [2nu/'"] 3/ 2 v/ ' 

v. = [T./m.jl 12 is the average thermal velocity and Nl. 
l l l 

( 4) 

is the particle density. In the equation for the electron 
distribution function ( j = e) we shall neglect also the 
velocity of the electric drift V E in comparison with eu. 

This equation will serve us as the starting point for 

•>This relation was first derived in[2l, where it was used to prove the 
am bipolar character of the diffusion of a fully ionized plasma in the 
lowest approximation in the Larmor radius. 

S) As a rule, the inequality l8v J>IE/Bd is always satisfied with a large 
margin. For ions, on the other hand, this is far from always the case. 

the determination of the radial particle and energy 
fluxes s. and Il· averaged over the magnetic surface. 

l l 
It is easy to verify that when IVE I « l8vj I relation 

(3) takes on the following form in the lowest order in 
the Larmor radius, i.e., in the same approximation in 
which Eq. (4) is valid: 

Bw;S, =- h' (u St;)•- .!!_;_Eth'N,•. (5) 
m; 

On the other hand, inasmuch as th~ collisio.n int~gral Stj 
satisfies the momentum conservation law, I.e., m the 
absence of neutral particles, we have 

E m,(uSt,) e: 0, (6) 

it follows directly from (5) that for a fully ionized 
plasma, by virtue of the quasi neutrality condition ~ ej Nj 
= 0, the condition for diffusion ambipolarity 

E e;S;= 0 (7) 
j 

is identically satisfied. In other words, it is a direct 
consequence of the initial equation (4), and consequently 
cannot serve as an equation for the determination of the 
radial electric fieldEr =-8<I>o/ar produced in the 
plasma. 

There are two possible ways out of this difficulty. 
First, one could expect a change from the first approxi
mation in (1/B) considered by us to a more exact solu
tion of the kinetic equation (2) to give rise to a depen
dence of the fluxes on the electric field or on its deriva
tives, so that the quasineutrality condition (7) acquires 
a deeper meaning and ceases to be a trivial consequence 
of the initial equation. This way, however, is very com
plicated and requires, in particular, that account be 
taken of the dependence of all the quantities on the time, 
or that additional and generally speaking artificial sta
tionary conditions be imposed[6J. 

The second and, in our opinion, more consistent way 
to resolve the indicated difficulty is to use Eq. (3). 

Indeed, multiplying (3) by mj, summing. over j, using 
the am bipolarity condition (7), and neglectmg small 

. . 2 d ( I )1 /2 t quantities of order o an me mi , we ge 

fJN,U, =- v.,N,U,- _!_~rP, 
{)t r {)r 

where 

U, = L m; (uF,) / E m; (F;) 
J j 

is the average "hydrodynamic" plasma velocity, 

P = h'(urF,)•, 

(8) 

(9) 

and v. is the frequency of collisions between the ions 
and tfi~ n~utral particles, which we shall henceforth as
sume to be small in comparison with the effective fre
quency of the ion- ion collisions6 >. 

It is interesting to note that in the case considered 
here, that of a weak- collision plasma and not exces
sively small poloidal fields, when VE/evi < 1, the quan
tity P turns out to be very simply connected with the 
diffusion flux of the ions in the lowest order in the 
toroidality ll, namely, 

6lOn the other hand, this condition is obviously not necessary for the 
derivation of (8). 
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(10) 

Since we shall show later on (see, incidentally[3 J) 
that the velocity U0 is not uniquely connected with the 
velocity of the azimuthal electric drift VE, Eq. (8) can 
be regarded as the missing equation for the radial elec
tric field Er. Furthermore, since r is of first order of 
smallness b9th in 1/B and in the toroidality o, it suffices 
for calculation of the quantity P which enters in (8) in 
the lowest order in the toroidality to determine the dis
tribution function likewise in first order in 1/B and in 
the toroidality 6, i.e., precisely in the same approxima
tion as used to determine the fluxes Sj and nj of interest 

to us7 >. It is important, however, that since Eq. (8) is 
valid in a higher approximation than the kinetic Eq. (4), 
Eq. (8) contains additional information even in this low
est approximation and consequently makes it possible to 
obtain the missing equation without resorting to a more 
accurate solution of the kinetic equation. 

The physical meaning of Eq. (8) is quite simple: it 
represents the plasma- momentum conservation law in 
the presence of diffusion loss of particles, and indicates, 
in particular, that diffusion is accompanied in the entire 
plasma by a velocity component along the magnetic-field 
force lines. In a weak-collision plasma, the presence of 
such "acceleration" can readily be understood if it is 
recognized that the main contribution to the diffusion 
losses is made in this case by the "trapped" or "almost 
trapped" particles, which have, in the presence of a 
radial electric fieldEr, a nonzero average longitudinal 
velocity u ~ V E /e, and consequently continuously carry 
a definite momentum out from the plasma; the rate of 
such a "departure" of momentum from the plasma is 
determined precisely by the last term in the right-hand 
side of (8). It should be indicated that this effect was 
first pointed out in[7J (see also[aJ ), where experimental 
data were cited pointing to the presence in the plasma of 
of a longitudinal velocity whose nature, in all probabil
ity, is connected with the "acceleration" mechanism 
considered above. 

We now turn to a determination of the particle and 
energy fluxes Sj and nj, the radial electric field Er 
= BoVE, and the longitudinal plasma velocity U0 • We 
start here from Eq. (4), take the collision integral St. 
in the form given and used in[2 ' 3 J, and confine ourseltes 
to relatively low collision frequencies satisfying the 
conditions 

(11) 

where 
•It 4 f'n e,'N,f. 

V· =-----
' "' 3 m;I2Tj'2 ( 12) 

are the effective frequencies of the electron- ion and 
ion-ion collisions, as used in ordinary hydrodynamics. 
In addition, we assume that mev~ffjmiv[ff ~ 1 and that 
the poloidal field B<P is not too small, so that 

l'BI8Iv, <I VEl< l'b]8lv., (13) 

and we accordingly neglect the drift velocity VE in com
parison with (Ju in the kinetic equation ( 4) for the elec
trons. 
7>It should be noted that since ambipolarity results, as a rule, in Sj ~ TijTj-1, 

it is necessary in many cases to add to the quantity P defined by (I 0) 
also terms of higher order in the toroidality (see footnote 10 below). 

Recognizing that the procedure for solving (4) is 
rather standard (see, for example ,c2 ' 3J) and being unable 
to dwell on it here in any detail, we confine ourselves 
below to a simple list of the final expressions that are 
valid in various limiting cases, and to brief discussions. 
(The most essential steps in the solution of Eq. (4) are 
given in the Appendix.) 

2. EXPRESSIONS FOR THE PARTICLE AND ENERGY 
FLUXES AND EQUATION FOR THE ELECTRIC 
FIELD 

A. We first introduce expressions for the electron 
fluxes. If the deviations of the equipotentials from the 
magnetic surfaces are sufficiently small, so that 

7", = [e.'(<l>c' + <1>.')]"' IT,~ r I R (14) 

and the collision frequency satisfies the condition 

rv:11 ~(riR)'!.I8Iv,, (15) 

then the expressions for the fluxes take the form8 > 

S =-21N (.!.-)'i'.!ii.-21 ' 11 N (_!___)'1'£ro<-o.osl 
e t e R Brp , Ve c R iji! ,;z;, e 1 (16) 

TI = 118 T - 2 iN T (_!___) •;,£, -2 4 e!! NT (..!__) •;, p,' iJ In T, (17) 
e ' (' c ' e e R B" ' Ve (' e R az_a_r_' 

where p. = v./w. is the Larmor radius of the particle, 
J J J 

and p.~O') denotes the quantity 

:z:"l = iJ lnN,T," _,_ 8w .• [ U _ ~] (17,) 
' iJr I V/ 0 {J • 

In the region of intermediate collision frequencies, when 

(r/R)'h l8lv,~rv;" ~19\v., (18) 

but the condition (14) is satisfied as before, we get 

S =-34N (_!___)'~E'-12r~N (..!__)'~:z<<.•l 
' ' ' R rv•fl B ' 0 r ' R l:l' ' ' 

' . (19) 

( r )' l8lv. E, n, = 3S,T,- 4,1N,T, - --. --
R rv''1 B ' . 

-375~NT (_!___)'~iJ!nT, 
' r ' ' R 9' iJr · (20) 

On the other hand, if the variations of the electrostatic 
potential are sufficiently large, i.e., 

JP, ~ r I R, (21) 

then the decisive role is played not by the toroidal but 
by the electric drift, and formulas (15)-(20) take the 
form 

S -- 2 2N JP y, .!ii.- 3 8 ' 11 N JP ,,, £:z <-o,ol (22) 
e - 1 e e Br;; 1 Ve e e A2 e 

1J2Et eif %P/0InTe 
ri, = 0,62S,T,- N,T,JP, -- 2,2v, N,T,'f', --- (23) 

B. {J' or 

at rveff ~ 7"312 18 lv and e e e 

S =-062~Nr'.!li.-062~N'f''~!Z<-o.ol {24) 
e ' rve~rt e e Brp ' r " e ez e ' 

8>Some differences between the numerical coefficients given here and the 
corresponding coefficients ofi3l are due to the fact that we have used 
here the exact expressions for the collision frequencies, whereas inf3l it 
was assumed that Yjj ~ l!v3 On the other hand, in (9l it was assumed 
that the collision frequency does not depend at all on the particle 
energy. 
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, [B[v, E~ IB[v, , p.' 8lnT, 
II,= 2S,T,- 0,94N,T,P", --1-1 --1,25 --N,T,Y, -, - 8-

rv', B. r 8 r (25) 

at 7"312 19 [v « rveff « 18 lv e - e e e· 
We present, finally, an expression for that part of 

the charge density Cfe which varies with the azimuth q; 
and is connected with the electrons. This expression 
can be useful for the calculation of equilibrium devia
tions of the potential (i.e., deviations not connected with 
low-frequency plasma oscillations). It turns out to be 
the same for all the cases considered above: 

ij, = - (e.'N, IT,) [ll>, cos <p + ll>, sin <p ]. (26) 

On the other hand, the condition at which the low
frequency oscillations with frequency n can be regarded 
as quasistatic for the electrons is 

(27) 

B. We now turn to the ion fluxes. The number of 
limiting cases turns out to be twice as large here, since 
the ratio rE/18 [vi can be much less as well as much 
larger than unity. 

Let us discuss first the case of greatest practical 
interest, that of sufficiently large poloidal fields, when 

(28) 

The expression for the variable part of the charge den
sity has a form perfectly analogous to (26), namely 

ij, =- (e,'N, IT,) di 

and it follows from the quasineutrality condition Cie + qi 
= 0 that the equilibrium deviations of the potential in the 
approximation in question are equal to zero. In other 
words, in the case when the condition (28) is satisfied, 
l'0j must be taken to mean the potential variation, con
nected only with the low- frequency oscillations. For 
ions they must be taken into account only if 

(29) 

On the other hand, if n » v~ff, then, as already noted 
above, they do not make a direct contribution to the 
fluxes and it can be assumed that rj = 0. At v~ff » n 
» v~ff the variations of the potential must be taken into 
acco1unt in the expressions for the electron fluxes, and 
when n « v~ff they must be taken into account also in 
the expressi~ns for the ion fluxes. 

Let the variations of the potential be sufficiently 
small so that 

r, = [e,'(ll>,' + ll>,') ]V• IT,< r I R. (30) 

Then in the region of small collision frequencies, when 

rv:" < (riR)''·I e I v,, (31) 

the expressions for the ion flux density ~ and for the 
ion energy ni take the form 

II =- 0 24 m \NT - ~ ro<'·") ( r ) ''• p' 
, , vl 1 , 1 R oz .z i , 

where 
~A.•l - a lnN.Tt 'I ew, ( VE) 
::t:i - A ~-z Uo--e , 

dr v, 

l { 32[8fv; [(' r )''• ''·]} A = n rv~fl max 7f , Y\ . 

(32) 

(33) 

(34) 

On the other hand, if low-frequency oscillations exist 
in the plasma and satisfy the condition (29), and if their 
amplitude is large enough to have 

P",';fe>riR, 

then we get at low collision frequencies 

The formulas for the ion fluxes take the form 

S.- - 0 2 •II AN·'"'P'fo p,' ro .<-o.a) 
1 - , Vi t.V t fl 2 .;c,t ' 

II - 0 35 •!I ANT·"'" 'lo p.' ro.<o,,) 
i- - t Vi i tF t ez .Z ~ • 

On the other hand, if the poloidal field Bq; is large 
enough so that 

VE<%; [e[v,max[(riR)'h,:r,V.J, 

(35) 

(36) 

(37) 

(38) 

i.e., the electric drift is negligible also for the ions, 
then the coefficients 0.17, 0.24, 0.2, and 0.35 in formu
las (32), (33), (37), and (38) must be replaced by 1, 1.4, 
1.2, and 2, respectively. 

At intermediate collision frequencies, when 

(riR)"'fGJ[v,<%;rv,'"<IEI[v, for riR';Je>P",, 

(39) 

the expressions for the ion fluxes will be determined by 
formulas (19) and (20) at r/R » Ti and (24) and (25) at 
r/R « :t'i• and the subscript e in these formulas must 
be replaced by i. In view of the inequality mev~ff 
« mivfff, the term proportional toE?: /B<P and describ-

ing the compression under the influence of the solenoidal 
electric field should be neglected in compari1:1on with the 
remaining terms, just as was done in the derivation of 
formulas (32)-(38). 

C. We turn now to the derivation of the equation for 
the electric field E r· As already noted, in all the cases 
considered above the quantity P in (8) is connected with 
the corresponding ion flux by the relation (10). 

As to the longitudinal plasma velocity Uo and, in par
ticular, its connection withhhe radial electric field, it 
can also be obtained in principle by solving the kinetic 
equation ( 4). This method, however, leads to complica
ted and rather cumbersome calculations. There is a 
simpler procedure. Indeed, if we recall that Eq. (5), 
together with the ambipolarity of the diffusion, is a 
direct consequence of (4) if IVEI/Iel «vi, then the con
nection between the longitudinal velocity Uo and the 
plasma parameters can be obtained simply from the 
ambipolarity condition (7) or, inasmuch as the ionic 
diffusion coefficient of the ions is, as a rule, much lar
ger than the electron diffusion coefficient, from the van
ishing of the corresponding ion flux ~· 

We substitute now the expression obtained for Uo into 
Eq. (8) and take (10) into account. This yields a final 
expression for the time variation of the radial electric 
fieldEr (or VE) 9>. By way of an example, let us con
sider the case when the equipotentials coincide with the 
magnetic surfaces (i.e., rj « r/R), and the collision 

9>We must not forget, however, that the equation will be valid only so 
long as U0 <(v,. This is due to the fact that the form we used for the 
collision integral is also valid only when U0 <(v,. 
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frequencies v~ff satisfy the conditions (15) and (31). 

Neglecting snfall quantities on the order of (me/mi) 1 / 2 

in comparison with unity, we obtain from the am bipolar
ity condition (7) 

V 2 at NT·-•·•• 
U,=~-~ n '' e 8!il; i)r 

(40) 

On the other hand, assuming for simplicity that the quan
tity VE/e does not depend on the radius r, and recogniz
ing that Se = ~ and aNi/at=- r-1a(rSi)/ar, we get from 
(8)10) 

au,+ U _ v,' atnN,T;'·" ainN, 
- ·Vio o--- ----:.:,__;, __ 
at B!il, ar ot 

(41) 

This equation indeed determines the sought dependence 
of U0 , and consequently also of Er, on the time and on 
the plasma parameters. It follows from it, in particular, 
that if a ln N. T~0 ' 15 /a r < 0, then the plasma velocity Uo 
increases m~n~tonically with time, and the radial elec
tric field is initially negative (if Uo = 0 at t = 0), and then 
goes to zero and becomes positive. 

Analogous equations can be obtained also for the 
other cases considered above. 

D. Let us consider finally the case of small poloidal 
fields B.p, when 

(42) 

In this case, as shown by calculations, there is prac
tically no parameter region in which the main contribu
tion is made by "trapped" or "almost trapped" parti
cles, and the fluxes of the energy and of the particles 
are determined entirely by the untrapped particles with 
longitudinal velocities u ~ v. « IVE/81 111 • As will be 
shown below, the quantity r-ta ( rP)/a r turns out in gen
eral to be of the same order of smallness as the term 
ewi Si, and consequently the am bipolarity condition (7) 
is no longer a consequence of the initial kinetic equa
tion ( 4), and therefore enables us to determine the radial 
electric fieldEr- Accordingly, the fluxes turn out to be 

10>Jt should be noted that for the case of a weak-collision plasma and 
sufficiently strong poloidal fields B..,, when the condition (31) is 
satisfied, T.= Ti and vio = 0, an analogous equation was obtained also 
in [!OJ_ However, unlike in the present paper, no account was taken in 
[10J of the electron-ion collisions, because the lowest-order terms in the 
toroidality (i.e., "'1>112) were not included in [1o] Our calculations, on 
the other hand, were made with allowance for the electron-ion 
collisions, but in the lowest order in the toroidality, so that the terms 
proportional to the higher powers of the toroidal ratio (i.e., ~ li 312 ) 

were not taken into account by us. Accordingly, our results and the 
results of [101 have different regions of applicability. Thus, assuming as 
an estimate that T.=Ti, eEJc:-eTi, and alnN!ar=alnT!ar=l/r, we find 
from a comparison of the corresponding formulas that the results of 
[!OJ are applicable in the case of a strongly ionized plasma, when 

1 8' p,' •II 
Vio<---Vi, 

,::; 82 r'l. 

and sufficiently "steep" toruses, when the inequality 
8 = r/R':};>Sym,/ m, ~ 1/ 5 

is satisfied. In the opposite case of sufficiently small toroidality, 
I>< 1/5, it is necessary to use our results. 

We indicate also that, generally speaking, it is necessary to add to (8) 
and ( 41) terms corresponding to the usual viscosity (resulting from al
lowance for the rapid Larmor rotation), which obviously cannot be ob
tained from the drift kinetic equation (2). 

11 lThus, for example, in the region where condition (31) is satisfied, the 
trapped particles make the decisive contribution only at values of z 
satisfying the inequality ll312z4(exp[- (z2 /2)]; the "plateau" region 
exists only if llz4 4( I. 

independent of the longitudinal velocity in the lowest ap
proximation in ev /VE; as before, the value of this 
velocity is determined by Eq. (8). 

Thus, if the inequality ( 42) is satisfied and the ratio 
of r/ R to Ji'i is arbitrary, we obtain the following expres
sions for the particle and energy fluxes Si and Ili121 : 

S, = - 0, 2v,'11 N, (_!__) 2 .:i_ p,' { i) In N,r,'·" 
R VE' Or 

w,VE} 
2 , 

v, 
(43) 

TI = e,C!J,R S -04- '"NT (!__)2v,' '{i)!nN,T,''' !il;V'E}.(44) 
' r ' ' :Jv, ' ' R V,'p, iJr v, 

That part of the electric- charge density which is varia
ble in the azimuth cp takes the form 

_ e,2N,c£ v,' i) InN, 26e,N,v,' [ a InN,T, 
If• =---------+ ---::-:--r, w,V, or w,VE Or 

"~~E ]bos cp,(45) 
' I 

and the quantity P in Eq. (8) is a rapidly decreasing 
function of VE given by 

P = 3 Bv,'TI, I T,VE. ( 46) 

At not too large values of (VE/evi) 2 « (m/me) 112 

it follows from the ambipolarity condition that 

VE = ~ i) InN;T;'-" 
(J), or 

(47) 

and consequently the term ewi Si in (3) is of the same 
order as r-1a (rP)/a r. 

Using, finally, formulas (26) and (45) and the quasi
neutrality condition qe + qi = 0, we obtain the following 
expressions for the amplitudes of the equilibrium devia
tions of the potential: 

e,C!J, = 0, 

e, ( v.' i) InN,T, ) / ( 1 __ ve' o!nN, ). (48) e,<D,=-26-T, 1------
ee wiVE Dr (t),VE ar 

It follows therefore that in the absence of a gradient of 
the ion temperature the equilibrium deviations of the 
potential are equal to zero. They can become apprec-

1_ iable only in the vicinity of the point where 

T, i)lnN,T,'·" T, iJ!nN, 
----

~ Or e, Dr 

i.e., only in the region where a ln Nija ln Ti < 0. Such a 
situation, however, does not seem very likely. 

APPENDIX 

Let us consider the solution of (4). In the case of 
sufficiently large poloidal fields, when 

(A.1) 

the electric field has no appreciable influence on the 
character of motion of the individual particles, and the 
factor with VE in the second term of the left side of (4) 
can be neglected in comparison with eu. The solution 
of such an equation is well known and is given, for ex
ample, in[ 3 J. We confine ourselves therefore only to the 
case of sufficiently small e, when 

(A.2) 

and it is important to take the electric field into account. 
Recognizing that in the absence of collisions and of a 

solenoidal electric field E t; the quantity 

:J'=JBdr-hu/w1 (A.3) 
12>We note, incidentally, that formulas (43)-(45) are valid in the entire 
region of collision frequencies rvfff -<(V E· 
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is an integral of the motion, it is convenient to change 
over in (4) from the variables r, cp, and 11 to new varia
bles ro, cp, and 11, where ro is the minimal radial devia
tion of the particle, with 

r = r0 + l!r(ro, ql, ~-t)· (A.4) 

In the case of sufficiently strong stabilizing fields, 
when t.r/r « 1, it is easy to determine the value of t.r 
as a function of the azimuth cp, by expanding the integral 
of motion :J in powers of t.r and retaining the terms 
quadratic in t.r: 

L'lr(ro,ql, f!) = 8~; -H- ( Uo- v;) + ">u }. 

!!u= (u,-V./8) {(u.- v.)'+2I~I[Q,(qJ)-Q,(cp,)J}''', 
iu,-V./81 8 

1 i) v. 
~=1-~--, 

(J(oJ; ar, 8 

(A.5) 

where VE = -B(/a<I>0 /ar0 and u0 are the values of the 
electric-drift velocity and of the longitudinal velocity at 
the point r = ro and cp = cp 0 , while cp 0 is the value of the 
azimuth at which the radial coordinate of the particle is 
equal to r 0• We have assumed here that (3 is not very 
close to zero, so that 1!31 ~ 5113 ; in the opposite case it 
is necessary to take into account the expansion terms 
that are cubic in t.r. 

Thus, taking into account the explicit form of the 
collision integral ( seeC3 J), changing over in ( 4) to the 
variables ro, cp, and 11, and confining ourselves to the 
lowest order in the toroidality o = r/R, we obtain 

8!1u-1 =rov;L F,-ii,u,P/" 1+-1-aF- '{ [ elll] 
iJcp T; 

[ u, a In ii;.P/' ] _ - M _ - M - - M} (A 6) - 1 + -- 8w;a;F; !!r- u,a;F; ll cos cp + a,u,F; , • ew, i)r, 

where 

F;M = N;(r0 ). exp{ _ [ f!J- e1lllo(ro)/m;]} (A. 7) 
(2nv/) a./2 v/ ' 

Uj and vj are determined in the same manner as in[3J, 

, u a a I L=--u!-1-
B all all T,.,j.I-Ho,1P.I.I' 

(A. B) 

and the quantities aj and aj denote the average value of 
aj and the part variable in the azimuth cp, as functions 

of the variables r and~<f· 
Putting now F. = Ft•"(ro) (1 + a.uo + '{l.(ro, cp)], where 

J J J J 
l{t. (r0 , cp) « 1 is a small correction that takes into ac-
c6unt the dependence of the solution on the azimuth, we 
obtain for l{tj in the first order in t.r the equation 

a'¥; roV; , { _ [ e/D] _ } -=-L '¥;-C;l!r-u0a; llcoscp+- +u,a; , 
a<p 8L'lu T; 

[ iJ!nF;M ( Uo ainii;) ] C;= (1+ii,u0)---+ 1+--- 8w;ii; . ar, 8w, ar, 
(A.9) 

Inasmuch as the quantity in the curly bracket is at least 
of the same order of smallness as t.r, the operator L 
can be replaced by 

(A.10) 

We note that in terms of the ordinary variables r, cp, 
and 11 the distribution function, in the same order in the 
toroidality, is obviously 

F;(r, <p) = F;M(r, <p){(1 + ii;u) (1- e1$ / T,) 
(A.11) 

We now proceed to solve Eq. (A.9) in different limit
ing cases. 

At low collision frequencies, when the inequality (31) 
or (36) is satisfied: 

•If { ( r )"' } rv; ~ l8lv,max R ,Y;'" , (A.12) 

it is convenient to change over in (A.9) from the varia
ble 11 to the variable k, where 

k (u,-V./8) Q·={[~-<5( B+u')]'+(e,lll,)'}'" (A.13) 
2(i~IQ,)''• , 1 T, 1-1 • T, , 

and to introduce a new unknown function in accordance 
with the relation13 > 

'¥ = 2C,(I~IQ,)''• [t -k] (A.14) 
' 8w;~ 1 • 

Then, changing over from the variable cp to J 
= ( cp- cp 0)/2, recognizing that the main contribution to 
the transport processes is made by the region of values 
k s;, 1, and neglecting accordingly the last two terms on 
the right-hand side of (A.9), which are of higher order 
of smallness (in the toroidality), we obtain the following 
equation for the function fj: 

aj; X; IJ'f; X; . 2 

lit} = -;f}k2 + 7 Slll it, 

k , . 2 _ rv;f!B 
x=w"Yk -sm it, X;- 48(I~IQ;)'h (A.15) 

For the untrapped particles corresponding to the region 
k 2 > 1, the solution of (A.15) can be sought, just as in 
the case VE = 0 (see, for example,PJ) by the method of 
successive approximations, expanding the solution in 
powers of the small parameter KJ· « 1. Putting f. =I. 
~ - J J 

~ fj(J2_. ~here fj does not depend on the angle J, and 

fj « fj ( fj is a correction proportional to the collision 

frequency and taking the dependence of the distribution 
function on J into account), and bearing in mind that for 
untrapped particles the solution fj(J) should be a periodic 

function of the angle J with a period 1T, we obtain the fol
lowing equations for~ and ~(J): 

ar, = ~[ iJ'f; sin' it] 
ait x iJk' + x' ' 

a'J; = _ ( sin' tt ) • j ( 1 ) • 2 

iJk' x' x ' k > i, 
(A.16) 

where the superior bar with the J denotes averaging of 
the corresponding quantity with respect to J: 

1 .,. 
.A• =---;t J A(tt)dtt. 

-n./2 

13>We note that in the case of sufficiently strong poloidal fields IV EI<IO!vi, 
when the condition (28) is satisfied, we can put /3 =I in (A.l4) and 
the following equations, and 

a In F;M a In N;T;-'1. ro;VE iB- e,<llfm; a In T; 
':; = ii/il1f! + --- = - --+ + ii;w,f!. 

Oro Oro vjl. v;2 8r0 
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Bearing in mind that~ = 0 for trapped particles, we 

find from (A.16) that the quantity a~ /ak can be repre

sented in the entire range of variation of k in the form 

of; =e(k)Jdk(sin'~) • /( 1) • ,e(kJ=f· k>1. (A.17) 
ok • x' x 0, k < 1 

Thus, recognizing that the radial drift velocity is 
. 1 ohu {)x' 
r = rw; U·-aq; ~ iitj:"' 

we find that the contribution made by the untrapped par
ticles to the radial flux Sj averaged over the magnetic 
surface is proportional to the integral 

~ ( sin' ~) • / ( 1) • +x;J dk[.:t"(1)D(1)-.:t"(k)D(k)] ---;;--- ---;; , 
I 

where D(k) is a certain function of k and is finite at 
k = 1. Since 

(~)· ' {) 1 
-X-1 - = -Mz )"1- k-' ' 

this integral is obviously finite and consequently the 
contribution from the untrapped particles to the particle 
and energy fluxes is proportional to the small param
eter K .• On the other hand, as we shall soon verify, the 
contribution to the fluxes from the trapped particles 
(i.e., from the region k2 < 1) is proportional to 
Kj ln(1/Kj), i.e., it is decisive when Kj « 1. Accordingly, 
we shall take into account below only the fluxes deter
mined by the trapped particles, i.e., by the solution of 
Eq. (A.15) in the region k2 < 1. 

We make in (A.15) one more change of variables, 
from k and J to k' and I)!, in accordance with the rela
tions 

k' = k, sin~ = I k I sin'~>· 

Since the right-hand side of (A.15) has a singularity at 
x = 0, i.e., the solution has a sharp maximum in the 
vicinity of the point lj; = ± JT/2, we obtain for fj, neglect
ing accordingly the derivative a/ak' in comparison with 
(sin lj;/k' cos ij;)a/alj;, the following equation: 

iJ'f of k' _J+W(\(o)-;=---, 
D'iJ' D¢ cos 'iJ 

1 _lc'__ik'l cos'¢(1- k'sin''iJ)'" (A.18) W('iJ)=--:-.--- . 
sm'iJcosl(l x; sin''iJ 

It is not particularly difficult to find an exact solution 
of this equation. However, if account is taken of the fact 
that the fluxes Sj and nj averaged over the magnetic 
surface are proportional to the quantity 

- ox'· 1 .,. or 
rt;• ~ as/; = --;-1 x' a~ d'iJ, 

- .• ;2 

i.e., behave like Kj ln Kt as Kj- 0, we can assume, 

confining ourselves to logarithmic accuracy (i.e., 
neglecting quantities of the order of unity in comparison 
with ln K ~1), that 

J 

at; k W('iJ) 
d¢~- cos¢ W'('l>)+DW('iJ')/il'iJ'' (A.19) 

where ij;* is the root of the equation W(lj;) = 0. 
Substituting now (A.19) in the expression for the 

fluxes, neglecting the contribution from the untrapped 
particles, and performing a simple integration, we ob
tain without difficulty expressions (32)-(38) and rela
tion (10). 

In the region of intermediate collision frequencies, 
when the conditions (39) are satisfied, the main contri
bution to the solution is made by the vicinity of the point 
uo = V E /e, and we can assume that 

(A.20) 

Chan~ing over turtper to the com_ple~ amplit~des2 
{-¥j, Qj} = Re{¥j, Qj}e<fi and putting L = JJ.Ba /au0 , we 

obtain for l{lj the equati~n 

il''¥; · Y - 213; (A.21) ---<-'¥;=-
ily' a; y' ' 

where 
Uo VE 

y=---
Vj 8vi' 

To"V;IlB 
a i = ----e;r ' (3;= c/);. 

8wpi 

A solution of this equation can easily be obtained 
(see, for examplePJ) and is of the form 

W; = (3;/ y- if3,x(a;, y), (A.22) 

y;(a,y)= l:l Jdsexp[-{lal ~' +isy~)]. 
Thus, recognizing that at ct « 1 we have 

e ; 
y;(a,y) ~ n!ST.S(y)-y' 

where 6 (y) is a delta function, we obtain 

- QC ( VE) (A 23) 
'¥;=-in let~; cS u,--8- ' . 

from which follow the expressions (19), (20), (24), (25), 
and the ratio ( 1 0). 

Finally, at sufficiently small transformation angles, 
when lYE I » IB lvj, it is necessary to take into account 
all the terms in the right-hand side of (A.9). We can 
then use the expressions (A.20) for ~u and ~rand, since 
the trapped particles do not, as a rule, play a significant 
role when z = IVE levi I » 1, we can expand fractions of 
the type 1/(u0 - VE/B) in powers of Buo/VE. The solu
tion of (A.9) can in this case be determined in elemen
tary fashion, and we shall not stop to discuss it here. 

In conclusion, we note that in the calculation of the 
final expressions for the particle and energy fluxes Sj 
and nj we encounter integrals of the type 

00 00 

J, = J e-'t'1](t)dt, [ 1 = J e-' t'-'1. 11 ( t) dt, 

where l = 0, 1, 2, 3, and 

2 1 ' 
11 (t) =-= [e-'t'/, + ( 1--) J e-'s'f, ds]. 

)"n 2t , 

Taking the relation 

1 t 1 --:::- J dt e-•' J e-• r'f, ds = --== 
)"n , 0 ~t lll-1 

(A.24) 

into account and integrating by parts and with respect 
to the parameter IJ., we readily obtain 
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- 1 l'2+1 
J, = y2- -ln-_-- >=:::: 0,52, 

1 
J1 =--=, 

9 
/,=--=· 

2 y2-1 y2 4l'2 
n-2 

fo=---, 
"Yn 

4+n 
[,=--_-. 

4l'n 

1 
It=---=, 

"Yn 
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