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The effect on an electric field on the Knight shift and relaxation time of nuclei in a strong magnetic field is studied. It is 
demonstrated that for determination of the amplitudes of the Knight shift and nuclear spin-lattice relaxation time of the 
oscillations which are similar to the Shubnikov-de Haas oscillations, the role of the cut-off factor in the theory may be played 
by the electric field perpendicular to the magnetic field. 

THE question of the Knight-shift oscillations and of the 
spin-lattice relaxation time in a strong magnetic field 
has been considered in a number of papers. [l-3J To avoid 
the divergences that arise when the Landau levels cross 
the Fermi surface, it is customary, when estimating the 
oscillation amplitude, to introduce into the theory a cut
off parameter which is identified with the interaction 
that determines the broadening of the electric levels. 
Subsequently, Magrill and Savvinykh[4 • 51 have shown that 
a weak electric field can play the role of a cutoff factor 
in a semiconductor in the case of electron scattering by 
impurities, owing to the collision-induced change of the 
position of the center of the cyclotron orbit and the as
sociated change in the "longitudinal" energy of the par
ticle. In the present communication we show, for the 
case of metals and degenerate semiconductors, that the 
divergence of the density of states on the Fermi surface 
in crossed electric and magnetic fields is eliminated 
without broadening the levels if account is taken of the 
change of the state of the electron in the electric field. 

The solution for the wave functions and the eigen
values of the electron energy in a magnetic field H 
= (0, O, H) and an electric field E = (E, 0, 0) is [eJ 

1jl •• ,,.(r)= B exp[i(k,z + -y) ]<I>.(x/L.,- L .. (~ + k,) )S.; 

e •• ,,._= n'k.'/2m + ftw(n ~~- '/,)- k,~ft'{m- k,'h'/2m- hffi./2: {1) 

(jj = eH B = l'ZUN(r) L, _eft k _ meE 
me ' (L,L,L.) 'I• ' • - elf ' 0 - ftH 

Here uN{r) is the Bloch wave function at the extremum 
of the conduction band, <l>n is a Hermite function and Sa 
and wa are respectively the spin wave function and the 
splitting of the spin levels in frequency units. From the 
condition that the center of the cyclotron orbit be lo
cated inside the sample 

0 < L.'(~ + k,) < L. (2) 

we obtain the condition imposed on the wave vector {3: 

-k,<~<g-k,, g=mffiL,/ft. {3) 

The Knight-shift is calculated from the formula 

M(jj = '/,ny,y~ft'SI I: I1Jlo(O) 1'{/._- f,+}, (4) 
• 

where 1/lk(r) is the wave function of the electron, E_ and 
E + are the energy eigenvalues corresponding to the spin 

direction parallel and antiparallel to the field, and 'Ye 
and 'YI are the electronic and nuclear gyromagnetic ra
tios. Substituting {1) and using the approximate equality 
for the Fermi distribution 

we obtain 
oa co t-1t0 

fMffi =a I: J dk, J <I>.'[ -L.W + k,) J6[ k.' + _;._( n + _!__) 
n=O -oo -Ito LM 2 

- 2k,~- ko'- k/] dp, a= )':fny.'h'ffi1NuN'(O) (hffi)''• e;''• , 

where EF is the Fermi energy and tiw1 is the Zeeman 
energy of the nucleus. 

(5) 

{6) 

Integration with respect to kz with a ll-function yields 

• 
Mffi =a .Ef <I>n'(L.M [k .. '- kn' + 2k,J3- ko']-Y·d~ {7) 

n 0 

The limits of the integration and summation regions are 
given by the following equation: 

k .. ' + 2ko~- ko' = k,' +an', kn' = (2n + 1) I L.'. (8) 

The parameter an has the dimension of a wave vector 
and characterizes the distance between the Fermi level 
and the nearest Landau level. The quantity an is de
fined by the inequality 

and vanishes when the Landau level coincides with the 
Fermi level. 

Breaking up the integration region into two parts, we 
can represent the sought expression in the form 

(9) 

n0 = 1/,L.'(k.'- ko'- ao'), n, = L.'(k,g- '/2ag'), 

~" = (k.'- k.' + ko' +an') I 2k,. 

a 0 and ag have here the meaning of an defined above, 
with n = n0 and n = ng, respectively. The sum J 1 breaks 
up in turn into two parts: the first is the non-oscillating 

part ··-• • <l>.'(L.~)d~ (10) 
ft ~(jjE = a E J :;-;-:;----;-::~:-'::--'---:""::7~ 

n=O 0 (k .. '- k.' + 2ko~- ko') 'h 
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For the calculation it is possible, for example, to ex
pand the denominator in a series in the electric field. 
We then obtain the value of the Knight shift that dep~nds 
on the electric field: 

li.1w, ~ a[('lznF)Y• -'lznpk,L,.], n, = e, I liw. (11) 

The second part (the case n = n0 ) gives the divergence 
at zero electric field, when the Landau level coincides 
with the Fermi level. However, when the field is not 
equal to zero, there is no divergence at a 0 = 0. Thus, 
the electric field plays here the role of a cutoff factor: 

(12) 

To calculate the integral, we recall that the Hermite 
function <I>n(Y) decreases exponentially beyond the point 
y = 2n112, and up to this point, at large values of n, it is 
well described by the asymptotic formula 

1 [ (n -1) IJ l 'k --
<D.(y) ~ ~ 11 • cos l'2n + 1 y. 

n n .. (13) 

Using this expression in (12), we obtain 

2 "Yfio 

lib. - a (no- 1)!! It cos• cv2n;+I L .. ~) d~ 
Wosc. ~ :r!'i•no!J ~ (O(o' + 2ko~)'l• 

"""_!!:_(_!_)''• { (a02L,.2 + 4k0LMn~')'1• _ .5!_} 
:rl n0 2k0L,. 2k0 • 

(14) 

It follows from (14) that in order for the oscillation am
plitude to be determined by the electric field, it is nec
essary to satisfy the condition 

(orE > a~2w/4e(EFm)1/2 for the electric field). We 
then have 

a ( 2 )''• 
lii'>.Wosc ~- -k L '!. · 

Jt o .\!no · 

If the field is small, a~L~ » 4k0LMn~/2, we obtain 

(15) 

This agrees with the result of Zvezdin and Zyryanov. [31 

Let us note the value of the cutoff electric field} say, 
for the case of giant oscillations a 0LM ~ 2/7Tn~2, as
suming LM = 10~. em (H = 105 Oe) and EF = 10-12 eV, 
we obtain E ~ 10-2 V /em. Such fields still do not cause 
heating of the conduction electrons, and therefore the 

effective temperature of the electrons can be regarded 
as equal to the lattice temperature. The sum J 2 also 
contributes to the oscillating part, but since the lower 
limit of the integral lies beyond the oscillating part of 
the Hermite function for all the terms, it is easy to 
show that the contribution from this entire sum is much 
smaller than J 1• 

Analogous calculations can be made also for the rate 
of the spin-lattice relaxation of the nuclei by the con
duction electrons. From the usual formula for the re
laxation rate of nuclei with spin Ya [71 we obtain 

1 IT,= bF', (16) 

where F denotes the sum in formula (7), which deter
mines the Knight shift. 

Using the same approximations as above, we arrive 
at the equation 

(17) 

The first term determines here the Korringa relaxation 
rate, and the second gives the monotonic dependence of 
the relaxation rate on the electric field, while the third 
gives the amplitude of the oscillations of the relaxation 
rate under the condition 

E > a,'li'w I 4e (e,.m) 'I•. 

The foregoing numerical estimates for the case of 
giant oscillations shows that the dependence of the os
cillation amplitude of the Knight shift on the electric 
field can be observed experimentally. 

The author is sincerely grateful to A. R. Kessel' for 
directing the work. 
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