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The energy barrier Rmin defining the probability of formation of magnetic reversal nuclei in ferromagnets is calculated for the 
case of weak metastability. It is demonstrated that in the case of weak anisotropy the barrier Rmin is much smaller than that 
previously assumedl5•61. The shape of the so-called critical nuclei is found. Surface nuclei are investigated. It is shown that at 
a reasonably close distance to the Curie temperature thermal activation of the nuclei may be observed. 

1. INTRODUCTION 

As is well known, the cause of magnetic hysteresis is 
the possible existence of metastable states, In the 
simplest model of a uniaxial ferromagnet, which is 
described, for example, in the book of Landau and 
Lifshitz[ 1l, metastable states can be realized in the 
case when 

Here z is the easy magnetization axis, H is the mag­
netic field, M is the magnetization, and f3 is the aniso­
tropy constant (the anisotropy energy is 

Uan= '/,~(Mx' + M}); Mx' + M,' + M,'= M' = const). 

If the field H is directed along the easy axis ( Hx = Hy 
= 0) and is smaller in absolute magnitude than {3M, 
then the metastable state is the one with magnetization 
antiparallel to the field. 

A metastable state can be destroyed, for example, if 
a nucleus of magnetization reversal is produced as a 
result of thermal fluctuations, and its dimensions are 
large enough to permit the growth of the nucleus to 
lead to a decrease of the free energy ?f of the body[2l 1>. 
We recall that a metastable state is stable against in­
finitesimally small perturbations (such perturbations 
increase the free energy of the body), and consequently, 
to produce a nucleus capable of growing it is necessary 
to overcome a finite energy barrier. The probability of 
formation of such nuclei as a result of thermal fluctua­
tions is proportional to exp ( -Rmin/T), where T is 
the temperature, and the energy barrier Rmin is the 
work necessary to produce the so-called critical 
nucleus, which is in unstable equilibrium with the 
medium, namely, its shape is such.Jhat at a specified 
nucleus thickness the free energy fT of the body is 
minimal, anc.\_Jhe thickness corresponds to the maximum 
free energy !Y', Thus, the critical nucleus corresponds 
to a saddle point of the functional if{z(x, y)}, where 
the function z(x, y) describes the shape of the nucleus. 
We assume here that the dimensions of the nucleus are 
large with a domain-wall thickness 5; this assumption, 
as will be shown below, is valid only in the case of 
weak metastability (H « f3M). It is precisely in this 
case that the nuclear can be considered within the 

1>In recent papers by Lifshitz and Kagan and by Iordanskil and 
Finkel'shtefu131, they investigated the formation of nuclei as a result of 
quantum tunneling. This mechanism of nucleus formation will not be 
considered here. It can be shown that the corresponding probability is 
exceedingly small. 
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framework of the macroscopic theory; in the absolute 
case, the parameters of the critical nucleus should be 
obtained by solving the static equation M x Heff = 0 of 
Landau and Lifshitz [41. 

Doring[sJ (see also[sJ) considered only nuclei of 
ellipsoidal form and did not take into account the pos­
sibility of inclination of the magnetization away from 
the easy axis. In the case of weak anisotropy, this in­
clination leads to an appreciable decrease of the sum 
of the magnetostatic energy and the magnetic-aniso­
tropy energy[7,aJ. The exact shapes of critical nuclei 
are obtained below for a number of limiting cases. It 
is shown that the energy barrier Rmin is much 
smaller in the case of weak anisotropy than that ob­
tained by Doring. In some cases, apparently, the time 
of thermal activation of the nuclei can be an observable 
quantity 2>. Surface nuclei are also considered below. It 
will be shown that under certain conditions the forma­
tion of surface nuclei can be more probable. The ob­
tained estimate of Rmin is also valid for cubic ferro­
magnets. Our formulas also determine the so-called 
starting field Hs [s,aJ, i.e., the field above which nuclei 
of specified thickness can grow. 

2. THERMODYNAMIC RELATIONS 

The work R which we must calculate is equal to the 
change, due to the presence of the nucleus, of the free 
energy ?f of the body. The free energy g- is defined in 
the book of Landau and LifshitzPl: 

{)§:-I bH(x) = -B(x) I 4n. (1) 

Here H and B are respectively the field and the induc­
tion. The free energy ?f can be represented il1 the form 
of the sum of the magn~tic anisotropy energy flF an, the 
magneto..§tatic energy sr m, and the surface-tension 
energy S'ten: 

2>The thermodynamic analysis yields only the exponential factor in the 
formula w=A.,p( -Rmin/T) for the probability w of formation of a super­
critical nucleus per unit time. The calculation of the preexponential factor 
is a problem of kinetic theory, and is extremely complicated even in the 
case of an isotropic system, such as a liquid-vapor system (seel9•101). We 
limit ourselves in this article only to the calculation of ~in· For rough 
estimates we can assume apparently that A"' V /83T, where V is the 
volume of the system, 8 is the thickness of the domain boundary, and T 

is the microscopic relaxation time. In typical ferromagnets, this quantity 
can vary in a very wide range; at V =I cm3 we obtain A"' 1021-1030 

sec- 1• 
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i-an= ~ J d'x(M.'+Mu'), 

§-m =- J d'x[(M+ llM) (H+IlH)+(H+IlH)'/8n], 

irten = J !'!. dS. 

(2) 

(3) 

(4) 

In (3), M and H are the values of the magnetization 
and the field in the homogeneous metastable state (i.e., 
far from the nucleus), and liM and llH are the changes 
of these quantities due to the formation of the nucleus. 
In (4), t::. is the surface tension on the phase separation 
boundary, and the integration is carried out over the 
surface of the nucleus. 

The term 
f 1 - J d'x ( MllH + 4n HllH) = - 4n J d'xBilH 

in formula (3) for 8c-m is equal to zero, since 
B =curl A, llH = -VIlcp, and 

J d'xBilH =-J d'x div(cp rotA)= 0. 

Similar reasoning shows that 

[ (6H)'] s [6B-6H (llH)'] - J d'x 6M6H +-a;- = - d'x 4n llH +-a;-

= Jd'x (6H)'. 
8n 

Thus, the change of the magnetostatic energy is 

§-m- §-~' 1=-J d'xH/lM + J d'x (ll:r (5) 

Formula (5) was used by DoringC 5l, 

Let us now discuss the question of the surface ten­
sion (see formula (4)). It is shown in the author's 
earlier papersr7 • 8 l that for boundaries inclined to the 
easy-magnetization axis, the concept of the surface 
tension, generally speaking, becomes meaningless, 
since the free-energy density 

1 R H' 
P'= --JBdH= Uan-MH--

4n 0 8n 

changes on going through such a boundary. Tlte sutjace 
tension t::. can be defined only accurate to ll( F1 - F2), 
where 1l is the thickness of the domain wall. If the 
phase separation boundary is parallel to the easy axis, 
then F1 = F2, and the surface tension has a rigorously 
defined meaning. In the absence of the field (H = 0), 
the surface tension t::. on a wall parallel to the easy axis 
in a uniaxial ferromagnet is equal to 

!'!. = 2~6M'. (6) 

Let us consider now the case of strong anisotropy 
({3/41f » 1), assuming that the fields on the phase 
separation boundary are small compared with {3M (it 
is precisely this case which is of interest to us). The 
surface tension should be defined as the contribution of 
the domain wall to the free energy 

- J [. If' .a (aM)'] fT= d~ U00 -MH--+- - . 
8n 2 a~ , 

(7) 

Here the !; axis is perpendicular to the separation 
boundary (all the quantities in the transition layer vary 
only in the dir~ction of this axis), and the last term in 
the integrand is the so-called inhomogeneity energy. It 
is obvious that at any inclinations of the boundary rela-

tive to the easy axis, the uncertainty in the surface 
tension does not exceed in order of magnitude 

6[MH + (4nM)'] ~~OM', 

i.e., the surface tension can be defined with good ac­
curacy. Discarding the constant part of the integrand 
(i.e., those terms which do not change on going through 
the separation boundary), and neglecting the terms that 
are small compared with {3M2, we obtain for t::.. the 
formula .. de , dr ' 

!'!. = J d~ { ~ M' sin' O+ ~ M' [ ( ~) + sin' 0 (-:~ ) ]} 

M~:, McosO, M. = M sinOcoscp, M. = M sinO sin rp. 

It is obvious that the minimum of this expression is 
reached at r:p = const (the value of .p in our approxi­
mation remains indeterminate), and we obtain for 
cos () the same formula as in the case of H = 0 for a 
boundary parallel to the easy axis: 

cosO=-th(~/6), ll'=a/~. (8) 

The surface tension t::. is determined as before by 
formula (6), i.e., it is independent of the inclination of 
the boundary relative to the easy axis. 

In concluding this section, it is to be noted that the 
thermodynamic boundary condition obtained by the 
present authorrs,uJ does not hold on the boundaries of 
the nucleusra,uJ, for the same reasons that the condi­
tion that the pressures be equal is not satisfied in the 
problem of nucleation in a liquid-vapor system. 

3. ELONGATED NUCLEI (WEAK FIELDS) 

In the case considered here (uniaxial ferromagnet, 
H 11 z), the critical nucleus is symmetrical relative to 
the easy axis (the z axis). The axial cross section of 
the nucleus is shown schematically in Fig. 1. The shape 
of the critical nucleus is described by the function 
po(z). In a field that is small in comparison with {3M, 
the "equation of state" of a uniaxial ferromagnet is 

6H0 = ~M0, {9) 

i.e., the magnetic permeability IJ. in the direction per­
pendicular to the easy axis is equal to 

I'= 1 +4n/~. (10) 

It will be shown below that in a weak field (IJ.H 
« 47rM) the nucleus is elongated along the easy axis 
(l » p 0{0), see Fig. 1), and the deviation of the mag­
netization from the easy axis is small (Mp « M). In 
this case the equation div B = 0 can be linearized: 

T--
1 
I 
l 
I 
I 

.I 

FIG. I' 

I 
(2) 
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Jl fJ fJ6H, 
divB =--(p6H,)+--= 0. (11) 

p i'Jp i'Jz 

The field 5H and the polarization M P are produced by 
fictitious "magnetic charges" concentrated on the 
surface of the nucleus. Since the nucleus is elongated, 
the density of the "charges" varies slowly and not too 
far from the nucleus we have 5Hz « f.J. 5H P (5Hz would 
be zero in the case of an infinite homogeneously­
charged cylinder). Inside the nucleus the field 5H P. is 
also small (much smaller than outside the nucleus). 
Therefore, in the first approximation in p 0 ( 0 )/ l, the 
magnetization inside the nucleus is not deflected away 
from the easy axis: 

(12) 

On the phase separation boundary (at p = po( z)) it is 
necessary to satisfy the condition Bn = const: 

(13) 

i.e., p0 = dp 0/dz, 

116H,''1 = -8nMpo, (J = Po(z). 

At not too large distances, the field 5H~> is equal 
to 

(14) 

To determine the region of applicability of this formula, 
we make the following substitutions in the magneto­
static equations 

6H, = Mh,, 6H, = 1-'V.Mh,, ,p = llV.r. 

Then the magnetostatic equations take the form 

divh = 0, roth= 0, 

with the field h produced by the surface "charge" 

o(z) = -2po(z) Ill· 

At r >> l, the field h has the form of a dipole field, 
i.e., it decreases like (r2 + z 2t 312 • It is obvious that 
formula (14) is valid only if 

(15) 

In this region, the. sum of the anisotropy energy and 
the energy of the demagnetizing fields 5H is equal to 

1I2·~M,' + (6H)' I 8n ~ J.t(6H,) 2 I 8n ~ (6H,) 2 IBn. 

Integrating, we obtain 
l l '12 

S , ~t(6H,) 2 
_ 8nM2 s s" ,·, 2npdp 

dx --- dz Po Po---· 
8n ll -1 '" p2 

(16) 

( 4nM) 2 s' , . 2 ~t'hl ( 4nM) 2 11•t.z ' 
=-- dz,p 0 p 0 ln-~---ln--fdzpo'po2 • 

ll _1 Po ll Po (0) _1 

Since the integral with respect to p diverges logarith­
mically on the upper limit, we have set this limit equal 
to f.J.1/ 2l. For an ellipsoid, this part of the energy is 
equal to 

32 2 2 Po' (0) ~t''•l 
-nM--ln--
3~-t l Po(O) . 

At f.J. = 1 (i.e., at {3 = oo), this expression coincides 
with that obtained by Doring by another methodr 5• 61 • 

At large f.J. (i.e., at {3/4rr « 1), Doring's estimate is 
incorrect. 

The change of the magnetostatic energy (see formula 
(15)) contains also a term - 2MHV proportional to the 
volume of the nucleus: 

1 

V = n J p,'dz. 
-1 

The surface-tension energy is proportional to the area 
S of the separation boundary 

1 

i"lten = !:J.S = 2n!:J. J Po dz. _, 

Thus, the work R necessary to produce the nucleus 
can be represented in the form 

R = J dz [..!..(4nM) 2p,'p,'ln ll'"l) + 2nMHpo(Pm- Po)]. (17) 
_, ll Po(O 

We have introduced here the notation 

Pm = I':J. I M H = '2~{)M I H ~ {), (18) 

It is easy to write down the first integral of the 
Euler-Lagrange equation (the "energy" integral) for 
the functional R : 

ll1'l ,. , ~tH (19) 
ln Po(O) Po Po =SnM (Po+ p,) (Pm + p,- Po). 

Here p 1 is the integration constant. Since the right­
hand side in (13) should be positive at po = 0, the 
quantities p 1 and Pm + p 1 should be of the same sign. 
The right-hand side is invariant against the substitu­
tion Pm + p1:;::: - P1· We can therefore assume that 
p1 2: 0. From (19) we obtain 

8nM ~t'"l '!•'•<•> pdp 
z=±( ~tHlnPo(O)J r((p+p,)(pm+P,-P)]''' (20) 

PG · . 

If p 0 (0) < Pm + p1, then the function po(z) has, in the 
first approximation in p 0 ( 0 )/ l, a kink at z = 0; this 
kink becomes smoothed out at distances 5z « l in the 
succeeding approximations. The kink is missing if 
po(O) = Pm + p1 (the case pa(O) > Pm + p1 is impossi­
ble). The length of the nucleus is determined from the 
equation 

z(po=O) =l. 

Using formulas (17), (19 ), and (20 ), we obtain 

R = (4nM)' [-:!_ln 111' 1 ) .,, 
2n~tM Po (0) 

x 's'''>P dp [ P ( Pm - P) + ( P + p,) (Pm + p, - P) l 
o [(P+p,)(r>m+p,-p)]V• 

(21) 

(22) 

This integral can be calculated analytically, but it is 
more convenient to investigate it without performing 
the integration. Making the substitution p = PmX and 
putting p 0(0) = f1pm, we represent R in the form 

H '"l 'I• 
R= (4nM) 2 ( 2n~ ln ~Pm) Pm'f(a.,YJ), (23) 

S" { a.(1+a)z } 
j(a,YJ)= 

0 
dz 2x[(x+a)(1+a-x)]V.-[(x+a)(i+a-x)]V• 

(24) 

Let us consider first a nucleus with po(O) = Pm +Ph 
i.e., IJ = 1 +a. In this case formula (23) should contain 
the function 
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f(a)= !(a, 1 +a)= Tdx [ 2xi(x+ a) (1 +a-x) 

a(1+a)x 1 
l'(x+a) (1 +a-x) · (25) 

It is obvious that in the calculation of the derivative 
dR/da we can neglect the derivative of the logarithmic 
factor. The error incurred thereby is small and of the 
order of 

m-• [l/ Po(O) jdR Ida. 

We therefore calculate the derivative df(a)/da. 
The calculation of the derivative of the first term in 
(20) is trivial. In the calculation of the derivatives of 
the second term it is necessary prior to the differen­
tiation to make the change of variable 1 + a - x = t, 
and then, after the differentiation, it is convenient to go 
back to the original variable. After simple transforma­
tions we obtain 

dt s d:r: 
a;;=-a'(1+a) o [(x+a)'(1+a-x)]'!. <0. (26) 

We recall that a > 0. Consequently, f(a) has its largest 
value at a = 0: 

f(O) = n/8. (27) 

We calculate analogously the derivative af(a, 71)/aa: 
oj(a, TJ) a(1 + a)T) 
-a;;-= [(TJ+a)(1+a-TJ)J"' (28) 

" dx 
- a' ( 1 + a) J --;-;-;---;------:-;--;-----;--:c;-;;-

0 [(1+a-x)(x+a)'P 

Let us show that this derivative is positive. Replacing 
in the integrand 1 + a - x by 1 + a - 11, we increase 
the value of the integral. Consequently, 

of( a. TJ) "'>- a(1 +a) [ TJ _ aJ" dx ] 
oa (1+a-TJ)''• (TJ+a)''• 0 (x+a)'" 

_ a(t+a) [ a~ a ] 
- (t+a-TJ)''' (TJ+ )"+ (TJ+a)''• 2a''• . 

The function ('I + a )112 + a/ ('I + a )112 increases with 
increasing 'I. Its smallest value is 2 ra, i.e., 

of(a, TJ)/aa;;;;.o. (29) 

This means that at a given 11 (i.e., at a given thickness 
of the nucleus), the minimum of R corresponds either 
to a = 0 (at f1 < 1) or a = 11 - 1 (at 11 > 1 ). In the 
former case it is easy to show that 

(of/01J)~=·>O, TJ<t. (30) 

In the latter case 

df(TJ,a=TJ-1) _df(a) 0 1 (31) 
dT] - da <,TJ>. 

(see formula (26)). Consequently the work R(71) has a 
maximum at 11 = 1. 

The point 11 = 1, a = 0 is a saddle point of the func­
tional R. Thus, 

R,.,. = 2n'M'(_!!___In JJ."'l) "'p,.'. 
2n!JM p,. 

(32) 

Using (21), we obtain 

i.e., 
11"'l =(2n'M In~)''•, 
p,. H Pm 

JJ."'l ( n'M 2n'M) '1• JJ."'l 1 n'M 
-= -In-- >JJ.''•; In-=-In-- (33) 

Pm H H p,. 2 H" 

Substituting the obtained value of 1n (1J.112z/ pm) into 
(32), we get 

R,.,. = n'M'( __!_In n'M )''•p,.' 
~M H ~4 ) 

= £ ~'M'6' ( 4nM )'''(In~) ''•. 
4 ,...n , H 

The equation for the shape of the critical nucleus is 
(p1 = 0; po(O) = Pm): . .. 

( 8nM ,..."'l )''·s ( p ) "' z = ± ~In-- --_- dp, 
JJ.H Pm Po Pm P 

i.e., 

z ( 4nM n'M )'''{ ( P )+ 1 } (35) ~ ± -H In-H arcsin 1--0 -[p,(p,.- Po)]"' . 
Pm J.l. Pm Pm 

This equation does not hold at values of po such that 
I pol~ 1, i.e., when 

P::::;;; JJ.Hp,. JJ.P6 
4nMin(n'M/H) - Tnl;(n'M/H) 

This region can be broader than the domain wall only 
in the case of strong anisotropy ({3/47T >> 1, IJ. Rl 1). 

In concluding this section, let us discuss the ques­
tion of nuclei in cubic ferromagnets (the latter, as a 
rule, have low anisotropy). At a small deviation of the 
magnetization M from the easy axis, the anisotropy of 
cubic ferromagnets differs little from uniaxial: Uan 
~ Y2p(M~ +My). At the same time, the energy of the 
surface tension A on a boundary parallel to the easy 
axis (the z axis) depends on the orientation of the 
boundary in the xy plane£12•131: 

1!1 = 1!1, ( 1 + sin' 2cp arcch 2 ) 
2(4- sin' 2cp) I'> I sin 2cpl · 

Here A 0 = (af3)1/2 is the surface tension on the bound­
ary parallel to the crystallographic plane (100) (the 
parameter a was defined in the preceding section; see 
formula (7)), and cp is the angle of rotation of the bound­
ary in the xy plane. The function A(cp) has a minimum 
at cp = 0. The critical nucleus is in this case not a 
figure of revolution (since A ( cp)"" const), and the pre­
ceding analysis is valid only qualitatively. Nonetheless, 
simple reasoning yields the upper and lower limits of 
Rmin· 

The upper limit of Rmin can easily be obtained by 
assuming the nucleus to be a figure of revolution. In 
this case the expression for Rmin contains Pm 
= -;i/MH, where 

4 nlo\ 

1!1 =- J!!l(cp)dcp= 1.28/!1,. 
11 0 

(36) 

If it is assumed that A = Ao = const, then we obtain the 
lower limit of Rmin· Thus, Rmin can be estimated 
from the formula 

( H n'M )''• R,.,. = n'M' -In- p,.' 
n!JM H ' (37) 

where 

1!1,/MH < p .. < ~/MH. (38) 

The corresponding values of Rmin differ by a factor 
2.1. 

The following remark must be made concerning the 
applicability of the obtained estimates in the case of 
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cubic ferromagnets. In cubic ferromagnets, the thick­
ness of a plane 180° domain wall depends strongly on 
the angle cp{ 12 • 13l, In particular, at cp = 0 the thickness 
of the transition region is determined by the magneto­
striction 

6(cp=0) ~ (~I~M2)ln(~lk), 

where k is the magnetostriction constant ( k « {3 ). In 
the case cp ~ 1T/2 - cp ~ 1 the thickness of the transi­
tion region is 1i( cp) ~ A/ {3M2 • If the thickness of the 
transition region separating the embryo from the 
metastable phase at cp = 0 were to be the same as in 
the case of a plane boundary, our estimates would be 
valid only for AM/H >> ln ( p/k) » 1. Apparently, how­
ever, the thickness of a curved boundary decreases 
with increasing curvature and at cp = 0 it is always 
smaller than pm = A/MH, provided only H «{3M. In 
this case the inequality H « {3M determines, as before, 
the region of applicability of the obtained estimates. 

4. SPHERICAL NUCLEI IN THE CASE OF STRONG 
ANISOTROPY. SURFACE NUCLEI 

A. Spherical nuclei. In the case {3/ 41T 'S 1, the 
region f..LH « 47TM coincides with the region of weak 
metastability H «{3M. In the case of strong aniso­
tropy ( {3/ 41T » 1 ), the case 47TM « H « {3M is also 
possible, and this case will be investigated below. If 
the anisotropy is large, then the deviation of the mag­
netization from the easy axis is not favored energywise 
(Uan = 0). On the boundary of the nucleus, the normal 
component of the magnetization experiences a jump 
!1 = 2Mm, which can be regarded as the surface 
density of fictitious magnetic charges producing a de­
magnetization field OH. In this case l is of the order 
of p 0(0), and the demagnetization fields play a negligi­
ble role: 

(llH)' IBn~ 4nM'...:; MH. 

The work R can be represented in the form 

R = -2MHV +M = MH(-2V + PmS), (39) 

where V and S are the volume and area of the nucleus. 
This expression differs from the corresponding expres­
sion for the isotropic liquid-vapor system only by the 
factor preceding V. It is therefore obvious that the 
critical nucleus should be spherical: 

R = 4nMH(-'I,r' + Pmr'), 

where r is the radius of the nucleus. The maximum of 
the function R(r) corresponds to 

r=pm, (40) 

R,.,. = '/,nMHpm' = "l,n~M'll'(~M I H)'. (41) 

B. Surface nuclei. In some cases, the formation of 
surface nuclei can be more probable, since the corre­
sponding energy barrier R~in is smaller than the 
barrier that determines the probability of formation of 
nuclei in the volume of the sample (the latter will be 
denoted here by R~in)31 • 

The simplest example is the case 47TM « H «{3M. 
Let us explain here that the field H = { 0, 0, H} is the 

3l!t should be borne in mind that the probability of formation of surface 
nuclei is proportional to the surface of t}le sample and not to its volume. 

internal field, which does not coincide with the field 
H1e1 in vacuum. The latter can be determined from the 
conditions of the continuity of Ht and Bn on the bound­
ary of the sample. The work R is determined by 
formula (39), where V is the volume of the nucleus and 
S is the area of the separation boundary. Putting 
V = V'/2 and S = S'/2, where V' and S' are the vol­
ume and surface area of the doubled figure, we can 
easily verify that the critical nucleus has the form of 
a hemisphere and 

R!,. = 'I,R~,n = "l,n~M'6'(~MIH) 2• (42) 

We emphasize that this result does not depend on the 
orientation of the easy axis relative to the surface of 
the sample. 

In the case H « 47TM «{3M, the barrier R~in 
differs little from R~in (it is assumed here the easy 
magnetization axis is perpendicular to the surface of 
the sample): 

R~;n- R:,.;n = ny' . = 4 f..!!__ l nsM 1'".~ 1 (43) 
R~;n 120 ' V L nM n H ,_ · 

We shall not discuss this case in detail here. We indi­
cate only that the critical nucleus has the shape shown 
in Fig. 2, the boundary of the nucleus is described by 
Eq. (35), in which one must put f..L == 1, and the radius 
of the base of the nucleus a is equal to 

, 32 n'M (44) 
a= PmV =-;-~lllnn>-6. 

Thus, the radius of the critical nucleus is Pm 
= A/MH in all the cases considered here (for arbi­
trary {3/ 41T ). This relation determines the so-called 
starting field{s,a]: 

H,=.~I~M, (45) 

at values above which the growth of nuclei of radius r 
becomes possible. If the presence of defects makes 
motion of the domain wall difficult, then it is necessary 
to replace in all the formulas H by H - H0 , where H0 

is the critical field[s,a] in which the wall motion be­
comes possible. 

5. CONCLUSION 

For typical ferromagnets (Fe, Co), the characteris­
tic value Rmin/T at room temperatures is of the 
order of 103 , so that under ordinary conditions thermal 
activation of the nuclei is impossible. However, at a 
reasonable proximity to the Curie temperature, the 
barrier Rmin can be greatly reduced by decreasing 
the magnetization (the values of {3 and 0 change little 
on approaching the Curie point). The obtained formulas 

FIG. 2 
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are also suitable near the Curie temperature, where 
the thermal activation of the nuclei should become ob­
servable. Our estimates allow us to suppose that the 
barrier Rmin is small in the observed region near the 
metastability limit (Rmin = 0 at H = {3M). 

The author is grateful to V. L. Pokrovskil for criti­
cal remarks. 
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