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A simple and natural method of extending the hypothesis of homogeneity of the thermodynamic functions of a one-component 
systeml'·21 to a binary mixture near the critical vaporization state is proposed. Data obtained by investigating the height and 
temperature behavior of the light scattering power on a n-pentane-cyclopentane solution at T > T'" are used for an experimental 
verification of the homogeneous properties of binary systems. 

THE considerable recent progress in the knowledge of 
the properties of single-components systems near the 
critical liquid-vapor state is due primarily to the de­
velopment of the so-called scaling theories, the Widom 
and Griffiths homogeneity hypothesis[ 1• 21 and the 
Kadanoff-Pokrovski'l scalaing theory rs, 4J. 

Several attempts were madef5-BJ to generalize the 
main results of the scaling theories to include binary 
mixtures. Common to all these investigations is the 
assumed existence, in the three-dimensional space of 
independent variables, of a certain section containing 
the critical point, within which the thermodynamic 
properties of the solution can be described with the 
aid of a scaling equation of state which is a formal 
analog of the corresponding equation for single com­
ponent system. Certain discrepancies in the definition 
of this isomorphic section are connected with the 
choice of the independent thermodynamic variables and 
the limiting conditions imposed on the additional degree 
of freedom. In addition, there is an acute shortage of 
experimental research data needed to verify the 
validity of the isomorphism assumption and to deter­
mine which of the schemes is preferable. 

FUNDAMENTAL THERMODYNAMIC PREMISES 

The liquid-vapor coexistence surface of a binary 
mixture has a saddle-like shape and goes over in the 
limiting cases X - 0 and X - 1 (X is the molar 
fraction of the second component) into the coexistence 
curves of the first and second components, respec­
tively. The interactions of this surface with the planes 
T = const and X = const are shown in Figs. la and lb. 
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FIG. I. Sections of the T-V-X surface of the coexistence of a 
liquid-vapor binary solution: a) section T = TCr; b) section X= xcr; b) 
section parallel to the T axis and passing through the critical isotherm­
isobar BB'. K-critical point; AA' -direction along which T = Tcr and X = 
xcr; KL-direction along which X = xcr and V = ycr; r = V-ycr = 
(avtax)~ T (x-xcr). 

561 

A characteristic feature of both intersections is that 
the critical point K does not coincide with their 
vertices (loJ. 

Let us consider the inclined section of the T-V-X 
surface (Fig. lc), which is parallel to the T axis and 
passes through the critical isotherm-isobar which is 
asymptotically, near the critical stater a straight line 
(BB' on Fig. la) with slope (avjax)~ T· This section 
is remarkable in that its vertex corresponds to the 
critical state K, and that near the critical point this 
section coincides with the coexistence curve, i.e., the 
branches of this section describe the experimentally 
observed coexisting phases in which the pressure and 
temperature coincide, while the composition and the 
molar volume (density) are different and are connected 
by the relation Vliq- Vvap = (av/ax)VT (Xliq- Xvap). 
The plane of the inclined section under consideration 
contains the critical isochore-isoconcentrate. Accord­
ing to our assumption, it is precisely this direction 
which is the analog of the critical isochore of the pure 
substance. 

When the solution is diluted (X - 0.1), the section 
in question goes over into the T-V plane of the corre­
sponding pure component. 

Any binary-mixture state described by a point in the 
P-V-T--X space and located near the critical point 
can be regarded as specified if the following conditions 
are satisfied: 

a) We know the value of xcr through which the in­
clined section containing the point corresponding to the 
chosen state of the mixture passes. 

b) The distance from the point under consideration 
to the critical state in the plane of the inclined section 
(X - xcr and T - Tcr) is known. 

The change of pressure resulting from a slight 
deviation from the critical state, within the limits of 
the considered inclined section, is described by the 
relation P- per= (aP/BT)~~x(T- Tcr). 

It seems to us that it is perfectly natural to expect 
the mixture states located in the considered inclined 
section to exhibit homogeneous properties in the sense 
of\the Widom-Griffiths homogeneity hypothesis, i.e., 
the scaling equation of state of the solution, which is a 
formal generalization of the corresponding equation for 
the pure substances [21, should be written in the form 

All= !l('t, x)- 11(-r, 0) = xlxl'-'/(-rlxl-11~). (1) 
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where IJ. = IJ. 2 - IJ. 1 is the difference between the chemi­
cal potentials of the solution components, IJ. ( T, 0) is 
the value of IJ. on the critical isochore-isoconcentrate, 
x is the deviation of the composition from the critical 
value, T = t + c(aP/aT)V X' t is the thermodynamic 

' shift and constitutes the sum of the temperature devi-
ation and the associated deviation of the pressure from 
the critical value, 6 and {3 are critical exponents de­
scribing, respectively, the shapes of the critical iso­
therm-isobar and of the coexistence curve lying in the 
plane of the inclined section considered above, C is a 
coefficient that depends on xcr, and f is a universal 
function of the argument T I x 1-l/(3 with known asymp­
totic values [21. 

An analysis carried out within the framework of the 
classical theory of critical phenomenar 1oJ shows that 
1 + C( a pja TV X> 0 even though the coefficient 

C(Xcr) can be 'positive as well as negative. 
On approaching the critical isochore-isoconcentrate 

we have T 1 x 1-l/{3- co, and the function f( T 1 x 1-l/{3) 
diverges in this case like ( T 1 x l-1/ f3) {3< o-u . It is then 
more convenient to use the scaling equation of state in 
the form proposed in[u] 

Dividing (1) by IT 1 f36 , we obtain 

l!JJ./1-rl'• = m(y), 

i.e., the scaling chemical potential of the solution, 
m = ~IJ./1 T 1 {36, is a function of only the scaling con­
centration y = x 1 T 1- f3. In the limiting cases y - 0 
and y -co, the function m(y) can be represented in 
the form of certain power series. For the vicinity of 
the critical isochore-isoconcentrate, where y - 0, 
we have 

m(y) = a,y + a,y' + a,y' + .... 

(2) 

(3) 

Near the critical isotherm-isobar we have y -co and 
in this case 

m (y) = b,y" ± b,y•-<tP + b,y•-•tP ± .... 

The minus sign corresponds to the case T < 0. 
Differentiating Eq. (2) with respect to the concen­

tration, we obtain 

(4) 

(5) 

where y = {3( o - 1). Thus, the product of the suscep­
tibility by the thermodynamic shift raised to the power 
'Y is a universal function of the scaling concentration y. 

CONNECTION BETWEEN THE SCATTERING ABILITY 
AND THE THERMODYNAMIC PROPERTmS OF A 
SOLUTION. VERIFICATION OF THE HOMOGENEITY 
HYPOTHESIS 

Comparing the equation for the equilibrium of a 
solution in a gravitational field[lOJ 

(iJJJ.f oX)P. ,dX =-V(op 1 oX)P,,gdZ 

with the expression for the constant of scattering by 
composition fluctuations in the Rayleigh-Einstein 
approximation 

R _ n'ksT V ( oe )' 
RE- 21..' (iJJJ.fiJX)P,x ax P,T' 

we obtain 

(6) 

(p is the density of the solution, ~ is the dielectric 
constant, Z is the vertical coordinate, g is the ac­
celeration dJ.Ie to gravity, and X is the wavelength), 
i.e., in the Rayleigh-Einstein approximation the inten­
sity of the light scattered by the composition fluctua­
tions is proportional to the macroscopic composition 
gradient produced under the influence of the gravita­
tional field. 

We used the previously described experimental 
setupP2l to investigate the height dependence of the 
intensity of light scattering in a solution containing a 
0.182 molar fraction of cyclopentane inn-pentane at 
15 positive temperature deviations from the critical 
temperature Tcr = 475.8°K. The chamber was filled 
in such a way that at T = Tcr the meniscus separating 
the liquid and vapor phases vanished in the middle of 
the chamber. At T > Tcr the layer located at the level 
where the meniscus vanished had rp.aximum scattering 
ability and possessed the critical values of the density 
and composition. 

The measurement results were corrected for the 
attenuation of the incident and scattered light fluxes 
and also for the contribution of the secondary scatter­
ing. The secondary scattering was calculated with al­
lowance for the polarization properties of the incident 
and scattered light[13 l. The error in the determination 
of the intensity of single scattering did not exceed 
4-5%. The measurement results are presented in the 
table. 

When the critical state is approached, the quantity 
(avjap)T X• which determines the scattering of light 
by the pressure fluctuations 11 , diverges weakly like 
r-a (a is the exponent describing the temperature be­
havior of the specific heat and its value is 0.125 in the 
pure substanceP4l). At the same time, the susceptibil­
ity (aiJ.;ax)p T increases like T-'Y(y Rl %), i.e., the 

' decisive contribution to the total intensity of light 
scattering in the solution near the critical state is 
made by scattering from composition fluctuatioos. 

To describe the experimentally observed height and 
temperature behavior of the intensity of light scatter­
ing, we use the Ornstein-Zernike formula21 , which can 
be represented in the form 

loi'(h, -r) =IRF:'(h, -r) +Icr-'(h, -r), 

where h is the deviation, in height, from the level 
with maximum scattering ability. Near the critical 
state we can put 

(7) 

( :; ) P.:: u;) :: • (ii~) P.r~ (;; )P:' lcr(h,-r)~ lcr(O,O). (8) 

By investigating the temperature behavior of the 
quantity roz (0, T), i.e., the critical isochore-isocon-

11The intensity of scattering by pressure fluctuations is proportional 
to the quantity. 

( oe )' ( 8¥.) -t ( oe )' ( oV) 
oP T,X oP T,X oV T,X oP T,X 

2The deviations from the Omstein-Zemike theory predicted in[lSJ have 
not been observed to date. This allows us to assume that the use of formula 
(7) does not lead to significant errors in the subsequent results. 
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Height dependences of the intensity of light scattering in an 
n-pentane-cyclopentane solution at different temperatures 

I T-T'". deg 

-:-18 44 44 45 46 49 52 
-'-16 48 48 50 51 54 58 
-14 54 54 57 58 62 67 
-12 63 63 66 66 71 78 
-10 75 75 77 77 83 94 
-8 90 91 96 95 102 117 
-6 118 118 125 122 133 140 
-4 164 175 180 180 190 203 
-2 322 375 390 382 346 330 

0 1890 1510 1121 1071 710 531 
+2 323 390 394 392 356 328 
+4 153 \54 165 161 180 186 
+6 108 Ill 110 109 125 132 
+8 85 88 86 86 96 101 

+IO 73 74 72 72 80 83 
+12 63 62 62 61 70 69 
+14 54 54 54 54 59 61 
+16 47 47 48 48 51 53 
+IS 42 42 43 42 45 48 

centrate, we have determined the limiting value 
I~~(O, 0) = 5.0 x 10-\ and we have also established 
that the quantity Ii{E ~ (ajj/aX)p,T varies with tem-

54 
61 
71 
83 

100 
123 
152 
217 
320 
456 
332 
200 
146 
111 
88 
75 
65 
58 
49 

perature in the interval 4.2,x 10- 5 s (T/Tcr - 1) 
s 7.97 x 10-3 in accordance with the law Ifte ~ 7 1 ' 24 ± 0 • 5 

(see Fig. 2). The obtained value of the exponent y 
= 1.24 is somewhat higher than the vaule y = 1.20 ob­
tained for n-pentaneP61, This result is due to a con­
siderable degree to our additional allowance for the 
secondary scattering produced in the selected layer of 
matter when the latter is illuminated with light scat­
tered once in the same layer. The corresponding cor­
rection at the level h = 0 increases on approaching the 
critical state, and for layers of matter 1 mm thick it 
reaches at :\ = 5461 A the value 7-8% at a total rela­
tive intensity of secondary scattering 12-13%. 

We have converted the experimentally determined 
values of Ioz(h, r) into values of IRE(h, r) and inte­
grated the functions IRE(h, r) numerically. This 
enabled us to determine, accurate to within the coef­
ficient 

k~-- -- --n'ksT (ap) -• (Be ) ' 
2),' ax P,T ax P.T 

the height dependences of the deviations of solution 
composition from the critical value 

h 

kx(h,-r)= s IRJiZ,-r)dZ 
0 

(see formulas (6)--(8)). 
To estimate the critical exponent o, we have in­

vestigated the temperature behavior of the dependence 
of kx on h and the dependence of I i{E ~ (a J.Lfa X)p, T 

on kx. The investigation has shown that in the case of 
the solution investigated by us the numerical value of 
the exponent o ranges from 4.8 to 5.2. A detailed de­
scription of the procedure used to determine the ex­
ponents y and o is of independent interest and is the 
subject of a separate articleP31, 

In a gravitational field we have ~JJ. ~ (M2- M 1)h 
(M is the molecular weight), so that we can interpret 
the obtained height distributions of the deviations of 
the composition from the critical value as the depend-

58 65 70 71 70 68 59 51 
65 73 79 80 78 71 62 52 
76 84 92 91 84 74 64 53 
90 97 107 101 91 76 66 55 

104 114 124 111 96 78 67 51 
126 135 141 121 102 80 69 57 
162 166 159 132 107 82 70 58 
216 203 178 142 109 83 71 58 
295 247 195 150 111 84 72 59 
369 289 204 !53 112 84 72 59 
298 255 196 149 110 83 71 58 
206 202 172 138 106 81 70 57 
144 152 149 127 100 77 68 55 
110 123 124 116 94 74 67 53 
90 98 107 104 88 71 65 52 
76 85 94 93 81 69 62 50 
70 76 81 84 74 66 60 49 
62 68 71 74 69 64 57 48 
55 60 62 66 64 61 55 47 

liD 

§L-_L~~_L--~-L--~-L--~ 
O,f !,D l,.f Z,D 

(T/Tcr _!} t,Z~.!f/J 

FIG. 2. Dependence of reciprocal intensity of light scattering on the 
critical isochore-isoconcentrate on (T/Tcr_l )1'. The experimental points 
in the temperature interval 0.;;;; T-Tcr.;;;; 0.6° are shown on an increased 
scale. 

ences of the difference between the chemical potentials 
~J.L = J1. ( r, x) - J1. ( r, 0) on the composition deviations 
x = X - xcr, and verify on this basis the validity of 
our generalization of the homogeneity hypothesis, 
originally formulated for the thermodynamic functions 
of pure substances, to include the case of binary mix­
tures. To this end, we have calculated, accurate to 
within a constant coefficient, the values of the scaling 
concentration kx/tv /<o-ll for heights 1 h 1 equal to 2, 4, 
6, ..• , 18 mm and for 11 temperatures T - Tcr > Tcr 
in the interval from 0.34 to 3. 79°. The corresponding 
values of the scaling chemical potentials were also 
determined, a~curate to a constant coefficient, in the 
form h/t Yo/<O-ll. The dependences of the scaling chem­
ical potentials on the scaling concentrations obtained 
in this manner for different isotherm-isobars were 
plotted in a single coordinate system (Fig. 3), These 
dependences coincided within the limits of experimental 
error and formed a single curve corresponding to the 
function m(y). The results shown in Fig. 3 were ob­
tained under the assumption that o = 5. We have also 
performed the calculations assuming o = 4.8 and 5.2. 
Such a variation of the exponent o does not lead to a 
noticeable increase of the scatter of the experimental 
points, and only deforms slightly the entire m(y) 
curve. 
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FIG. 3. Dependence of the scaling chemical potential m- C1m0 , 

where m0 = h/t~rli/(ll-1) on the scaling concentration y = C2 y0 , where 
y0 = kx/tv/(ll-1) at T > TCr. The experimental points correspond to the 
following values ofT-TCr: 0-0.34, 6-0.48, 'V-0.57, 0-0.72, 0-0.91, 
e-1.25, •-1.64, ~-2.14, •-2.68, X-3.15, +-3.79. Here and in the 
succeeding figures the arrow designates the value of y0 corresponding to 
the condition y = R. 

The intensity of light scattering determined directly 
from the experimental data is proportional in the 
Rayleigh-Einstein approximation to the susceptibility 
(ai-LjaX)p T• which makes it possible to verify the 
scaling law written in the differential form (5). The 
plots of ( IREtY t 1 against kx/t /3 for 11 transcritical 
temperatures, drawn in a single coordinate system, 
are shown in Fig. 4. These plots form a single scaling 
curve m' ( y ),, in full agreement with the hypothesis (5 ). 
The scatter of the points does not exceed the experi­
mental errors. It is seen from Figs. 3 and 4 that at 
small values of y the m ( y) dependence is linear, 

·while m' ( y) tends to a constant limit as y - 0 (see 
the expansion (3)). 

At small y ~ kx/t/3, the m'(y) dependence, in ac­
cordance with assumption (3 ), takes the form 
a 1 + 3asy2 + ••• ,i.e., it is asymptotically quadratic. To 
verify this statement, we have plotted the quantity 
[1- 1(h, T)- r 1(0, r))t-Y against kx/t/3 for ten temper­
atures in a doubly logarithmic scale (Fig. 5). Such a 
choice of variables is equivalent to an upward transfer 
of the coordinate axis by an amount equal to the inter­
cept of m' ( y) at y = 0. Although the scatter of the 
experimental points increases noticeably with increas­
ing kx/t /3, owing to the larger relative errors resulting 
from the determination of differences of similar quan­
tities, it is clearly seen that at small y the investi­
gated dependence is linear in a double logarithmic 

scale, with a slope close to 2. At sufficiently large 
values of y, an increase of the slope is observed, this 
being a manifestation of the transition from the asymp­
totic expansion (3 ), which holds by assumption when 
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FIG. 4. Dependence of the reciprocal scaling susceptibility m' -
(op./ox)p Tt-"Y on the scaling concentration y = C2 Yo. The symbols for 
the experimental points are the same as in Fig. 3. 
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FIG. 5. Plot of log [(I~',. 0 -~'= 0)P] againstlog Yo. The symbols 

for the experimental points are the same as in Fig. 3. 



SCALING PROPERTIES OF A BINARY SOLUTION 565 

y « R, to the expansion (4) which is valid when 
y » R ( R is the quantity determining the region of 
convergence of the series (3) and (4)). 

Let us see how to determine, without knowing the 
numerical value of the coefficient k in the expression 
kx/t f:S, whether the experimental data lie in the region 
of "small y" or "large y." Using (5) and the expan­
sions (3) and (4), and recognizing also that I - 1 

~ (a!J.jax)p,T• we can show that in the region of ap­
plicability of the expansion (3)the quantity (ai/aT)IJ. 
< 0, whereas in the region of applicability of the ex­
pansion (4) we have (a I! aT) 1-L > 0. It is natural to ex­
pect (a II aT) 1-L = 0 at y = R. From an examination of 
the data in the table it can easily be seen that the 
scattering intensity at a certain fixed height h ;r. 0 
(i.e., at AIJ. =canst) actually goes through a maximum 
at a certain temperature Tmax(h) > Tcr. The value of 
Tmax( h) increases with increasing h. As shown by 
calculations the value (kx/tf:l)max corresponding to 
Tmax(h) is practically constant for all the isotherm­
isobars invest~gated by us, whereas the ratio 
(kx/ti3)/(kx/tl3)max takes on values from 0.05 to 2.9. 

We have used the quantities P, T, and X in the 
present paper as independent thermodynamic variables. 
From an examination of the conditions for the stability 
of solutions it follows that the properties of a binary 
mixture near the critical state of vapor production can 
be described just as easily by the variables T, V, 1-L as 
by the variables P, T, X (see, for example/ 17• 181), It is 
easy to show that (av;ax)I(T == (av/ax)IJ.~T· i.e,, the 
isomorphic section chosen by us does not change on 
going from one set of independent variables to the 
other. Such a transition reduces simply to a replace­
ment of Eq. (1) by the equivalent equation 

P(El, u) -P(EJ, 0) = vlvl'-'f(Ellvl-'1'), (9) 

where the thermodynamic shift e is equal to 
t + C'(a!J.jaT)Vxt. The coefficient c', which depends 

' on the choice of the critical point on the critical curve 
of the solution, tends to zero like X ln X when the solu­
tion is diluted P 8l, i.e., (9) goes over in natural fashion 

into the corresponding equation of state of the pure 
substance. 
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