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The secondary radiation produced under the action of arbitrarily polarized intense light EL in resonance with 
the atomic transition A-+B on a gas system located in a stationary magnetic field His investigated 
theoretically. The secondary radiation is regarded as being the result of interaction between atoms of the 
system and photon vacuum. Expressions for the frequency spectra of secondary radiation of arbitrary 
polarization involving the A-+B, A->C and B-+D transitions in terms of the atomic density matrices in 
prescribed classical fields EL and H are derived by means of the Konstantinov-Perel' diagram technique. The 
expressions obtained are employed for investigating the structure arising on the spontaneous emission 
Doppler contours for the A-+B transition when ELisa traveling wave of low intensity. For certain 
polarizations of the field EL and secondary radiation, terms appear in the structure which are due to gas 
system atoms being in coherent superposition in the Zeeman sublevels (Hertz coherence). These terms possess 
properties which are characteristic of both the ordinary secondary radiation and the Hanle effect. They 
depend in a resonant manner on the magnetic field strength H, and are negligible when the Zeeman splitting 
exceeds the radiative width of the upper level. When the EL field polarization and secondary radiation 
polarization are linear, the structure magnitude at H=O is modulated as "'cos 2\jl, where lj! is the angle 
between the polarizations. For the 2S 2-+2P 1 transition, A= 1.52 1-L· in Ne the percentage modulation may 
reach 100%. 

INTRODUCTION 

THE interaction of atoms with an intense optical field 
that is resonant with one of the atomic transitions leads 
to a number of distinct effects both in stimulated and in 
spontaneous emissionC1- 9J. In the case of spontaneous or 
secondary radiation1 >, the resonant field causes deform­
ation of the frequency spectrum of the immobile 
atomsC 1 ' 2J. The spectrum of the atoms participating in 
the thermal motion depends on the angle 13 between the 
directions of observation and of the propagation of the 
light field[ 2 ' 4 ' 8 J. In a broad Doppler line (y « ku), even 
a rather weak resonant li!~ht field leads to the appear­
ance of a structure with width y on the order of the 
radiative width when observed at angles 13 close to zero 
or 1T, and the structure can have different forms for 
13 = 0 and 13 = 7Tra-sJ • 

This paper investigates the polarization characteris­
tics of the frequency spectra of the secondary radiation 
of the gas system in a magnetic field. The gas system 
is regarded as an ensemble of atoms situated in a class­
ical electromagnetic field EL that is resonant with the 
atomic dipole transition A - B. A constant magnetic 
field H is applied to the system and leads to a linear 
Zeeman effect. It is assumed that each atomic level K 
can be characterized by a total angular momentum jK. 
Homogeneous and isotropi.c incoherent pumping is ap­
plied to the levels A and B. The secondary radiation is 
regarded as a result of the interaction of the enseli!ble 
of the atoms with the photon vacuum. 

In addition to the already mentioned scalar effects, 
effects connected with the vector character of the field 
EL and with the Hertz coh,erence of the ensemble of 
atoms can appear in secondary radiation of arbitrary 
polarization. Indeed, when the field EL consists of a 
mixture of a+, a-, and 1T polarized components, it trans-

l)We use the term "secondary radiation" (!OJ in place of the more 
cumbersome "spontaneous emission in an external field," reserving the 
expression "spontaneous emission" for the case when there is no 
external field. 
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forms the atoms into states that are coherent super­
positions of Zeeman sublevels. A magnetic field applied 
to the system destroys the Hertz coherence of the en­
semble and the radiation of light by such a system leads 
to resonant effects such as the Hanle effectc 11- 13J. At 
the same time, an investigation of the secondary radia­
tion in a polarization orthogonal to the polarization of 
the intense field EL may be convenient from the ex­
perimental point of view, since it permits an additional 
discrimination of the secondary radiation from the field 
EL with the aid of polarization. 

In Sec. I we derive general expressions for the power 
of arbitrarily polarized secondary radiation as a func­
tion of its frequency on the transitions A- B, A- C, 
and B- D (Fig. 1) (formulas (10) and (12)). These ex­
pressions, which reduce the determination of the spec­
tra in a field EL of arbitrary intensity to a calculation 
of atomic density matrices, acquire a particularly sim­
ple form when the field EL constitutes a single travel­
ing wave (formula (15)). The dependence of expressions 
(10) and (12) for the spectra on the density matrix ele­
ments Pa'a1 which are not diagonal with respect to the 
Zeeman sublevels of the level A is a formal confirma­
tion of the statement made above concerning the influ­
ence of the Hertz coherence of the ensemble of atoms 
on the secondary- radiation spectra. 

In Sec. II we investigate in detail the spectrum of the 
secondary radiation on the resonant transition A- B in 
the approximation of a weak field EL, when (EL · dab) 2 

<< YaYb· We determine the structure which appears on 
broad spontaneous-emission Doppler contours in a 
longitudinal magnetic field when the levels A and B 
have equal g factors, and which is proportional to the 
intensity of the arbitrarily polarized traveling wave 
IELI 2 • In the general case, the structure consists of an 
incoherent part and a coherent part due to the Hertz co­
herence of the ensemble of atoms; these parts differ 
noticeably in their properties (formulas (16) and (17)). 
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FIG. I 

The frequency dependence of the structure in the par­
ticular case of linear polarizations of the field EL and 
of the secondary radiation in the 8 = 0 direction is 
shown in Fig. 2 (in accordance with formula (18)). 

The position of the minima of the structure can be 
explained by using concepts analogous to those of the 
"own" and "foreign" Bennett dips[ 14J. The structure 
is due to the fact that the only atoms effectively inter­
acting with the field EL are those whose velocities 
satisfy the resonance condition 

WL- kv, = w,b + qQ, ( 1) 

where wL and k are the frequency and wave vector of 
the wave EL, Wab is the frequency of the A~ B transi­
tion at H = 0, q = ± 1, and 0 = ll gH is the frequency dis­
tance between the Zeeman sublevels. 

The atoms with velocities Vq emit at the frequencies 

(2) 

where kll is the wave vector of the secondary-radiation 
photon ll· Putting k11 · vq = k · vq, we obtain from (1) 
and (2) the frequencies at which the "own" dips appear 
at q1 = q and the ''foreign'' dips appear at q1 =- q: 

w,,•• = WL + (q,- q)Q. 

From this we obtain at q1 = q the condition for the cen­
tral minimum, and at q1 =- q the condition for the two 
side minima at w = wL ± 20 (see Fig. 2). 

The magnetic field H influences the structure (18) in 
two ways. First, it causes both types of dips to be split 
by 2 0 (a consequence of the Zeeman effect), and sec­
ond, it destroys the Hertz coherence of the ensemble of 
atoms, leading to the resonant dependence, characteris­
tic of the Hanle effect, of the coherent part of the struc­
ture on 0. Unlike the incoherent part, the coherent part 
of the structure also depends on the angle 1/J between the 
linear polarizations of the field EL and of the secondary 
radiation. This dependence acquires the particularly 
simple form of a structure modulation proportional to 
cos 21/J at H = 0 (formula (19)). At certain values of jA 
and jB, for example, for the 2S2-2P1 transition in Ne 

FIG. 2 

(A. = 1. 52 ll), the depth of such modulation is 100%. If 
the linear polarizations are equal ( lji = 0) and H = 0, the 
results coincide with those of the scalar theoryC2'4 J. 

I. DERIVATION OF GENERAL FORMULA FOR THE 
SECONDARY-RADIATION SPECTRUM 

1. We consider an ensemble of noninteracting atoms, 
which will be assumed during the first stage of the cal­
culations to be immobile. We assume also that the col­
lective effects are negligible. The atoms interact with 
the classical fields EL and H and with the photon vac­
uum. 

The photon field is assumed quantized in traveling 
plane waves. The field oscillator with frequency wll, 
wave vector kll, and unit polarization vector e(ll) will 
be characterized by a single index 11· The secondary­
radiation photons in the state ll can be emitted as a re­
sult of the interaction of the atoms with the field oscilla­
tor ll· 

We are interested in the power of secondary radia­
tion having a certain polarization e(ll) in the frequency 
interval d w ll about w 11 and in a solid angle do about kw 
The specified limits contain rdk11 /(27T) 3 field oscillators 
( r is the normalization volume), and the sought power 
is given by the expression 

(3) 

( 4) 

Here nil is the average number of photons of type ll 
emitted by the instant of time t by atoms excited by the 
pump at the instant of time to (the pump is turned on at 
t=-oo). 

2. We introduce the density matrix F of the quantum 
system consisting of the photon vacuum and the atoms 
excited by the instant of time t0 to the levels A and B of 
atoms situated in the classical fields EL and H. Then 

nj). = Sp Fall +a~l, (5) 

where aM and all are the operators for the creation and 
annihilation of photons in the state ll· 

The density matrix F satisfies the equation 

ihaF I fJt = [d€, F]. (6) 

The Hamiltonian of the system is d6 = Ho + d€'. The un­
perturbed part J'€0 = d6 h + d6at consists of the Hamilton­
ians of the photon fiel~ and of the atoms in the magnetic 
field. The interaction Hamiltonian dfl' = n(V + U) includes 
the interaction with the classical f.ield nV = - 4 · EL and 
with the photon vacuum nU =- c- 1d ·A, where d is the 
operator of the time derivative of the dipole moment and 
A is the operator of the vector potential of the photon 
field. 

The formal solution of (6) can be written in the form 

Here S(t, to) is the operator of the evolution of the sys­
tem in the interaction representation. It can be repre­
sented in the form of the formal series 

' 
S(f,fo) = 1 t t (- ~ Y i dtmie'(tm) I dtm_,ie'(fm-•) ... J dt,Ji'e'(t,), 

t 0 t0 t 0 

J'e' (t) = e;x,t!nJf€' e-;:Je.t;r•. 
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We choose the initial density matrix in the form 2> 

F(t,) '= cDp(t,). (8) 

Here <I> is the density matrix of the photon vacuum, 
p(t0) is the atomic density matrix describing the state 
produced by the pump at the instant of time t0, namely, 
at each Zeeman sublevel k of the level K =A or B there 
are Ak atoms, with (2jK + l)Ak the number of atoms ex­
cited to the level K per unit time. Substituting (7) in (5), 
we obtain 

n, = SpF(t,)S+(t, l,)a,+(t)a,.(t)S(t, t,). (9) 

3. The quantities nil are calculated with the aid of 
the diagram technique of Konstantinov and 
Perel'[12 ' 15 ' 16J. The interactionar6' is taken into account 
in all orders of perturbation theory, retaining in each 
order the diagrams that make the main contribution at 
times comparable with the characteristic radiative life­
time of the considered atomic levels y-1. The ratio of 
the discarded diagrams to those taken into account will 
then be of order y/w, where w is the characteristic fre­
quency distance between the considered atomic 
levelsi12J. The only limitaltion imposed on the classical 
field is (V/w)2 « 1, so that the field EL can be regarded 
as interacting with only one atomic transition A~ B. 

Under the foregoing assumptions, the energy conser­
vation law is approximately satisfied at each vertex of 
the diagrams that are taken into account[12J. The secon­
dary radiation on each of the transitions A ~ B, A ~ C, 
and B ~ D must be regard13d separately, assuming each 
time that the emission of the secondary- radiation pho­
tons in the state ll of interest to us is the result of the 
corresponding atomic transitions. 

For our purposes, the most convenient is the dia­
gram-technique variant developed in[lzJ, where the mo­
tion of the atoms is considered classically. We neglect 
here the momentum of the recoil produced when a photon 
is emitted by the atom. 

We illustrate the determination of the quantity nil 
with an example of secondary radiation on the transition 
A~ B for immobile atoms3 >. 

Figure 3 shows one of the diagrams corresponding to 
the expansion (9). The solid horizontal lines are atomic 
and the wavy lines are photonic. The atomic line l going 
from the point t1 to the point tz corresponds to the fac­
tor exp [- iEz(tz- t1)/n] , and the photonic line v corre­
sponds to the factor exp [- iCL•v(tz- tl)]. Here Ez and nwv 
are the energies of the Zeeman sublevell and of the 
photon v, described by the atomic and photonic lines, 
respectively. All the atomic and photonic lines are 
regular, i.e., the starting point of the line lies earlier 
on the Konstantinov- Perel' contour than its end 
point[12 ' 16J. The interaction with the classical field V 
is denoted by crosses, and that with the photon vacuum 
U by circles. The cross at the point t' is set in corre­
spondence with the matrix element V fk(t'), where k is 
the index of the incoming atomic line and i is the index 
of the outgoing one. A circle with an incoming photonic 
line v (absorption of a photon v) corresponds to a factor 

2>The form of F(t0) does not affect the final resuJtl 12• 161. 
3>The diagram technique developed inP 21 makes it possible to take the 
motion of the atoms into account. We consider immobile atoms to 
simplify the derivation. Allowanct: for the motion is discussed later on. 

FIG. 3 

(2rr/rflwv)112 · cizme(v), and one with an outgoing line 
(emission of a J?hoton v) corresponds to a factor 
(2rr/:r"liwv)112 · dzme(v)*, where m and l are the indices 
of the incoming and outgoing atomic lines. A vertical 
line joining the atomic lines on the right signifies that 
the trace is taken over the atomic indices. According to 
the right- hand return rule[12 ' 15J, it is drawn beyond the 
vertex at the point t". The curly bracket on the left-hand 
end of the diagram corresponds to the initial atomic 
density matrix p A = AaE A> where E A is a unit matrix 
of order 2jA + 1. The expansion (9) also contains dia­
grams with initial density matrix p B in accordance with 
the representation of p(to) from (8) in the form of a sub­
matrix 

( P..< 0 ) 
p(t,)= 0 P• . 

Each vertex on the upper atomic line is assigned a 
factor - i, and on the lower one a factor i. Summation is 
carried out over all the internal indices and in~egration 
is carried out over all the times characterizing the ver­
tices in the same order as the arrangement of the ver­
tices on the diagram. 

The internal photon lines can be of two types. 
1) The start and end of the photon line lie on the 

upper (lower) atomic line l. The summation of such 
self-energy parts in all orders of perturbation theory in 
U causes the corresponding Zeeman sublevel l to ac­
quire a radiative width (we neglect the shift)C12 ' 16J 

~ 4w"'l (h lldll h) 12 

'I• = l .. }'~'' 'I•~•= 31lc'(2h+ 1) 

where wzk is the central frequency of the L - K transi­
tion and OL II d 11 jK) is the reduced dipole-moment 
matrix element. 

2) The start of the photon line lies on the upper 
atomic line and the end on the lower one. For the analy­
sis that follows it is important that in the approximation 
y/w « 1 under consideration, such photon lines can be 
regarded as vertical[10'17J. The fact that the photon 
lines are vertical makes it possible to break up each 
diagram into two fragments, as shown arbitrarily in 
Fig. 3 by the dash-dot lines. Each of the fragments 
constitutes a diagram corresponding to ~certain term 
in the series expansion (with respect toar6') of the ma­
trix element of the atomic density matrix obtained 
under definite initial conditions. 

In accordance with the general rule, the atomic 
density matrix is defined as a trace of the total density 
matrix of the system over all the photon indices. By 
summing the diagrams of the expansion (9) over all 
orders of perturbation theory, we find that the graphic 
expression for nil can be represented in the form of a 
sum of four diagrams. Each of the diagrams consists 
of two fragments (blocks), which are the elements of the 
atomic density matrices in the external fields EL and H. 
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4. Changing over in accordance with (4) to an ensem­
ble of atoms with constantly acting pump, we obtain in 
the transition A- B the graphic expression shown in 
Fig. 4 for the average number dNJJ./dt of the photons of 
type JJ. emitted by such an ensemble in a unit time. 

In each of the diagrams, the first block (with arrows 
coming from the left) is the density matrix element of 
the ensemble of atoms with the pump. Thus, in the first 
diagram this block corresponds to the quantity Pa'a1(t'). 
The second blocks are the density matrix elements of 
one atom. In the first diagram this is Pb' a . ba(t', t). 

1' 

The first two subscripts of Pb' a . ba(t', t) denote the 
initial conditions specified at thJ'instant of timet', 
namely Pb' a 1 ; ba(t', t) = ob'lP a 1a· The "remainder" of 
the incoming photon line at the circle in the lower right 
corner of each diagram indicates that this is the vertex 
for the absorption of the photon JJ.. 

With the aid of (3) we obtain for the power of the 
secondary radiation the fundamental equation determin­
ing the spectrum of the immobile atoms on the transi-
tion A- B4 >: , 

I.= CAB~ { or:.: (el•l) J dt' [~ Pa•a, (t') Po•a,;oa(t', t) 
aa•bb• a, ( 1 0) 

+ ~Pa•o,(t')p,,o,;oa(t',t) ]e-'•,.lt-t•) }+ C.C. 

o, 

Here 
CAn = 31iw,.yHo(2jA + 1) /16n'l (jAIIdllj.) I', 

and D~~;(e(JJ.)) =(dab· e(JJ.)) (db' a' · e(JJ.)*) determines 
the angular characteristics of the radiation. 

The graphic expressions for dNJJ./dt on the transi­
tions A - C and B - D are analogous to that shown in 
Fig. 4. The only difference is that the radiation of the 

photons JJ. occurs on the transitions A- Cor B- D, 
and not A- Bas shown in Fig. 4. The formula for IJJ. 
on the transition A - C is thus obtained from (10) by 
replacing the indices b and b' by c and c', and for the 
B- D transition a, a', b and b' must be replaced by b, 
b', d, and d', respectively. 

In all the considered transitions, the formal struc­
ture of the expression for the spectra as functions of 
the atomic density matrices is one and the same, and 
the determination of the secondary- radiation spectra 
reduces to a standard procedure of calculating the 
atomic density matrices in specified classical fields 
ELand H. 

5. Formula (10) and the analogous expressions for 
the transitions A - C and B - D contain density ma­
trices of two types. 

1) The density matrix of an ensemble of atoms with 
pumping; the matrix element is Pik(t'). The matrix 
satisfies the well-known equation 

ilifJp I fJt = [(de at+ liV), p] - 1/zi/i(fp + pf) +iliA, (11) 

In the energy representation, the radiative-decay 
matrix r and the pump matrix A are diagonal, with A 
having nonzero matrix elements >..a and >..b only for the 
Zeeman sublevels of the levels A and B. 

•>Formula (10) gives the secondary radiation from a certain specified 
point of space r, at which the radiating atoms are located. The density 
matrices depend on r as a parameter, 

FIG. 4 

2) The density matrix describing the state of one 
atom; the matrix element is Pik; zm(t', t). This matrix 
satisfies the homogeneous part of Eq. (11) (at A = 0). 
We recall that the initial conditions posed at the instant 
of time t' are specified by the relation p ik·zm(t', t') 
= 0 il0 km· , 

6. Formula (10) gives the secondary-radiation spec­
trum for an ensemble of immobile atoms. Let us con­
sider now the case when the atoms are in motion. As­
sume that the pumping causes atoms to be produced at 
the levels A and B with a certain velocity distribution 
f(v). It can be assumed that expression (10) has been 
written out for a subensemble of atoms having the same 
velocity v in the coordinate system in which these atoms 
are at rest. On going over to the laboratory frame, the 
power IJJ. becomes a function of the velocity IJJ.(v): the 
frequenc~ w JJ. is replaced by the Doppler- shifted fre­
quency w JJ. = w JJ. - kJJ. · v, and the dependence on the 
velocity appears also in the atomic density matrices. 
The expression for IJJ. (v) contains, in addition, an inte­
gration that is not contained in ( 1 0), with respect to the 
positions r' of the atoms at the instant of time e. It is 
obvious that by averaging IJJ. (v) over the velocities with 
a distribution f(v) we obtain the sought power of the 
secondary radiation of an ensemble of moving atoms 

1.= J J,.(v)f(v)dv. 

Then for the transition A - B we have 

1,. = CAB .E { D~~; ( e1")) f dv J dt' J dr' [.E Pa•a, (r', v, t') 
aa'bb' 

XPc•a,;ca(r',t'; r,t;v)+ ~p,,,,,(r',v,t')po•o,;oa(r' t'; r,t; v)) 
b, 

xcxp{-i(w,-k,.v)(t-t')} }+c.c. (12) 

The system of equations for Pik(r, v, t) is obtained from 
(11) by making the substitutions a/at- a/at+ vv and 
A - Af(v). From the homogeneous system we obtain the 
density matrix elements of one atom, 
Pik· zm(r', t'; r, t; v), each of which is a solution of the 
initial problem under the condition that at the initial 
instant of time t' we have Pik·zm(r', t'; r, t'; v) 
= o(r- r')oilokm· In fact, the quantities 
Pik·zm(r', t'; r, t; v) are the elements of the matrix 
Green's function of this system of equations[4 J. 

Formula (12) is valid for the case when the atomic 
collisions are immaterial and the velocity of each atom 
is constant. It can be shown that when the collisions are 
taken into account we get 

1,. =CAB Lr { D::: ( e1"l) j dv j dv' j dt' J dr' [L p.,., (r', v', t') 
aarbbt -ro -oo -oo u 1 

X Po• a,; ,,(r', v', t'; r, v, t) + L p,,,, (r', v', t') Po•o,; ,,(r' v', t'; r, v, t) ] 
o, 
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X exp {-i[ ro.(t- t')- k.(r- r')]} }+ c.c. (13) 

Naturally, it is necessaJry here to introduce the colli­
sion terms into the atomic density matrices, and 

( I I I tl) ( I) ( l)li Pik; zm r , v , t ; r, v, = li r- r li v- v itlikm. 
7. Formulas (10) and (11), as well as the analogous 

expressions for the transitions A ~ C and B- D, are 
the main result of the foregoing analysis. They general­
ize the scalar theory developed in[2 ' 4 ' 8 J for spontaneous 
emission in an external field to include the case of 
emission in a magnetic field for arbitrary polarizations 
of the incident classical field and of the secondary 
radiation. At EL = H = 0 these expressions describe 
the ordinary spontaneous emission of atoms. Thus, for 
example, for immobile atoms we then have 

(0) 

p,.,,, ,, = e:[p {- (y,,- iro,,) (t- t 1 )} 1),,,1),,,, 

1 
p;~!, = 0; 'Yab = 2('Ya + 'Y•) 

and from (10) we readily obtain 

1:•) = hro. 'Y·-• "-a(2jA + 1) 'Y•• 
8n' y. y,.'+(ro.-ro.,)' 

The spectrum described by formula (12) for moving 
atoms will obviously be a eonvolution of the Doppler 
and Lorentz contours. The introduction of the magnetic 
field H causes splitting of the spectrum into several 
components with different polarizations (the ZeeMan 
effect). The classical field EL changes not only the 
quantities Paa (Bennett dips appear) and Pba; ba• but 
also lead to the appearance of terms Pab connected with 
the optical coherence of the ensemble of atomsC 4 ' 8 J. In 
addition, if the polarization of the field EL is coherent5 ', 

the interaction V changes the atoms of the ensemble 
from states with definite values of the projection of the 
total angular momentum, i.e., from the Zeeman sub­
levels on which they fall as a result of the incoherent 
pumping, into a superposition of such states. This Hertz 
coherence of the ensemble of atoms leads to new effects 
that appear in the secondary- radiation spectrum. Usu­
ally in the study of resonant phenomena connected with 
the Hertz coherence of atomic states, such as the Hanle 
effect, level crossing, scattering of modulated light, etc. 
one is interested in the power of a definite polarization 
averaged over the frequencf 11- 13J 

P,= Jl,dro,. 
0 

Since the secondary- radiation spectra J IJ. are concen­
trated in the optical band, the lower limit of the integra­
tion can be replaced by-oc, It then follows from (12) 
that 

P, = 2nCA8 1: v::. (e<•l) J p,.,(r, v, t)dv. 
aa'b 

We have obtained the well-known formula for the radia­
tion intensity of atoms in a superposition of states, and 

~v::.(e 1•l) 
• 

is the density matri;uJ. 
8. Expressions (10) and (12) are valid for a classical 

5lCoherent polarization is that of a field consisting of a mixture of at 
least two of the <T+, <T- and 7T polarized components111 l. 

field EL -of arbitrary form. The only requirement is 
resonance with the transition A - B. When the field EL 
is monochromatic, i.e., 

EL = E<p(r)e-••L' + E'o:p'(r)e'"L', 

where .p(r) is a certain function of r, then the power of 
the secondary radiation can be shown to be independent 
of the time. The expression for the power is particu­
larly simple in the important particular case when the 
field EL constitutes one traveling wave: 

E1• = Eexp {-i(roLt- kr)} + E• exp {i(rod- kr)}. (14) 

It is convenient here to change from the density matrix 
elements to the following system of quantities: 

r., = p., exp {iq.,(roLt- kr) }, 

r,,,,," = P•'<'; "exp {iq.,(·roLt- kr) - iq,,,,(roLt1 - kr') }, 

r,.,,," = Pe~<•; "exp {iq .. (roLt- kr) - iq ... (roLt'- kr') }, 

rd•<•; d< = Pd•<,; d< exp {iq,,(roLt- kr) - iq,,,(roLt'- kr') }. 

Here k, i, i1 =a, b; qab = 1; qba = -1; qaa1 = qbb 1 = 0; 
k(r- r 1

) = k·v(t- t1
). 

It is easy to verify by direct substitution that the in­
troduced quantities satisfy, in the resonance approxi­
mation, systems of linear differential equations with 
constant coefficients. Consequently, the elements of the 
matrix Green's function rzm·Ziml depend only on the 
time difference t- t 1

, and the undamped solutions of the 
inhomogeneous system rik do not depend on th:e time at 
all. Turning to formula (12), we find that the power of 
the secondary radiation is independent of the time and 
can be expressed in terms of the stationary values rik 
and the unilateral Fourier transformations of the quan­
tities rzm;Z 1m 1(t- t1

): 

J,,=C .. ,R 1:{n.•:,·(e'"') jav[.L,r •. ,,(v)r,,,,,,,(ro/-ro/) (15) 

Here 

""'Vb' "• 
+ ~r •. ,,(v)r,/,,,,,,(<ll•'- ro,') ]}+c.c. ., 

~ 

r,,,,,'"' ( <•>,,'- ro,') = s e-"·.·-w L'hrlm;l•w (T) dT, 
0 

U)/ = w~~-- k~-~v, m/ = (1)L- kv. 

The expressions for J IJ. on the adjacent transitions 
A~ C and B- Dare obtained from (15) as well as 
from (10), except that wl, is replaced by- wi, for the 
B - D transition. 

The systems of linear differential equations with 
constant coefficients for the quantities r can be solved 
exactly, i.e., without limitations on the value of the 
field EL. If the velocity distribution is :Maxwellian, then 
in the Doppler limit (y/ku « 1) the integration with 
respect to the velocities in (15) reduces to integration 
of a rational fraction between infinite limits. Conse­
quently, when the classical field EL is a single traveling 
wave, the secondary- radiation spectra can be obtained 
in principle for a field EL of arbitrary intensity, but 
their form may be quite complicated . 

II. SPECTRUM OF SECONDARY RADIATION ON THE 
TRANSITION A - B 

1. It is well known that it is impossible to solve ex­
actly the systems of equations for the atomic density-
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matrix elements in the formulas for the spectra if the 
field EL{r, t) is arbitrary. But even in the exactly solv­
able case, when ELisa single traveling wave, it is 
difficult to extract concrete information concerning the 
gas system from the spectra, since the latter are com­
plicated. At the same time, interesting changes in the 
spontaneous-emission spectra, due to the classical 
field EL, appear already when EL is sufficiently small 
and V2 « y 2 • In this case, the atomic density matrices 
can be found by using perturbation theory in terms of 
the interaction V. The power of the secondary radiation 
is then represented as a series in V 2 

. '· = Jt '+ ,~2) + ~~<) + ... 

As already mentioned above, J JJ- describes the usual 
spontaneous emission in a magnetic field. We shall 
henceforth confine ourselves to an investigation of the 
structure of J< 2 >, which is proportional to the intensity 
of the classicfl field; the latter is chosen in the form of 
the traveling wave (14). 

2. We introduce two right-hand Cartesian coordinate 
systems: a fixed system xyz which is rigidly connected 
with the gas system, and a movable system ~'Tit with t 
axis along the variable direction of observation of the 
secondary radiation (kJJ- = kJJ- et). The rotation of the 
system ~'Tit relative to xyz is specified by the Euler 
angles cp, e, lj!, which are defined in accordance 
with[tsJ a>. We direct the z axis along the magnetic 
field H and choose it to be the quantization axis. We 
assume that the field EL propagates in the same direc­
tion, i.e., k = kez. 

As is well known, the increment of the spontaneous 
emission J< 2 > due to the field EL acquires the form of a 
sharp strufture only when the secondary radiation is 
observed in a direction that coincides with the propaga­
tion direction of the wave EL, and in the direction oppo­
site to itC 2 -aJ. The reason for this is that under the 
resonance condition ( 1), which determines the atoms 
that interact effectively with the field EL, only the pro­
jection of the atom velocity on the propagation direction 
of the field EL is of importance. We shall therefore 
consider two cases: 1) e = 0 and 2) e = 1r, when cp = 0 
and If! is arbitrary. More accurately, the angle e be­
tween the wave vectors k and kJJ- should not differ from 
zero or 1T by more than y /kuC2 J. In the Doppler limit of 
interest to us we have y /ku « 1. 

Without going into the details of the calculations, we 
present the final results obtained for the A - B transi­
tion under the assumption that all the g factors of the 
levels in question are equal7 >: 

1) In the case e = 0 we have 

'" ~ { '[ G,(jA,in) le,'"' I'Ve G,(iA,j") le-'~' ['y, 
l,, =sf..:.,. IE,I y,[y,'+(w.-wc)'] + y,,[y,'+(w,,-w,+2qC})'] 

'J=±I 

+ReE_,(E,)•e,'"'(e~;)•-(-· 2 ~;;tj~e~"''~ )] }· {16) 
Va- t,q Yb l, {t)!t WL 

2) In the case e = 1T we have 

6iThese angles are designated a,{!, and 'Yin [ts]_ 
7>Without this assumption, it is impossible to sum the expression for J~> 
at arbitrary values of the total angular momenta jA and j8 over the 
projections of these momenta. When this condition is not satisfied, it is 
necessary to carry out separate calculations for each value of jA and j8 • 

Here 

-3-y.~,l (iAIIdllj.) I'N(2jA + i')w" 
sJ = 4n'l,hku 

Jc, Jc, · -v.+v' 
, N=---, Vao=--, .,r 

y, y, 2 

Ga(j AjB) are functions of the total angular momenta 
jA and jB8 >, n is the frequency distance between the 
Zeeman sublevels, E" 1 = 'F (Ex 'F iEy)/12 and e!~) 
= 'f ( e(ll) 'F ie (JJ- ))/ ,12. The polarizations of the field EL 

~ 'T1 
and of the secondary radiation, characterized by the 
index q, are considered in two different coordinate sys­
tems connected with the directions of the wave vectors 
k and k . Here E and e(JJ-) correspond to identical 

JJ- q q ( ) 
circular polarization when e = 0, and E and e ll when 

q -q e = 1T. 

The structure J<2 > described by formulas (16) and 
(17) consists of twlf essentially different parts. The 
terms proportional to Go and G1 correspond to the emis­
sion of photons JJ- with right- or left-hand circular 
polarization by atoms at definite Zeeman sublevels. 
The terms ~G2 occur for radiation by atoms in a coher­
ent superposition of Zeeman states, and differ from 
zero only at coherent polarizations of the field EL and 
of the secondary radiation. It is interesting to note that 
a contribution to the coherent part of the structure 
( ~ G2) is made not only by the terms containing directly 

• the Hertz coherence of the ensemble of atoms (p~/a in 
1 formulas (10) and (12) for the A - B transition), but1 

also by the terms corresponding to the emission of the 
photons JJ- by atoms in a superposition of Zeeman states. 
In (10) and (12) these are the terms for which a "'a'. 

3. We consider first the case when the polarization 
of at least one of the two fields (EL or the secondary 
radiation) is not coherent. From (16) and (17) we see 
that in this case there remain only the terms ~Go and 
G1 , which we shall call noncoherent. These noncoherent 
terms are Lorentz dips (we assume for concreteness 
that N > 0) of width 2yb when the secondary radiation 
is observed in the direction e = 0 and 4Yab in the direc­
tion e = 1T. 

If the field EL is circularly polarized (Eq "'0, E_ q 

= 0), then observation of J~> in the same circular polar­
ization gives rise to a dip ~Go with a minimum at the 
classical-field frequency wL ate = 0 and at the fre­
quency 2(wab + qn)- WL ate = 1T. Observation in circu­
lar polarization orthogonal to EL shows a dip ~ G1 at 
the frequency WL- 2qn ate = 0 and 2wab- wL ate = 1T. 

We note that dips having the same circular polarization 
when observed in the direction e = 0 are symmetrical 
with respect to the central transition frequency wab to 
the dips of the orthogonal circular polarization ate = 1T. 

On the other hand, if the field EL consists of a sum 
of a• and a- polarized components (Eq "'0, E_q "'0), 
then observation of the secondary radiation in each of 

8iThey are given in explicit form in[tsJ, in the notation of which 
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the circular polarizations will each reveal two dips ~Go 
and ~ G1. The distance between these dips is 2 n for 
both (J = 0 and (J = 1r. The positions of the minima of the 
structure coincide with the positions of the "own" and 
"foreign" Bennett dips[ 14J on the spontaneous-emission 
Doppler contours. (See the Introduction). 

The dependence of the structure of J~> on the level 
scheme, i.e., on the values of the total angular momenta 
jA and jB, is contained in the quantities GaOA, jB); 
a = 0, 1, 2. Thus, the quantity G1 OA, jB) determines 
the relative influence of the field EL of one circular 
polarization on the secondary radiation of the other cir­
cular polarization at specified jA and jB· Obviously, if 
at the level A there is not a single Zeeman sublevel 
from which both the a+ and a- transitions begin, then 
there is no such influence, since waves of opposite cir­
cular polarizations are connected with different atomic 
a transitions. From the explicit expressions for 
G1(jA, h~) we see that G1 = 0 for the transitions 1 ~ 0, 
3/2 ~ 1/2, and 1/2 ~ 1/2[19], which are transitions of 
precisely this type. 

4. We consider now the case of coherent polariza­
tions of the field EL and of the secondary radiation. Let 
these polarizations be linear and let the angle between 
them be lj;. Then, directin€~ the x axis along E and the ~ 
axis along e(JJ.), we obtain from (16) at e = 0 

J<'>=.WIE.I'{ 2G,(jA,j.)y, +~ G,(jA,j.)y, 
" 4 y.[y,'+(w.-wL)'] L.!y.[y,'+(w.-wL+2qQ)'] 

q=±t 

2G, (j A, j.) (y,y, cos 21jJ + 2y,Q sin 21jJ) } + . 
(y.' + 4Q') [ y,' + (w.- WL) 2] 

(18) 

The structure (18) as a function of the frequency w 11 
at fixed n constitutes three Lorentz dips of equal width 
2yb, a central one with the minimum at the classical­
field frequency WL and two side minima symmetrical 
with respect to the former at distances ± 2 n. The side 
dips are due to the noncoherent terms ~ G1 and the cen­
tral one is a sum of the noncoherent ~ G0 and coherent 
~ G2 terms. With increasing magnetic field, the contri­
bution of the coherent term decreases this being due to 
the destruction of the coherence between the Zeeman 
sublevels of the level A by the magnetic field. Indeed, 
as already mentioned, the appearance of the coherent 
term ~G2 is due to the Hertz coherence induced in the 
gas system. It therefore possesses peculiarities typical 
both of the secondary radiation (the character of the de­
pendence on w ) and of the Hanle effect (the character of 
the dependenc~ on n). The coherent term as a function 
of n changes from a Lorentz contour of width 2ya to a 
dispersion contour when the angle if; changes from zero 
to 1r/ 4. The dependence on the angle 1J! is another 
peculiarity possessed only by the coherent term. Its 
contribution to the frequency spectrum can reverse sign 
when 1/J is suitably changed. This makes it possible, in 
particular, to separate the coherent part of the struc­
ture (18) experimentally. It suffices to make the meas­
urements at two values of if; that differ by 1r/2, and sub­
tract one result from the other. 

The dependence of the structure on the angle if; be­
tween the polarizations beeomes particularly simple 
when H = 0. Then 

(19) 

The depth of the Lorentz dip is modulated when the 
angle lj; between the polarizations is varied9>. This ap­
pears particularly clearly for the 1 - 0 transition (for 
example the 2&-2Pl transition with A = 1.52 IJ. in Ne), 
when Go= G2 = 1/9, G1 = 0, and the depth of modulation 
reaches 100%. 

Observation of secondary radiation in coherent 
polarization, which is necessary for the appearance of 
the coherent part of the structure J~> ~ G2, is possible 
when there exist Zeeman sublevels of the lower level B, 
at which both the a+ and a- transitions can terminate. 
When jA and jB are such that there are no such sub­
levels, G2(jA, jB) and there is no coherent term. From 
the expressions for G2(jA, jB) we see that G2 = 0 for the 
transitions 0- 1, 1/2 ~ 3/2, and 1/2 ~ 1/2[19]. 

An expression analogous to (18) can readily be ob­
tained for the case 9 = 1r from formula (17), but will not 
be presented here. 

In conclusion, I am sincerely grateful to E. E. 
Fradkin and V. I. Perel' for useful discussions and ad­
vice. 

9>Such a modulation was observed experimentally in the case of 
amplification of a "weak" signal in the presence of a "strong" one[9l. 
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