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It is shown that in a nonequilibrium plasma in a semiconductor with a complex dispersion law for the energy carriers, the 
scattering (transformation) cross section of the waves depends strongly on the shape of the energy bands and the field orientation. 
For certain directions of the fields (external, incident and scattered wave) the scattering cross section may assume very high 
values; this may be ascribed to the appearance of anomalously large fluctuations in the nonequilibrium plasma for these field 
orientations. Moreover, account of divergence of the energy dispersion law from an isotropic parabolic law and the presence 
of a heating field result in the appearance of a specific current which induces additional scattering (transformation of the waves). 
An estimate shows that for experimentally easily attainable field strengths, this additional contribution to the scattering 
(transformation) coefficient of the waves may appreciably exceed the usually considered contribution, which is related only 
to fluctuations of the carrier concentration in the plasma. Expressions for the scattering and transformation coefficients of the 
incident transvl!rse wave by fluctuation waves in semiconductors with weak anisotropic bands of the heavy hole type in p-Ge 
are obtained for field orientations for which the fluctuation waves may be divided strictly into longitudinal and transverse waves. 

1. INTRODUCTION 

INVESTIGATION of the scattering and transformation 
of electromagnetic waves by fluctuation oscillations 
has been used successfully for a long time for the 
diagnostics of gas-discharge plasmas. The availability 
of powerful lasers in the infrared band has made it 
possible to perform similar experiments r 1• 2 1 also for 
semiconductor plasma diagnostics. The intensity of 
the scattered waves is determined both by the fluctua­
tion level and by the intensity of the incident wave. In 
the case of a nonequilibrium plasma with a high level 
of fluctuations, the cross sections for the scattering 
and transformation of the waves can become quite 
large, 

In strong electric fields, a solid-state plasma can 
deviate strongly from equilibrium (especially in 
materials with high carrier mobility). In semiconduc­
tors in which the carrier energy dispersion is not iso­
tropic and parabolic, both the frequencies and the 
decrements of the natural oscillations become depend­
ent on the magnitude and orientation of the external 
electric fieldr 3 • 41. It has turned out, in particular, that 
in semiconductors with anisotropic dispersion, such as 
p-Ge, the damping decrement of the plasma waves may 
even reverse sign in relatively easily attainable fields 
(at definite orientations of the heating field). This re­
sults in anomalous fluctuations, strongly anisotropic in 
magnitude, at frequencies close to the natural fre­
quencyf5l. Since in the equilibrium state the magnitude 
and the character of the fluctuations in a semiconductor 
plasma depend strongly on the scattering mechanisms 
and on the shapes of the energy bands, an investigation 
of the scattering and transformation of waves by these 
fluctuations can yield valuable information both con­
cerning the mechanism of scattering of hot carriers 
and concerning the details of the shapes of the energy 
bands. 

conductor plasma was investigated in detail by Wolff 
for a non parabolic but isotropic band r 61. It was shown 
that the nonparabolicity of the band affects strongly the 
single-particle scattering of light (due to the interac­
tion between the light wave and individual carriers). In 
particular, the light-scattering coefficient acquires an 
additional term (due to the nonparabolicity of the band), 
whose magnitude can greatly exceed the coefficient of 
single-particle scattering in the case of a simple para­
bolic band. As to the scattering of light by collective 
(plasma) oscillations, in the absence of an external 
magnetic field the influence of the band nonparabolicity 
reduces to a slight correction connected with the change 
of the carrier effective mass. In a magnetic field, the 
nonparabolicity of the band leads to an additional scat-·' 
tering of light, due to collective plasma oscillations 
(Bernstein oscillations). 

The present paper is devoted to an investigation of 
the influence of the law of energy dispersion on the 
scattering of light by collective oscillations of a non­
equilibrium semiconductor plasma. It is shown that the 
deviation of the energy dispersion law from isotropic 
and parabolic, in conjunction with the action of an ex­
ternal electric field (which heats the carriers), leads 
to the appearance of qualitatively new effects (not 
previously considered). Thus, in the case considered 
by us the cross section for the scattering of light is 
essentially anisotropic and can become anomalously 
large for a definite value and orientation of the external 
field. Changes in the value and orientation of the heat­
ing field also cause shifts in the positions of the Raman 
satellites. Furthermore, the scattering coefficient ac­
quires an additional term due to the joint action of the 
external field and the deviation of the energy dispersion 
law from isotropic and parabolic. The aforementioned 
effects do not occur in an equilibrium plasma. 

598 

The influence of the law of carrier-energy disper­
sion on the scattering of light in an equilibrium semi-
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2. FORMULATION OF PROBLEM AND INITIAL 
EQUATIONS 

We consider a homogeneous semiconductor with one 
type of carrier, whose energy ~ has a dispersion law 
different from the isotropic parabolic law ~ = p2/2m 
( p is the carrier momentum and m is its effective 
mass). Assume that an external carrier-heating con­
stant electric field F is applied to such a semiconduc­
tor. The carrier momentum distribution function f( p) 
in the constant field F is assumed known (the choice 
of the explicit form of f( p) will be discussed later on). 
We consider the scattering and transformation of an 
external incident wave, the field of which we represent 
in the form 

E'(r, t) = E' cos (w't- k'r), (1) 

by the fluctuations in the nonequilibrium plasma. In (1), 
w0 is the frequency and k0 the wave vector of the inci­
dent wave. The fields E 0 , oE, and E 1 of the incident, 
fluctuating, and scattered waves are assumed to be 
small compared with the constant field F. The field 
determining the total carrier distribution function can 
be written in the form of the sum 

E(r, t) =F+E'(r, t) +cSE(r, t) +E'(r, t). (2) 

The total carrier momentum distribution function x ( p) 
can be written in the form of an analogous sum: 

x(p, r, t) = f(p) + q>0 (p, r, t) + c'lq>(p, r, t) + q>'( p, r, t). (3) 

Here rp 0 , orp and rp 1 are increments to the distribution 
function in the constant field f( p ), and are due to E 0 , 

oE, and E 1
, respectively. Assuming oE and E 0 to be 

small quantities, we determine rp0 , o rp, and qJ 1
, as 

usual[7,aJ, by the method of successive approximations. 
The field of the scattered wave (which is proportional 
to the product of E 0 and oE) will then be a quantity of 
second order of smallness, i.e., I E 1 I « I E0 I, I oE 1. 
In addition, it is obvious that I.P 1 I « I eli, I o rp j. 

Substituting the distribution function in the form (3) 
and the field in the form (2) in the kinetic equation, and 
gathering terms of equal order of smallness, we obtain 
the following system of equations, in the Fourier repre­
sentation, for the determination of .p 0, orp, and qJ 1

: 

L, .<p'(k, w)= -e,E'(k, w)K(k, w)/(p), (4) 

£~ .• c5<p(k, w) = -e,c5E(k, w)If(k, w)/(p) + y(p, k, w), 

i, .ql' (k, w) =- e,E' (k, w)K(k, w)f(p)- _e_, -J dk1dw1· 
· (2n)' 

X {E' (k1, w.)K(k1, <o1) cSq> (k- k1, •W - w1) 

Here 
A a A 

L,. = i(w- kv) + e,F-- v(p), 
' . • i)p 

A ( kv)a (ka) K(k,w)== 1-- -+v -- .. 
(J) i)p (J) i)p 

(5) 

(6) 

(7) 

(8) 

eo is the elementary charge, v(p) is the collision 
operator, y(P, k, w) are random forces usually intro­
duced into the right-hand side of the kinetic equation 
when fluctuations are investigated, and v = a~;a p is 
the carrier velocity. On going over to the Fourier 
representation, we have eliminated the magnetic fields 

by using their connection with the electric fields via 
the Maxwell equations. The functions .. l, ocp, and qJ1 

(and also L and K) depend, of course, not only on k 
and w, but also on p, but for brevity we do not write 
this argument out. This should not lead to misunder­
standings. 

The integral in the right-hand side of (6) can be 
calculated easily if it is recognized that the quantities 
E 0(k, w) can be represented, using (1) and (4), in the 
form 

E'(k, w) = 1/2(2n)'{c5(w+w')c5(k+k') +6(w-w')ll(k-k')}E',(9) 

<r'(k, w) = 1/?(2n)'{ll(ul+w')o(k+k') +c5(w-w')c5(k-k')}q;'(k, w). 
(10) 

The function ;p 0 ( k, w) satisfies in this case the equa­
tion 

1, .• <j''(k, w) = -e,E'l((k, w)/(p). (11) 

After evaluating the integral in the right-hand side of 
(6 ), the latter takes the form 

1, ·<P'(k, w) = -e,E'(k, wfK(k, w)/(p) 
- 1/,{'V(k, w; k', w') + 'V(k, w; -k', -w')}, (12) 

where 
qr (k, w, k', w') == e,E'K(k', w') c'\·<p(k + k', cu + w') (13) 

+e,IIE(k+k', w+w')K(k+k', w+w')ip'(-k', -w'). 

We have used real quantities throughout, both in the 
description of the fields and in the description of the 
distribution function. Therefore the Fourier compon­
ents of all the quantities satisfy a relation of the type 
oE"' ( k, w) = oE( -k, -w) (the asterisk denotes the com­
~l,;x conju~te). If it)s recognized furthermore that 
L-k,-w = Lk,w and K(k, w) = K(-k, -w), then (13) 
leads to the relations 

l~(-k, -·w; k', w') = 'V"(k, w; -k', -w'), 

'V ( -k, -w; -k', -w') = qr• (k, w; k', ul'), 

which we shall need later on. 
The vector components of the current connected 

with the function cp 1 ( k, w) can be represented in the 
form 

(14) 

j.' (k, w) == e0 J :e cp' (k, w)dp =I: a.~(k, w)E~' (k, w) + 1.' (k, w), 

p. ~ (15) 

where 

S ae A _ 1 -

v.~(k, w) =-eo' -L •. w K~(k, w)f(p)dp 
ap. 

is the electric-conductivity tensor, which makes the 
usual contribution to the dielectric tensor, and the 
current 

(16) 

S ae A -1 } 
J.'(k,w)=-'/ze0 -L •.• {'V(k,w;k',w')+'V(k,w;-k',-w') dp 

ap. (17) 

causes scattering (transformation) of the incident wave. 
Substituting (15) in Maxwell's equations, we obtain the 
connection between J 1 (k, w) and the field of the scat­
tered wave E'(k, w): 

A f ( ) 4:rti I ) AE k,w =-J (k,w. 
(J) 

Here A is a tensor whose matrix elements are 

( c k ) 2 ( k.k~ ) ) A.~(k, w) = -;;;- ---;;;---b.~ + x.~(k, w , 

Kaf3 is the dielectric tensor given by 

(18) 

(19) 
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4n 
Xap (k, w) = Xollap + -.- Uap (k, w) 

I(J) 
(20) 

and K 0 is the dielectric constant of the crystal without 
allowance for the contribution made to it by the free 
carriers. 

If the fluctuations are calculated, then Eqs. (18) with 
allowance for (17) describe all the wave scattering and 
transformation processes in the presence of a constant 
field and for an arbitrary carrier energy dispersion 
law. 

3. CALCULATION OF THE CURRENT PRODUCING 
THE SCATTERED WAVES 

To investigate further the wave scattering and 
transformation processes it is necessary to have an 
explicit expression for the current J' ( k, w) that causes 
the wave scattering. To obtain this expression it is 
necessary to determine 0 'P ( k, w) and q1 °( k, w) from 
(5) and (11), respectively, and substitute them in (12), 
after which the last equation is solved. The formal 
solution of (5) (and also of (11) can easily be written in 
the form 

llcp(k, w) = £.;:!{- e,IIE(k, w)K(k, w)/(p)+ y(p, k, w) }. (21) 

In analogy with (15), we obtain for the current connected 
with the fluctuation wave 

6j(k, w) = a(k, w)IIE(k, w) + j<•> (k, w), (22) 

where &(k, w) is the conductivity tensor whose com­
ponents are defined by (16), and 

•(0) k J fJe A -1 
J ( , w)""' e, ap-L•.• Y'(P, k, w)dp 

is the random-current vector. We shall need these 
expressions later on. 

(23) 

Now we proceed to the actual rather than formal 
determination of the solutions of (5) and (11), i.e., we 
determine the explicit form of i.k-1 • To this end, we ,w 
impose certain limitations on the region of the investi-
gated frequencies and employed fields. We assume the 
following inequalities to be satisfied: 

e.F....::; 1 I ;f(p) I ~ ~....::; 1. (24) 
pw ' wf(p) w 

Here pis the average value of the momentum and 11 is 
the effective collision frequency. We note that when the 
second inequality is satisfied, the limitation imposed 
on the field F by the first inequality is quite mild. In 
particular, if this inequality is satisfied the field F can 
still be so strong that the diffusion approximation can 
no longer be used to determine f( p). 

In the present paper we consider low-resistance 
semiconductors, when the frequency of the Langmuir 
oscillations is w p » 11. The second condition is there­
fore quite natural for the electromagnetic wave scatter­
ing (transformation) problem considered here (in addi­
tion to making the calculations easier), since only 
waves with w > Wp penetrate into the plasma. In this 
approximation, accurate to terms of first order of 
smallness, we have 

.A-· f , 1 [ a A] 1 L •.• ~ -i--+·-- e,F--v ---. 
w-kv {1)-kv fJp w-kv 

(25) 

With the aid of (25) we can easily obtain O<P from 
(21) and determine in smaller fashion '(j 0 from (11). 

Knowing these quantities, we obtain from (13) and (17) 
the Fourier components of the current J'(k, w). In ad­
dition to assuming that the parameters (24) are small, 
we also assume that the phase velocities of the incident, 
fluctuation, and scattered (transformed) waves are 
much larger than the average electron velocity, i.e., 
that for all these waves we have 

kv /(f)....::; 1. (26) 

For the waves considered here, this inequality is well 
satisfied almost always. 

We write the carrier energy dispersion law in the 
form 

e(p) =p'/2m+8e(p) ==eo(P) +1\e(p). (27) 

The first term here describes an averaged isotropic 
parabolic band with a certain effective mass m (for 
details see the next section), and ~~ ( p) characterizes 
the deviation from this band, which we assume to be 
small. p-Ge and p-Si are examples of such a situation. 
We now substitute in (17) the expression (25) as well as 
0 'P and cp 0 (determined in the manner indicated above), 
and then expand in (17) in terms of the parameter (26). 
We retain only the linear terms in the parameters (26) 
and (24), and neglect terms of higher orders. In addi­
tion, when integrating with respect to p in the terms 
that are linear in the small parameters (26) and (24), 
we shall assume that ~(p) = p2/2m. As a result we ob­
tain 

We note that (29) was derived without making any as­
sumptions at all concerning the form of the function 
f( p), except for the usual assumption that it be 
normalized to the total carrier density n: 

J f(p)dp =n. (30) 

The terms in (17) which are linear in the operator 
e0Fo/op- v are exactly equal to zero for the average 
band. 

When substituting (21) in (17) we have left out, as 
usual [7J, the term containing y( p, k, w ). The validity 
of such an approximation will be discussed in somewhat 
greater detail later. 

The expressions obtained by us for the Fourier com­
ponents of the current producing the wave scattering 
differ from the analogous expression for a gas -dis­
charge plasma raJ in that (29) contains the first term, 
which vanishes for the simple dispersion law 
~ = p2/ 2m. As will be shown below, it vanishes also 
when the constant field F tends to zero. Thus, the 
appearance of this term (the additional term in (29)) is 
due entirely to the deviation of the shape of the energy 
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band from isotropic and parabolic in the nonequilibrium 
plasma1> (due to the presence of the field F). 

Since we are interested here in the Raman scattering 
of waves (with change of frequency of the scattered 
wave by an amount equal to the frequency of the natural 
oscillations of the plasma) by the fluctuations in a non­
equilibrium plasma in a semiconductor, we shall stop 
briefly at the end of this section to discuss the charac­
ter of these fluctuations near the natural frequencies. 
This question was considered in greater detail 
earlier( 5l. 

The fluctuating fields OE(r, t) and OH(r, t) and the 
current oj(r, t) are of statistical origin, so that we 
are interested not in the exact details of these quanti­
ties but in the statistical mean values of the products 
of the fluctuating quantities taken at different points of 
space and time (correlators). In particular, such 
important characteristics as the energy density and 
flux of the fluctuating fields are expressed in the form 
of products of fluctuating quantities. 

In the calculation of the correlators by the kinetic­
equation method, the statistical-averaging operation is 
determined completely specifying the correlator of the 
random forces y( p, r, t). In a nonequilibrium system 
and for quasiclassical fluctuations, the correlator of 
the random forces can be represented in the form( 9J 

(y(p, r, t)y(p', r', t')> = ll(r- r')ll(t- t')g(p, p'). (31) 

Here ( ... ) denotes the operation of statistical averag­
ing. 

In the high-frequency case of interest to us 
( w » v ), when the correlations connected with the pair 
interaction are negligible, the function g( p, p') is given 
by 

g(p,p')= b(p-p') {J w(p,p")/(p)dp" 

+ s w (p", p) f(p") dp"}- w (p, p') f (p)- w (p', p) f(p'), 

where w( p, p') is the probability of transition from 
the state p to the state p' per unit time. 

(32) 

Using (23) and (31 ), we can readily obtain the cor­
relator of the Fourier component of the random­
current vector 

(j:'l• (k, w)j,<ol (k', w') )= (2n) 'll(w- w')b(k- k') (j~0 l j:'l >•.•· (33) 

The spectral distribution of the random currents 
( j~> j~>) k,w, neglecting small quantities of the order 

of (24) and (26 ), is of the form 

<ol <ol e: · iJe iJe , 
(j. j, >•.• ~ 2 SJ-"--a 'g(p,p')dpdp. 

w ap. PI 
(34) 

If the fluctuation current (22) is substituted in 
Maxwell's equations, then we obtain for OE(k, w) an 
equation that differs from (18) only in that J' ( k' w) is 
replaced by j< o> ( k, w ). The correlator of the Fourier 
component of the field OE can therefore also be repre­
sented in a form analogous to (33) with a field-fluctua­
tion spectral distribution given by 

16n2 ~3 
-1 • -1 .<ol . (o) 

(bE.bE,) •.• = -,- (A., ) A,, (Jv 7, >•.•· 
,(!) 

'l',ll=l 

(35) 

l) Additional terms of similar nature, as shown inr3•41, cause additional 
amplification (or quenching) of the natural oscillations of a nonequilib­
rium semiconductor plasma. 

Here A(/{3 ~re the matrix elements of the inverse of 
the tensor A . 

It follows from (35), in particular, that near the 
natural frequencies the spectral distribution of the 
fluctuations of the longitudinal field takes the form[sJ 

2 8n2w . <o>z 
(bEII>• .• =--(111 ) •.• ll(w'-w.'(k)), (36) 

x,y 

where wz( k) is the natural frequency of the longitudinal 
oscillations and y is the damping decrement. 

We see from this that the spectral density has a peak 
near the natural frequencies, and that the intensity of 
the peak increases with decreasing damping decrement 
of the oscillations. 

We have already mentioned that when we substituted 
(21) in (17) when deriving the expression for the current 
that causes the wave scattering, we have omitted from 
(21) the term containing y( p, k, w ). It is easy to see 
that if we retain this term, then an additional term, 
equal to 

~~~~~~~i~~at~:o ct~:r::aff~~~:~te~ (:~~:~!e(2~D. 
Using the explicit form of g( p, p') from (32), we can 
easily show that the correlators of this term with all 
the terms of (29) and with itself vanish identically, 
since Jg(p, p')dp' = Jg(p', p)dp = 0 (conservation of 
the number of particles in the collisions). Neglect of 
the terms which have not been written out and which 
are proportional to the small parameters does not 
introduce a noticeable error, since their correlators 
near the natural frequencies are small in comparison 
with the correlators of the fluctuating fields having a 
O-like singularity in this frequency region (see, for 
example, (36)). 

4. CROSS SECTION FOR THE SCATTERING AND 
TRANSFORMATION OF WAVES 

The intensity of wave scattering (transformation) is 
characterized by the scattering (transformation) cross 
section, defined by the equation 

(37) 

Here ¥ is the average energy increment of the scat­
tered (transformed) waves per unit time, V is the value 
of the scattering volume, and So is the energy flux 
density of the incident wave. The average scattered 
(transformed) power is 

[jJ =- J dr(J'(r,t)E'(r,t)) 

=- (2n) _, Re J dkdw dw' <J'(k, w')E'• (k, w)) exp[- i(w'- w) t]. 
(38) 

Let us write out (38) in greater detail for the case when 
the scattered wave is transverse. In this case it fol­
lows from (18) that 

, 4ni , [ ' ck ) ' ] -• E.L (k,w)=--;-JJ. (k,w) x.L(k,w)- -;;;- . (39) 

Substituting (39) in (38), we obtain 
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~ = __ 2_rmJ dkdwdw' (J.L'(k,w)J.c'(k,w')) . , 
'' (2n)' w x.L'(k,w)-(ck/w)' exp[-t(w -w)t]. 

(40) 
We have noted earlier that the correlators of the 

Fourier components of the fluctuating field can be 
represented in a form analogous to (33 ), with a spectral 
density (35). Taking this circumstance into account, it 
follows from (29) that we can write 

(J-~-> (k, w)Jl-> (k', w') )= (2n)'ll(w- w')ll(k- k')( lll-11'>•.•· (41) 

Analogous expressions are obtained for the correlator 
of the current Ji_+>. As to the crossing correlators of 
J<;> and J<1•>, they contain the factors o(w' - w ± 2w 0 ). 

After substituting (28) in (40), it is necessary to 
average over the period of the oscillations of the inci­
dent wave, since the change occurs within a time much 
longer than (wot\ so that we are interested in the 
power averaged over the period of the oscillations. 
Assuming that such an averaging has been carried out, 
and recognizing that o ( k - k') = V / ( 2rr )3 , we obtain 
from (40) after integrating with respect to w' 

- V J dk dw H [ ( ck) ' ] -• :!',, =- (2n)' Im - 00-<IJ.L _1'>. .• x.L'(k,w)- -;;;- (42) 

In the derivation of (42) we took into account the fact 
that the contribution from the correlator of Ji_+> coin-
cides fully with contribution from the correlator of 
.r1-> (this can easily be verified by replacing k, w, and 
w') in (40) by -k, -w and -w'). Assuming that the 
waves in question are weakly damped, we can write 

[ ( ck ) ' ] -• { ( ck ' Im x.L'(k,w)- -;;;- ~nil Rex.L(k,w)- -;;;-) }· (43) 

Taking (43) into account, we can easily carry out the 
integration modulo k in (42) by writing dk = k2dkdo. 
As a result we obtain 

:!',, = 16:'c' J do dw w'[Re x.L(k, w) ]''•< 111-> l'>•.•l•=•c•h 

k(-w) = w[Rex.L(w)J"' /c. 
(44) 

Having (44), we obtain an expression for the differen­
tial cross section (scattering coefficient) of the scatter­
ing 

- s-•w• 
d~,, = d:l',(VS,)- 1 = 16° , ,[Rex.L(k,w)J"'<IIl-> l'>•.·l~=o,d!lldo, 

n c (45) 

k0 = k(w). We obtain in similar fashion an expression 
for the scattering coefficient in the case when the 
scattered wave is longitudinal (wave transformation): 

d~ =tJ9(VS)-'= So-' ~(IIHI') k,'l dx,(k,w) ,-• .... d 
' I o Bn' ~ I •·• w dk •=•, uw oC46) 

where ks = ks ( w) are the roots of the dispersion equa­
tion of Kz(k, w). The summation over sis carried out 
over all the roots of this equation. 

We now have all the formulas needed to analyze con­
crete situations. We confine ourselves here to p-type 
germanium. The law of energy dispersion in p-Ge can 
be represented for the heavy holes in the form 21 

p' C' ( . 1 )' p' 
e(p)= 2m+ BmoB'p' ~ Pa'-sp' ""'2m+ ~e(p), (47) 

where m- 1 =(A- B')mii\ B' = (B2 + YsC2 ) 112 , m0 is 

2>we neglect the contribution of the light holes. 

the mass of the free electron, and A, B, and C are 
known constants. 

To proceed with the calculations we must specify 
f(p), We assume that the kinetic equation in a constant 
field F has been solved, and f( p) is known. In the 
literature, extensive use is made of an approximation 
of f(p) in the form of a momentum-shifted Maxwellian 
function with temperature T. Such an approximation 
agrees with the direct measurement of the hole distri­
bution function in p-Ge[lo,uJ. It also agrees with the 
theoretical considerations [121, if one deals with atomic 
semiconductors in which the lattice mechanisms pre­
dominate over the impurity mechanisms of carrier 
scattering. 

We thus write f(p) in the form 

/(p) ~D.exp{-e(p-p')/T}, (48) 

where Dn is a normalization constant and T and p0 

are obtained from the energy and momentum conserva­
tion laws (T is in energy units). We now substitute 
(47) and (48) in (29) and obtain the explicit form of the 
first term in (29), accurate to the terms linear in 
M(p): 

105 ~ (- 2)'p'(>-Z) 3 Pa' 1 3 1 
=a .E (2k+ 1)!! .E( 7-5) ""'M(p) .E ( Pa'-s•P') • 

It=~ a=t a.=l 

p =p0 /(2mT)'t... (50) 
In a nonequilibrium plasma of a semiconductor with 

an anisotropic carrier-energy dispersion law, the 
natural oscillations, as shown in [3 • 4 1, do not separate, 
strictly speaking, into longitudinal and transverse 
oscillations. This makes the investigation of the wave­
scattering processes very complicated. To illustrate 
the influence of the band shape on the wave scattering 
and transformation processes we confine ourselves 
only to wave incidence and scattering directions for 
which the fluctuation waves causing the given scattered 
wave can be separated strictly into longitudinal and 
transverse ones. We thus consider the following situa­
tions. 

1) The direction of the incident wave, specified by 
the vector k0 , coincides with the [100] direction of the 
crystal. The vectors F 11 E0 are directed along [001 ]. 
We then obtain from (45) for the coefficient of scatter­
ing along the k0 direction 

d"i:},"<l= ~ ( mo )' (~ )' (~ )'. 
(4n)' m w0 ~w (51) 

The superscript of ~ indicates the direction of polari­
zation of the scattered wave for which the scattering 
coefficient has been written out. In (51), a 0 

= % rr( e~/moe 2 )2 is the Thomson cross section for 
scattering of the electromagnetic waves by the free 
electrons, and w~ = 4rrne~/ Koffi. In addition, we took 
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into account the fact that So= (c/47T)[Re K1 (w 0W12 E 02 • 

For the given concrete case, the formula for the 
scattering coefficient coincides formally with the ana­
logous expression in a plasma with the standard energy 
dispersion law '" = p2/2mP31 • The only difference is 
that the fluctuations ( oE~1 )q,~w have a different char­
acter (the details will be discussed later. 

2. E0 11[100]; k0 11 F 11 L001]. For wave scattering 
along the [ 001] direction (the direction of k) we have 

di):"l= 3u, (~)'{ e,nC'pR(p) 
16n' w' 20B'(2mT)'h~w 

e,nm,q} 2 
, [ Re x_~_(w) 1 •;, 

+ m2 (~w)' (llE11 > •. ,. Rex_~_(w') dwdo, (52) 

dM d'M 8 ( 2 ) R(p) = -12M(p)+ 3pap+ p'df7;::::: -.3 1- 33 p'- ... 

for p<i. (53) 

Retention of only the first term in (53) corresponds to 
the diffusion approximation in the determination of 
f( p). 

Let us also obtain from (46) the coefficient of trans­
formation of an transverse incident wave into a longi­
tudinal one in the case when k0 11 [001] and k 11 k0 for 
different orientations of the heating field F and for 
different polarizations of the incident wave E 0 

/ [tool_ 3uo { e0nC'pR(p) e,nm,k }' ( w )' 
d~, -- +--- -

8n' 20B'(2mT) •;,~"' m2w~w w' 

X (llE_~_'>•·'• ~ c'k.' 1 dx,(k, w) ~-• dwdo. (54 ) 
[Rex_~_ ( w')] •;,4 w' dk b>, lw> 

2) Fll [100], E'IIF. 
[ootl 3u, {( e,C2npR(p) ) ' E 2 

d~, = 8n' 20B'(2mT)'h~w (ll 11 > •. ,. 

( e,nm,k ) 2 
} ( w ) 2 dw do + -, -,- (llE_~_2>•.•• o [R ( ')]" m (1)/_\W w ex.L w '2 

X~ k.'~'\ dx,(k, w) ~-· . (55 ) 
~ {i) dk k=k 8 (w) 

It is seen from (52)-(55) that in a nonequilibrium 
semiconductor plasma with a nonstandard energy 
dispersion law, an additional contribution is made to 
the wave scattering (transformation) coefficient by the 
presence of a heating field and by the deviation of the 
energy dispersion law from the parabolic one E = p2/2m. 
The value of this contribution plays the principal role 
in the scattering of waves by fluctuations in the long­
wave region (q, k- 0). 

5. CONCLUSION 

The foregoing investigations have shown that a num­
ber of new regularities, which do not take place in a 
plasma with the standard dispersion law E = p2/2m, 
appear in the processes of scattering and transforma­
tion of waves in a nonequilibrium semiconductor 
plasma with a complicated dispersion law E ( p). The 
deviation of the dispersion law E ( p) from the standard 
one becomes manifest in two respects in the scattering 
(transformation) of the waves. 

1. In the presence of a constant electric field (that 
heats the carriers), the deviation of the dispersion law 
from the standard one leads to the occurrence of a 
field dependence in the frequencies and damping deere-

ments of the natural oscillations of the plasma, and 
the dispersion law E(p) affects the wave scattering 
phenomena via these characteristics. For this reason, 
particularly in strong fields in semiconductors such 
as p-Ge at liquid-nitrogen temperatures (when the 
carrier distribution function is noticeably elongated 
along the field), the scattering and transformation co­
efficients are strongly anisotropic, and may assume 
anomalously large values for individual directions. As 
seen, for example, from (36) (see[sJ for details), the 
anomalies in the fluctuations are connected with the 
anomalies in the behavior of the decrements y, The 
quantity y has been investigated in detail in[3• 4l. 

2. In a nonequilibrium plasma with a nonstandard 
dispersion law E ( p), the current causing the wave 
scattering acquires an additional term and this, as 
seen from (52), (54), and (55), leads to the appearance 
of additional terms in the scattering and transforma­
tion coefficients. It is interesting to note that the de­
pendence on the heating field F, and also on the mo­
mentum q transferred in the scattering, differs in the 
additional terms for the wave scattering coefficients 
from the analogous dependences of these coefficients 
in a plasma with the standard dispersion law. The 
ratio of the first term in the curly brackets of (52) to 
the second at p :s 1, with allowance for (53), is ap­
proximately equal to 

2 C' m tlw 
--·-.-p-. 

15 B' m, qv 

Substituting the values of the constants C, B', and m 
for p-Ge, we obtain -0.55p~w/qv. This estimate 
shows that the additional term in (52) can easily exceed 
the main term that is due to allowance for the concen­
tration fluctuation. For example, it is easy to realize 
experimentally a situation wherein p 5 1 and qv/ ~ w 
~ 0.05. Their approximate ratio is in this case equal 
to 10. We see thus that the processes of scattering and 
transformation of the electromagnetic waves in a non­
equilibrium plasma of a semiconductor are very sensi­
tive to the details of the band structure. In particular, 
the appearance of anomalously large scattering cross 
sections (with allowance for their sharp anisotropy) can 
be used to transform the frequencies into the intervals 
w 0 ± wp. 
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