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An hypothesis of scaling invariance of the local structure of turbulence is formulated. The restrictions which it imposes on 
the form of the multi-point distribution functions for the relative velocities, momenta and their variational derivatives with 
respect to external force are considered. The situation which arises in the hydrodynamic description of turbulence if the 
hypothesis proposed is correct is analyzed by employing quantum field theory methods. 

J. The attempt to solve the problem of the hydrodynamic 
description of fully developed turbulence leads to the 
difficulties that are well known in different variants of 
theories with strong interaction. The infinite or very 
large number of degrees of freedom of the system is 
such that it is impossible to describe it in terms of in
dividual independent (or weakly dependent) variables 
and by the same token fi~1d the solution of problems 
even in the form of series in really small parameters. 

The present understanding of the properties of a lo
cally homogeneous and isotropic turbulence stems from 
the ideas of Kolmogorov. [l] The theory of self-similar
ity of correlations, proposed by Kolmogorov, postulates 
a multidimensional distribution of the probability of the 
velocities. Two essential assumptions concerning this 
distribution made it possible to obtain certain relation
ships explicitly. First, it is assumed that the probabil
ity distribution has the similarity property, in that a 
simultaneous variation of all the scales in a certain 
("inertial") scale interval leaves the picture of the 
fluctuations invariant apart from the scale transforma
tion. Second, it is assumed that only one parameter de
termines all the statistical properties of the system in 
this scale interval and that this parameter is the energy 
flux from the large to the small scales. Improvements 
of the Kolmogorov scheme are also known (see there
view in [Zl). 

Similarity properties were recently observed in an
other object with strongly interacting fluctuations, 
namely in thermodynamic systems near their critical 
points. [Sl In this case, however, both the first investi
gation in which the similarity properties were ob
served[4l and the succeeding more general studies[s,eJ 
have shown how the similarity properties can be recon
ciled with the microscopic equations of the theory. We 
do not speak here of the proof of similarity. Similarity, 
in our opinion, is a rather widespread if not common 
property of systems with strong interactions. The pur
pose of the present paper is to investigate, assuming 
similarity, methods of reconciling the correlations in 
the exact equations of turbulence theory. 

2. We consider first an idealized case of a locally 
homogeneous and isotropic turbulence. [Zl The pulsa
tions are fed from excitation of harmonics with infi
nitely large wavelength, and the viscosity is infinitesi
mally small. We consider liquid motions that are de
scribed by a system of hydrodynamic equations. A more 

definite mathematical formulation of the problem is 
given below (see Sec. 4). 

Let us perturb the flux by a small external force 
h(x, t). The simplest characteristics of the reaction of 
the system to an external action are the variational de
rivatives, taken at h = 0, of the multidimensional prob
ability distributions of the velocity pulsations in the ex
ternal force. In the case considered by us, the theory 
has no characteristic length and time scales. Accord
ingly, it is natural to assume that the following similar
ity hypothesis holds: 

a) length and time scale transformations of the form 

(2.1) 

(where a is a certain fixed number and .X is arbitrary) 
do not change the probability distributions for the rela
tive velocities 

·v(x, t) =U(x+x,, t+t,) -u(x,, t,), i.e., 
dWx,, t1, ..• x,.t,. (v,. ... , v,.) = dWx1•, t1•, .•.• x,.•, t,.•(v1', ••• , v,.'), (2,2) 

v' = .A.'-~v; 

b) the transformations (2.1) in conjunction with the 
substitution 

6/6h(x, t)-+ .A.'-"6/0h(x', t') (2.3) 

do not change the variational derivatives of the proba
bility distributionswith respect to the external force, 
taken at h(x, t) = 0: 
II"'W x1, t1, ... ,x,.. t,. (v1, ••• , v,.) 

Oh (y,, -t1) ... bh (y ,., ·-r,.) 

In terms of the moments of the relative velocities, this 
hypothesis can be reformulated in the following form: 
the substitutions 

x-+ i..x, t-+ i.. ~t, v-+;.. •-•v, 

6/6h(x, t)-+ ;..•-~ot Oh(x', t') (2.5) 

do not change the moments of the relative velocities or 
their variational derivatives as h - 0. 

Let us consider first the limitations imposed by this 
hypothesis on the quantity Av(x, t) = ((v2(x, t)))1/2. From 
the condition 

(v'(x, t)) = ;..•<•-0 (v'(i..x, i.."t)) (2.6) 

it follows that 
Av(x, t) =z'-"q>(ct/z"), (2. 7) 

where q; is a certain function of its argument, and c is 
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a constant of dimension [V:l!jT]. We assume in (2.2) 

(2.8) 

It follows from (2.7) and (2.8) that we can write for W 

at n = 1 this equation changes into 

dW.,,(v) = dW;1.-(v/~v), 

which means that the transformation (2.1) does not 
change the distribution function for the relative velocity 
measured in units of t:.v (compare with l31). For a mo
ment of arbitrary order we obtain in analogy with (2. 7) 

(v,,(x,.t.) ... v, (x.,t.))=z, <i>I•J -, ... ,-,-, ••• ,-
n(l-1&) ( t,c t.c x, x. ) 

n Xt01 Xn 11 Xt Xt -

(2.10) 
(The index {i} denotes the aggregate of all the indices 
iu i2, ••• , in). Finally, for the variational derivatives 
of (2.10) with respect to h we have from (2.4) 

< 6mvi, (x,, t,) ... v;. (x •• t.) >- n(1-a)-m(•-a> 
6h;, (Yto 1'1) ... {Jh;m (Ym• 1'm) - X1 • 

XCJ>ti.H( tt~, ... , tn:, Tt~, .•• , 'tm:, ~' .. .,~, Yt, ... , Ym) 
X1 Xn Y1 Ym x1 x1 z1 z1 

(2.11) 
( {i, j} is the aggregate of the indices i1, ••• , in; j1, ••• , 

jm). 
According to (2.10) and (2.11), if we know the degree 

of homogeneity of any one of the moments (say (2. 7)) 
then we know the degree of homogeneity of all the vari
ational derivatives (2.11) that describe the reaction of 
the system to a small external perturbation. It has re
cently become possible to study experimentally the 
propagation of external actions in a turbulent liquid, 
i.e., to study the response functions directly (see, for 
example, l71 ). We consider it important to verify the 
theory not only at the level of the spectral characteris
tics of the velocity field, but also with respect to quan
tities of another type, such as the response functions. 

Formulas (2.10) and (2.11) can be obtained directly 
from dimensionality considerations by assuming that 
the parameter c, with the dimension [c] = [V:11 jT], de
termines the pulsation regime completely. H we take 
c3 to be equal to the average rate of energy dissipation 
€, then a = % and formulas (2.10) coincide with those 
obtained by Kolmogorov. lll 

We consider now the case when the viscosity 11 has a 
finite value. From the parameters c and 11 we can con
struct quantities with the dimensions of length and time: 

T} = (v/c)"<'-.. >, r:,=T) .. /c. 

Formulas (2.9)-(2.11) will then contain the quantities 
x1 /11 and t1 / T 11 as arguments. We assume that the sim
ilarity hypotheses formulated above are valid for spa
tial intervals much larger than 11 and for temporal in
tervals much larger than T 11 • Assume now that the ex
ternal turbulence scales Land T also have finite val
ues. In this case the arguments of the functions (2.9)
(2.11) can also be t 1 /T and x1 /L. This means that all 
the functions can depend on L/TJ, i.e., on the Reynolds 
number. We can expect, however, the existence of a 
scale interval in which this dependence is weak, so that 
the main influence of the finite character of the Reyn-

olds number lies in the fact that it limits the distance 
interval in which the similarity hypothesis is valid. 

3. We shall need subsequently a formulation of the 
similarity hypotheses for the case when the turbulence 
is homogeneous, isotropic, and stationary. The fields 
of the velocity and of the random exciting force can be 
expanded in Fourier-Stieltjes intel'vals. lZJ For the ve
locity difference we have in this case 

v,(x, t) = J {exp[i(k(x + Xo)- ro(t + t,))]- exp[t(kx,- ffit,) ]}dZ(k, ro). 

(3.1) 

The n-th-order moment of vi is expressed in terms of 
the moment of the quantities dZ 

(v,,(x,, t,) .•. v,. (x., t.)) 

. 
= JII {exp[!(kJ(x1 +x.)-ro1(t1 +to))] (3.2) 

j=t 

- exp[i(kp;,- ro1t,) ]}(dZ,,(k,, ro,) ... dZ,. (k., ro.)). 

H the similarity hypothesis of Sec. 2 is valid, then the 
moments for dZ remain unchanged as 

(3.3) 
i.e., 
(dZ,,(k,ro,) ... dZ,. (k •• ffin))= A,•<•-.. >(dZ,,(Ak., A .. ffi,) ... dZ,. (Ak., A .. ro.)). , 

(3.4) 

According to l2J 
(dZ,,(k., ro,) .•. dZ,. (k., ro.)) 

= F1<1 (k,,{l)., ... ,k._., ro._,)6 (.E k,} ·6 (E ro, ).dk, dro, ... dk. dro •. - - ~.~ 
From this and (3.4) we find that Fare homogeneous 
tensors of the form 

(3.6) 
(i) Ta·····-k" ·-;;-·····~. X p' ( 001 OOn-1 k2 k._1 ) 

1 n-t 1 1 

At n = 2 we have 

The tensor Fij can be expressed in terms of one scalar 
function F with the aid of the equationl2J 

F,;(k, ro) = ~.;(k)F(k, ffi), ~;;(k) = 6,1 - k,k1f k'. 

Thus 
Fu(k, ffi) =k .. -'F'(ffi/k .. )~,1 (k). (3.7) 

We add a small (nonrandom) increment hi(X, t) to the 
external exciting force and assume that it can be ex
panded in a Fourier integral: 

. h,(x,t)= J exp[i(kx-rot)]h,(k,ro)dkdro. 

Using the condition that the turbulence is homogeneous 
and stationary, and also the similarity hypothesis, we 
can show that < tr dZ;1 (k., ro1) ... dZ1n (k., ro.) ) 

6h,. (qto Pr) ... 6h;m (qm, Pm) 

= G(i,j) (kto ffit, • · ·• kn-1• ffin-H q,, Pto • · •• qm, Pm) (3 8} 

X /j (~jki- ~ q;) 6 (~ 00;-~ P;) dk1 dffi1 ... dk. dro_dq1 dP1 ... dq,. dP~. 
t=l i=l i=l i=l 

where 
G(l,il (k., ro., ... , kn-10 Oln-lt q1, p1, ...• qm, Pm) = kl'f\+(1-2U)IIH8+U' 

( ffi1 00.-1 P1 Pm kl kn-1 q1 Om ) 
xg(i,j) -k ...... ,-k" .-.. ·····-a·r·····~·-k , ... ,-k . 

1 n-1 q1 qm 1 1 1 1 

(3.9) 
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-vvv- = -~j- ;-t--o-+ !i --<!>--+ ... l 

FIG. 1 

At m = n = 1 this equation takes the form 

G,1(k, {J)) = k-•g(w I k")l\,1(·k); (3.10) 

at m = 2 and n = 1 formula (3.8) yields (G{i,j} = AijZ) 

(3.11) 

4. Let us discuss a situation that arises in the dy
namic description of turbulence if the similarity hy
potheses formulated above are valid. We use for this 
purpose a diagram technique of the type developed by 
Wyld. [81 Let us describe the formulation of the problem. 
For a viscous incompressible liquid the velocity field 
u(x, t) obeys the Navier-Stokes equation 

au, au, 1 -+ u1-· = -- Vp +vi\u,+ f,, (4.1) at Ox1 l 

where f is the external force and is the source of the 
motion, while the remaining symbols are standard. The 
source energy is transferred to the liquid at a rate 

8 = Jufdx 

and is then dissipated by the viscosity. It is assumed 
that the random field of the external forces is station
ary, homogeneous, isotropic, and has a normal distri
bution. The latter means that any mean value of the 
type 

can be represented by a sum of products of all possible 
pairwise averages (the analog of the Wick theorem in 
quantum field theory). We shall assume henceforth that 
the spectral tensor of the external-force field <I>ij (k, w) 
differs from zero only when k :;;; L -1 and w :;;; T-1, and 
that the similarity hypotheses are satisfied for a suffi
ciently large interval k » L -\ w » T-1. 

Any velocity function can be represented with the aid 
of (4.1) by a formal functional series in f(x, t). The 
problem of averaging becomes defined if the method of 
summing the series after term-by-term averaging is 
specified. We assume that such a method exists. Mter 
partial summation in the functional series we can obtain 
the following system of equations (all the quantities are 
henceforth considered in the Fourier representation). 

The equation for the spectral velocity-field tensor 
takes the form shown in Fig. 1. [81 
The spectral tensor Fij (k, w) will henceforth be de.noted 
by a wavy line, the vertex rij[{k, w, k 11 w1) by a tnangle, 
and the Green's tensor Gij(k, w) by an arrow. The quan
tity Gtj (- k, - w) is denoted by an arrow in the opposite 
direction. We can write for the vertex an equation of the 
form shown in Fig. 2 :[81 
The point denotes the nonrenormalized vertex 

i 
Pn(k)= ---[k;l\il(k)+k,l\;;(k)]. (4.2) 

' (2n)' 

The Green's tensor Gij can be expressed in terms of the 

FIG. 2 

FIG. 3 

"mass operator" L,~k with the aid of the Dyson equa
tion[81 

6'1 6'" (!) ) (4 3) G,1(k,w)=• . + . 2 ~.~ (k,w)G~;(k,w. • 
- zw +vk' - zw +vk 

A diagram that does not split into two parts when any 
of the lines in it is broken will be called nodal. It is 
easy to see that L,~~ is a sum of nodal diagrams with 
one input and one output, while the vertex r is a sum 
of nodal diagrams with two inputs and one output. We 
introduce, finally, the vertex r, defined as a sum of 
nodal diagrams with one input and two outputs (see 
Fig. 3): 

U,(k, w) = G,.(k, w)h.(k, w). 

Then L,~~ can be expressed in terms of rand r' with 
the aid of the relation 

EftJ = t::A + Ck 
FIG. 4 

The system of equations in Figs. 1-4 (4.3) is com
plete. Substituting dZ in the form of a graphical expan
sion (see [81 ) in the left-hand side of (3.8), we can verify 
that the tensor G{i j} (k1, wl> ••• , kn_1, Wn-1, ql> f31, · · · ' 
q {3 ) correspo~ds to the sum of all possible diagrams 

m• m [9 101 f th t with m inputs and n outputs. ' It follows there ore a 
the Green's tensor Gij (k, w) describes in the ~ine~r ap
proximation the reaction of the average velocity field 
U(k, w) to a small force perturbation h(k, w): 

U,(k, w) = G,.(k, <~)h.(k, w). (4.4) 

The vertex r is connected with A (see (3.11)) by the 
equation 

A,,,(k, w, k,, {J),) = G,.(k, w)G,.(k,, <u,) • 

. G,,(k- k,, (J)- w,) r.~,(k, 'W, k, w,). 
(4.5) 

If we assume that the similarity hypotheses holds true 
(see Sec. 2), then rijz(k, w, k 1, w1) can be represented 
in accordance with (4.5), (3.10), and (3.11) in the form 

(4.6) 

Let us consider the system of equations in the region 
where the wave numbers and the frequencies of the quan
tities in the left-hand sides are large compared with the 
reciprocals L -1 and T-1 of the principal length and time 
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scales. We assume that the spectral tensor <I>ij(k, w) of 
the external forces differs from zero only when k :;:; L -1 

and w :;:; T-1• Then the first term in the right-hand side 
of the equation in Fig. 1 drops out. Let us estimate the 
contribution made to an arbitrary diagram of the left
hand side of the equation of Fig. 1 by the region in which 
the integration variables are of the order of the wave 
numbers and frequencies of the external lines. A dia
gram Fn containing n integrations with respect to dkdw 
contains n + 1 wavy lines, 2n vertices, and 2n tensors G. 
Hence 

Using (3.7), (3.10), and (4.6), we get 

i.e., Fn is of the same order as the left-hand side. A 
similar fact can be established also for the equations 
in Figs. 2 and 3. 

Thus, the similarity hypothesis agrees with the sys
tem of equations if the region in question makes the 
main contribution to the integrals. To this end it suf
fices that the vertex r decrease rapidly if any one of 
its arguments becomes small in comparison with the 
remaining ones. In the equation of Fig. 2 there is a 
diagram that does not satisfy this requirement, namely 
the nonrenormalized vertex. Therefore the diagrams 
in the right-hand side of the equation should contain a 
contribution that cancels out Pijz(k) in the region where 
the arguments of the external lines differ strongly from 
one another in order of magnitude. The source of such 
a contribution may be either the remote terms of the 
series, or the contribution from the integration regions 
qi « k and Wi « w, where k and w are of the order of 
the wave numbers and frequencies of the external lines. 
A similar situation apparently also holds in a Bose 
liquid. 

Let us consider the case when the nonrenormalized 
vertex in the equation of Fig. 2 cancels out completely. 
The cancellation of this vertex in the region where its 
arguments are quantities of different order is equiva
lent to its complete cancellation, since the difference 
between these two cases is determined by the behavior 
of the diagrams when the arguments are of the same 
order of magnitude. By multiplying the equation of 
Fig. 2 by G and introducing a new vertex r<cl, con
nected with r by the equation 

r,j;\k, Ctl, k,, Ctl,) = c,.(k, Ctl) r.i,(k, Ctl, k,, Ctl,), 

we eliminate the function G from the equations of Figs. 
1 and 2. Analogously, by multiplying the equation of 
Fig. 3 by Gia(k, w) and GjJ3(k1, w1) and introducing the 
new vertex 

we eliminate G from this equation as well. Solving the 
equations of Figs. 1-3, we can in principle, determine 
F, r<cl and r<cl'. Then, using Eq. (4.3) and Fig. 4<' we 
can determine G. It will be shown in Sec. 5 that I: 1> de
termines the action of turbulent viscosity on the pulsa
tions. Accordingly, we shall assume that when k << T/-1 

and w << T~ we can neglect the term vk2 in comparison 
with .6< 1>. Then the dimensional constant v drops out 
from (4.3). All that matters here is the sign of the vis-

cosity v, which determines the direction of going around 
the poles during the integration, and by the same token, 
the sign of the turbulent viscosity (see Sec. 5). If we put 
v == 0, then we obtain a temperature-distribution regime 
that differs from that considered by us. 

5. Let us assume, in accord with [ll, that the dimen
sionality parameter of the average energy dissipation 
rate determines completely the statistical pulsation re
gime in the inertial interval. As noted above, this cor
responds to the case a = %. 

We consider Eq. (4.4), which describes the response 
of the averaged velocity field to a small force perturba
tion. We multiply it by U*(k, w) and integrate with re
spect tow: 

'l'(k) == s IU(k,Ctl) l'd(t) = s G,.(k,Ctl)h.(k,Ctl)U,•(k,Ctl)dCtl. 

According to (3.10), in order for the spectral function 
qJ (k) to vary like k-u;s, it is necessary that the supply 
power UiYha vary like k-s. This means that wave packets 
that occupy a region of the order of k in the wave-num
ber space expend a power that does not depend on the 
value of k to overcome the turbulent viscosity. 

The foregoing suggests the possibility of a somewhat 
different interpretation of the parameter f. used in Kol
mogorov's similarity theory. According to [lll, the tur
bulent medium should be regarded as made up of wave 
packets. These packets, produced by nonlinear energy 
supply, lose energy as they overcome the t

2
urbulent ve

locity, and are replenished. The case a = / 3 thus cor
responds to a situation wherein the wave packets of all 
scales are constructed in similar fashion and lose equal 
amounts of power when overcoming the turbulent vis
cosity. 

Let us examine from this point of view the equation 
for the spectral tensor Fij(k, w), which can be derived 
by partial summation of the series in analogy with (4.3): 

where L:~h is the sum of nodal diagrams with two out
puts. Hence 

(5.1) 

According to (4.3) and (4.2) 

[ (- iCtl + vk').S,.- ~~~n] u. = h,. 

Multiplying this equation by Ui(k, w) and using the fact 
that I:\~= .6<1> L\a(k) by virtue of the isotropy of the 
turbulence, we obtain 

(-ic•> + vk'- 2:: 1'') lUI'= hU'. (5.2) 

We see therefore that the term with I: <1> describes the 
action of the "turbulent viscosity" on the introduced 

2 perturbation. We shall assume that the term vk can 
be neglected by comparison with I:< 1> in the inertial in
terval. A comparison of (5.1) with (5.2) shows that the 
term I: <2>G can be interpreted as the energy supplied 
by the nonlinear interactions. The term I: <u F describes 
the conversion of the energy of the harmonic k, w into 
the energy of all other harmonics. 

From (4.3) and (3.10) we have 

2::''> ~ -i(t)- c-• ~ k". (5.3) 
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The condition a = % coincides, in accordance with (3. 7) 
and (5.3), with the condition 

• 
Jl: 1°Fdkdro- const, 
0 

This can be interpreted as meaning that the power re
quired to overcome the turbulent viscosity is indepen
dent of the dimension of the packet. 

The physical picture corresponding to this case is 
as follows. In order to increase the amplitudes of the 
pulsations u(k, w) forming a wave packet of scale ~by 
an amount au(k, w) it is necessary, according to (5.2), 
to have a power 

a8 = J .iu{k,ro)h{k,ro)dkdro, 

where the integral is taken over the region a'k ~ 1/~3 

occupied by the packet ink-space, h(k, w) is the exter
nal force, and 

as -l:10{k, ro) l.iu(k, ro) l'l\'k.w.. (5.4) 

In the state of stationary turbulence, the packet ob
tains a power E(~) from the turbulent system and dissi
pates it through turbulent viscosity (i.e., it gives up the 
power to the turbulent system). This quantity €(~) can 
be naturally called the energy-conversion power. Were 
we to "turn off" the supply, leaving only dissipation, 
then the power of the external force h(k, w) which must 
be consumed to maintain the pulsations of the packet at 
the level I u(k, w) 12 is 

. .is 
s,- jllu{k,ro)l'lu{k,ro)l'~l:'Oiu{k,ro)j'k'ro,. (5.5) 

We assume that the energy conversion €(~) Rj Ek, 
k Rj 1/~ does not depend on the scale. In this case, 
using the definition (3.5), we get from (5.5) 

which, as found above, leads to the Kolmogorov law. 
We are grateful toM. A. Gol'dshtik and V. E. Za

kharov for discussions . 

Note added in proof (28 January 1972). According to Sec. 4, the 
role of the effective expansion parameter is played by the quantity 

x = (Gf) 2Fk'oo - const. 

We introduce the turbulent viscosity vr = l: 1/k2 . The quantity Fk3 w is 
the square of the characteristic velocity of scale -1/k. Taking (4.6) and 
(5.3) into account, Eq. (*)can be rewritten in the form 

i.e., the Reynolds number of pulsations of scale 1/k, determined from 
the turbulent viscosity, does not depend on the scale. 
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