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A nonlinear theory of interaction between bounded relativistic beams and a plasma is developed which permits one to elucidate 
the main dynamic regularities of the beam particles during development of plasma-beam instability and also to determine the 
field amplitudes and beam radii. Limiting cases of monovelocity and quasilinear beams are considered. 

1. INTRODUCTION 

AT the present time, owing to the rapid development 
of accelerator technology, it is possible to perform 
experiments on the interaction of relativistic beams 
with a plasma (see, for exampleP,21 ). It is therefore 
of interest to investigate theoretically the instabilities 
of relativistic beams in a plasmaP- 71. The linear 
theory of this effect was developed in [3- 51, and a quasi
linear analysis for beams of unlimited radius was 
carried out in[ 1• 6l in the approximation of a strong 
longitudinal magnetic field and in(l,2J in the absence of 
a magnetic field. 

In the present paper we consider the excitation of 
electrostatic oscillations by relativistic beams with 
limited radii. This makes it possible to analyze the 
dynamics of the beam particles in both the longitudinal 
and transverse directions and to determine the maxi
mum amplitudes of the fields and the variation of the 
beam radius at the instant of nonlinear stabilization of 
the instabilities. 

The nonlinear effects that occur when a single-velocity 
beam interacts with a plasma are taken into account 
within the framework of a model in which the beam is 
specified by a sequence of charged bunches (thin 
charged disks) moving through the plasma and separa-
ted by a distance equal to the wavelength. For a suf
ficiently broad beam a » :ky ~ (a is the initial radius 
of the beam, *' = v0 / W2, v0 is the initial beam velocity, 
and w2 is the plasma frequency), of electrons moving 
on parallel paths, the dynamics of the instability does 
not differ in principle from the case of an unbounded 
beam in a strong longitudinal magnetic field(l,sJ. The 
field energy density reaches a value E2 
= 81Tn 1mv~y~(v/2) 113 (v = n 1 /n2, n1 and n2 are the beam 
and plasma densities) within a time T 11 ~ ( r ol w2) v- 113 • 

For a beam of smaller radius a «*r~, the presence 
of considerable radial fields leads to a compression 
of the "unstable" electron bunches in the transverse 
direction, to a radius R ~ (c/w2)(r 0 /v)113 within a 
time T 1 ~ w;/( ro/ 11 )1/ 3 (without a significant change in 
the longitudinal beam velocity) and to a defocusing of 
the "passive" particles of the beam, which fall at the 
initial instant of time into the accelerating phases of 
the field 11 , 

t)The feasibility, in principle, of radial focusing of a beam of charged 
particles under conditions of beam-plasma instability is pointed out 
in[8•91, where nonrelativistic beams are considered. 
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The concluding part of the paper deals with the 
quasilinear theory of the interaction of a bounded rela
tivistic beam with a plasma. After determining the 
energy density of the field excited by the beam in the 
plasma, an estimate is obtained of the beam radius 
R ~ c Yo/ IIW2 established at the end of the quasilinear 
stage of instability development, i.e., after a time 
Tqu ~ y0 jvw2. Just as in the case of a "cold" beam 
(relativistic with respect to the transverse velocities), 
the radius is determined by the ratio of the speed of 
light to the instability increment and is determined by 
the distance traversed by an electron situated on the 
beam axis within the time of instability development, 
i.e., by the instant when the gradient of the thermal 
pressure in the beam becomes balanced by the focus
ing field of the instability. The difference lies in the 
fact that in the quasilinear case the focusing of each 
beam particle occurs under the action of a resonant 
harmonic of the field, the energy density of which 
vn 1mv~ is small compared with the analogous quantity 
in the hydrodynamic case, when there is one wave. 
This reduces the focusing efficiency and leads to an 
increase of the beam radius in the kinetic case for the 
same beam and plasma parameters. At the same time, 
however, the presence of a large number of waves 
leads to uniform focusing of the kinetic beam over the 
entire length and makes it possible to avoid the loss of 
some of the particles. 

The method considered here for focusing the beam 
in the plasma can be used for controlled thermonu
clear fusion (lo,uJ, where a strong-current relativistic 
beam produces a sufficiently dense plasma on the path 
to the target. Thus, a beam producing a plasma with 
density n2 ~ n 1 can be focused down to R < 1 em if its 
parameters satisfy the inequality Ill;> 5 ·10 5 y0 • At an 
initial beam radius a = 10 em and Yo= 10 this corre
sponds to a current 3 x 107 A. The corresponding 
focusing time is of the order of 3 x 10-10 sec. 

2. LINEAR THEORY 

Let an electron beam with density n1 move along 
the axis of a cylindrical conducting tube filled with a 
plasma of density n2. The electrostatic field curl E 
= 0 and E = -grad <I> excited in the plasma by a beam 
of low density n 1 << n2, is described by the linearized 
system of equations of motion of the plasma electrons, 
which must be considered in conjunction with the 
Poisson equation 
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( iJ' ) iJ'n -, +w,' .1.!l>=4ne-1 , 
at at' 

2 4rr:e2noz 
(l}z=-

m 

( no2 is the density of the plasma ions), 
We transform Eq, (1) by expanding the potential 4> 

in a system of orthogonal waveguide functions 

!l>, = l01/b)exp( -ik 11z) 

(1) 

(2) 

(b is the plasma radius, k 11 the longitudinal wave 
number, Jo(Xp) = 0, k = (Xp/b, k 11 )), and by averaging 
both parts of l1) with respect to the variables r and z: 

( d' 2) 4ne 2 s· ( r ) at'+ w2 !l>(k) =-kz b'J,'(f..p)' rdrJ, l.•b 
2ajk11 

kR J iJ'n, x- -,-exp(ikuz)dz, 
2n , iJt 

(3) 

where k2 = Xp/b2 + k~1 • 
In the linear approximation, expressing the ac com

ponent of the beam density nl in terms of the potential 
from the linearized hydrodynamic equations of motion 
of the beam 

- (k) e 1 i1 1 ( k 11 ' 1..') ( r ) 
n, =-my, (w-k

11
v,)•..::...k' Vo'+b' .J, l.•b !l>(k) (4) 

p=l 

( Vo is the longitudinal velocity and 'Yo = ( 1 - vg; c2t 112) 
and substituting it into Eq. (3), we arrive at a disper
sion equation for the harmonic with wave vector k 

1 w,' ( k11' 1 . 1..' ) w,' = O, 
---;;?- kz Yo 2 + k'b' Yo ( Cil - kuVo) 

4ne'n, 
Wt 2 =--

m 

(5) 

In the derivation of (5) it was assumed that the beam 
electrons are uniformly distributed over the waveguide 
cross section. 

Solving (5), we obtain the increment for the most 
unstable harmonic W2 = k 11 v0 : 

¥3 k 11 ' 1 . 1..' 'I• v '/, 
!1 = 2'1," ( k' ~ + k'b' ) (Yo) Cll,, 

w, - w = !1 I )'3. 
(6) 

It follows from (16) that owing to the anisotropy of the 
longitudinal and transverse masses the oscillations that 
develop predominantly are the transverse ones (Xp/b 
» k 11 ), for which the increment is maximal and equal 
to 

r3( v )''· !l.L ::::1 -2'1 - w,. (7) 
,l Vo 

This result was obtained for the unbounded case 
b -co inPl. 

3. NONLINEAR BOUNDED MONOENERGETIC BEAM 

Since the relativistic electron beams obtained in 
accelerators are made up of sequences of bunches, it 
is of interest to estimate the energy transferred by 
such a strongly modulated beam to a plasma. We shall 
therefore consider the excitation of electrostatic oscil
lations by a sequence of infinitesimally thin charged 
disks. 

The density of such a beam can be represented in 
the form 

n, = ~a.(t,r).S[z -sl-z,(t,r)]. (8) 

where (] s ( t, r) is the electron surface density in each 

layer, l is the distance between layers, and zs(t, r) 
is the coordinate of each layer. Substituting (8) into 
the equation for the potential (1), we seek solutions of 
this equation in the form 

!l>(t, r) = <P(t, r) exp (iw.t- ik 11z), (9) 

where WM = 211v0 /l is the beam modulation frequency, 
which is assumed to be close to the plasma frequency 
w2: I w¥ - w2l « w2, and cp is a slowly varying func
tion: I cp I « W2<P. Then Eq. (3) can be represented in 
the form 

( ~-i)i) r_!__- k 11') ( ~ + .!_ew.<(J) = 2niew.~e'•. 
r r ar at 2 l 

In the derivation of (10) we have averaged over the 
longitudinal period of the beam and introduced the 
notation ljJ = k 11z- WMt and t: = 1 - w~/w 2 • 

(10) 

With the same notation, the equations of motion of 
the electron bunches become 

.!-(Y!..:.._) = _ _:_Re[ik 11o:pe-'•] 
iJt iJt m ' 

_aa (yv,)+v,-a8 (yv,)=__:_Re(~e-••], 
t r m iJr 

8a 1 a 
at+ -;:-a;:-(rv,a) = 0. 

(11) 

(12) 

(13) 

We assume that the plasma radius greatly exceeds 
the wavelength k 11 b » 1, and that the beam radius 
b » a, so that the field geometry is determined by the 
ratio of the beam radius to the wavelength and we con
sider first a sufficiently broad beam k 11 a >> 1. The 
terms proportional to the derivatives with respect to 
r in the left-hand side of (10) can then be neglected and 
the equation for cp can be represented in the form 

(14) 

We assume that the following inequality is satisfied 

k 11a ~ y,', (15) 

so that the effective radial force exerted on the bunch 
by the field is small compared with the longitudinal 
force, and in addition, vr(t = 0) = 0. Under these as
sumptions we can neglect the transverse displacement 
of the electrons and assume, when integrating (11) and 
(14), that the electron density n1 is constant at each 
point r. 

The system of equations (11) and (14) coincides with 
the analogous equations obtained in[7l for an unbounded 
beam, and can be integrated. Introducing the amplitude 
and phase of the field ik 11 cp = Ee1", we represent the 
closed system of equations in the form 

d • e 
dt(yz) =- --;;_E cos(ljl-11), (16) 

• 2new.n, 
E= k cos(ljl-tt), 

II 

· 1 2new.n, 
tt= --2 ew.+ sin(ljl-ti). 

k 11E 

From the first and second equations of (16) we get 
the momentum conservation law 

n,miy + E' I 4nv, = n,mv,y,. (17) 

Expressing ~ in terms of z from (17) and introducing 
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the variable 1J = lf! - ", we lower the order of the sys
tem of equations (16): 

E = 2nen,v, cosT], 
· 2nen,v, . { Yo- W 2 } 

T] = - --E- sm T] + w2 1 - """'[:-:-1-:+-v,72c'-:-:2 (-y,---w-=-2 ):-::2::-:]'-:-f, (18) 

(we have put ~ = 0 and w2 = E 2/ 41Tn 1mv~). Integrating 
(18) with initial conditions IJ ( 0) = E ( 0) = 0, we get 

w c2 { [ v 2 ] ''' } ___:wsinrJ=w2 +- 1+-' (y,-w2 ) 2 -y,. 
Wz V02 . c 2 

(19) 

The foregoing analysis shows that the electron 
bunches situated at the initial instant of time at the 
phase IJ = 0 corresponding to the maximum of the in
teraction of particles with the field subsequently lag 
the wave and shift into the region of phases IJ = 1T/2, 
where the force acting on the bunch is equal to zero. 
Putting in (19) sin 71 = 1, we obtain an equation for the 
maximum field amplitude, which has an approximate 
solution in the form 

(E2 /8n)"'"':::::: n,mv,'y,'(v /2) '1;, y,v'" ::(; 1. (20) 

The characteristic growth time of the field amplitude 
turns out to be of the order of 

In the case when inequality (15) is not satisfied, the 
transverse motion of the electrons become significant. 
For a beam with parameters 

(21) 

the longitudinal displacement of the bunches can be 
neglected, and the equations for the field (14) must be 
considered in conjunction with Eqs. (12) and (13). 
Making the substitution .:p = '{JoeiJ, we obtain 

(22) 

(23) 

(2~) 

The effective beam density n1 = a/l, which enters in 
(22), satisfies the continuity equation (13). 

Since no exact solution of the system (22)-(24) 
could be obtained we present below a qualitative analy
sis. We note first that since the longitudinal beam 
velocity does not change, we can put lf! = 0 without loss 
of generality. Further, at J 0 = 1r/ 2, at the start of the 
process, the amplitude of the potential increases 
linearly with the time: .:p0 = -21ren1wMt/k~1 . The pres
ence of a frequency deviation ( ~ "" 0) leads to a drift 
of the field phase and to a detuning of the resonance 
between the beam and the wave when the phase reaches 
a value " ~ 1. Since the law governing the time varia
tion of the phase is close to linear, the characteristic 
time of development of the transverse instability turns 
out to be of the order of T 1 ~ 1/ WM~, and the ampli
tude of the potential reaches a value 

4nen1 • 

'l'm~=-~sJgne. 
(25) 

When the amplitude and phase of the field increase, 
a radial force F 1 appears and acts on the electron 
bunch. According to (24), the maximum of this quantity 

corresponds to J = 0 or " = 1T: 
F _ 4ne2 f)n, 
J.m~-- klt28 Tr· (26) 

Since the electron density in the beam reaches a maxi
mum value on the axis and drops off towards the peri
phery, it follows that a n1/o r < 0 and the field exerts 
a focusing action on the beam at ~ < 0 and defocuses 
the bunches at ~ > 0. It follows from (24) and (26) that 
the radial displacement aR of the electron during the 
time of development of the instability turns out to be of 
the order of 

(I'.R) 2 ~ _1_~_!_1_ 
ku2 w2' y, I e I'. 

(27) 

The presence of radial focusing of the beam at a 
modulation frequency WM < w2(~ < 0) has the following 
physical explanation. In the reference frame of the 
beam, the dielectric constant of the plasma at the 
modulation frequency WM = 21Tvo/l is negative (and it 
is precisely this frequency which is appreciable near 
the resonance[ 9 l), so that the Coulomb repulsion force 
between the electrons Fe = e 2/rf. gives way to attrac
tion and self-contraction of the bunches takes place[9 J. 

With increasing initial beam radius, the dynamics 
of the instability does not change in principle, but the 
radial force of the field on the beam decreases. For 
a beam with radius small compared with the wave
length, k 11a « 1, we can neglect in (10) the terms pro
portional to k~, and the dependence on the variable r 
can be eliminated from (10), (12), and (13) by making 
the change of variables 

'l'(t, r) = g(t) r"2 e'"'", v, = ft(t) r. (28) 
R(t) 

Equations (10) and (12) then take the form 

. a' 
g =- new.n10 R' sin(ljl- fr); 

· 1 newMnto a2 
tr = - 2 ew. +--g-R' cos(ljl -fr); 

.. e 
R -.-gcos(ljl- tr)R = 0. 

my, (29) 

In the derivation of the third equation in (29) we have 
assumed that the condition Yo 2 >> v~/ c 2 is satisfied 
and we have taken the relativistic factor outside the 
sign of the derivative with respect to time. 

We shall show now that the formally introduced 
function R(t) coincides with the beam radius. To this 
end, we consider the continuity equation (13): 

f)n, R 1 fJ 2 at+ R-;:a,:(r n,) = 0, 

which satisfies the following conditions at t = 0: 

r~a 

r>a 

(13') 

(30) 

We take the Laplace transform with respect to the 
variable T = -ln (R/a): 

n, (p, r) = rP-2 [A - f ~·-• n, (0, s) d~], 
0 

and determine the integration constant A from the 
condition n1(p, a)= 0. The inverse transformation 
leads to the formula 

(31) 
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{ n"a'/R', n1 (t,r)= 
0, 

r ~ R(t), 

r > R(t). 
(32) 

Relation (32) was used in the derivation of the equations 
in (29). 

Just as in the preceding case (when the inequality 
(21) is satisfied), the bunches become shifted in phase 
into the region 1/J - .J = 0 or 1/J - .J = 1r, depending on 
the sign of ~, as the instability develops. The radial 
state of the beam is then described by the equation 

1 ffit2 a2 , 
R----=0. 

2 y,e R 
(33) 

In the case when ~ < 0, radial stability is obtained. 
Multiplying both halves of (33) by R and integrating, 
we obtain 

w 'a' R 
11' =--'-In- ~o = 0. 

lelyo a ' 
(34) 

Since R2 > 0, the allowed region of variation R < a 
corresponds to self-collapse of the electron bunches. 
We note that as R - 0 and R- co the hydrodynamic 
velocity of the beam remains finite, since r < R. 

In the modulation-frequency region ~ > 0, the beam 
becomes defocused. 

At small beam radii, the transverse thermal scatter 
may become significant. To take this effect into ac
count, we introduce the gradient -Tanda r of the 
kinetic pressure in the beam ( T is the transverse 
temperature) into the right-hand side of the radial 
equation of motion (12) and consider the transverse 
steady state of the beam vr = 0: 

edqJ+_!_dn,=O, _!_~(rdqJ)=4nen1 • (35) 
dr n,dr rdr dr lei 

Integrating the first equation, we express the density 
in terms of the potential 

n,(r) =n,(O)exp(-e-rp/T) (36) 

and eliminate it from the second equation of (35): 

_!_~(rdiJJ)-~exp(-IJJ)=O; IJJ=eqJ. (37) 
r dr dr R' T 

The solution of (37) is 

IJJ=2ln(1+_c_) R'= Tiel (38) 
R' ' ne'n,(O) 

Substituting (38) in (36 ), we obtain the radial distribu
tion of the density in the beam 

n (r\ = n,(O) (39) 
1 

• (1 + r'/R')' 

It follows from this relation that the electron density 
remains practically constant at r 'S R and decreases 
rapidly when r > R. With increasing electron density 
in the beam, the effective radius decreases like 1/ ..rn;. 
Integrating both halves of (39) with respect to rdr, we 
arrive at the relation 

~ T 
N, =Jn,rdr=-~, lei, 

ne (40) 

which determines the condition for the existence of the 
stationary regime. At N > Nc radial oscillations arise 
in the beam, and in the opposite case N < Nc there is 
irreversible defocusing of the beam under the influence 
of the kinetic-pressure gradient. 

Thus, the foregoing analysis demonstrates the 

feasibility of radial self-focusing of a strongly modu
lated beam in a plasma if the beam modulation fre
quency is close to the plasma frequency: w2 - WM 
<< w2 , In addition, the model considered above enables 
us to analyze the dynamics of the particles in a beam of 
continuous density under conditions of beam-plasma 
instability. According to formula (6), the dielectric 
constant of the plasma at the self-modulation frequency 
is negative and equal to ~ = -(v/2Y 0 ) 113 • If the beam is 
furthermore relativistic with respect to the transverse 
velocities, T ~ mc 2ro, then the "unstable" electron 
bunches, which transfer their energy to the wave, com
press in accordance with (38) to 

R ~ (c /w,) (y,/v)''•. (41) 

Strictly speaking, formula (38) can be used for a beam 
whose radius does not exceed the wavelength. However, 
in view of the physical equivalence of the processes, it 
is also qualitatively correct for a broader beam whose 
radius satisfies the inequality (21 ). 

Simultaneously with focusing of the beam particles 
that fall into the slowing-down phases of the field, the 
instability field defocuses the particles that are in the 
accelerating phases. 

4. QUASILINEAR THEORY OF INSTABILITY OF A 
BOUNDED BEAM 

During the quasilinear stage of development of the 
instability, when the electron beam excites a broad 
spectrum of longitudinal wave numbers in the plasma, 
conditions are produced for the focusing of the beam 
uniformly over its entire length. This effect is the 
result of the fact that as their longitudinal velocities 
diffuse, the beam electrons interact with a large num
ber of field harmonics, spending the greater part of 
the time in the slowing-down phases, where the parti
cles give up their energy to the field and become 
focused. 

Taking into account the cylindrical symmetry of the 
problem, we represent the kinetic equation for the dis
tribution function of the beam in the form[aJ 

a1 v, a at at -+-- (rf) + v 11-+ eE- = 0, at - r ar az aw 
(42) 

where v is the velocity and w the momentum of the 
beam particles. Separating the slowly and rapidly 
varying parts of the distribution function r BJ, we arrive 
at the relations 

at, v, a ( at. ) -+--(rto)+e E- =0, 
at r ar aw 

When calculating the alternating part of the beam 
density 

n. = J t.dw 

(43) 

(44) 

we shall assume the expansion parameter in the sum 
(43) to be small: 

(45) 

and retain only the terms with s = 0 and s = 1 : 
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J a [ aw,, v, 1 a ( of,)] dW n,=e - iEu•fo+---- rE,,- . (46) 
OWu av,, ku r or aw, (l)- kuv,, 

We expand the fields E Ilk and Erk in terms of the 
eigenfunctions of the waveguide and assume that f0 

does not depend on the variable r. Then, substituting 
(46) into the equation for the potential (3}, we arrive 
at a dispersion equation for the harmonic with wave 
vector k = ( i\p/b, k11 ): 

. b . 

1 _w2'+4ne2k11 2 JrdrJh(rw) dw _ 0 
2 k 2 b'J '(' ) ' k - ' ro t ""P w- 11v11 

0 

(47} 

where 

h a [ 2 ( r ) awn "-.' , ( r ) of,] (r,w)=- J, Ap- /0 ----,--,J, i..p- v,- . 
OWu b av,, ku b b aw, 

(48) 

Solving (47}, we obtain the quasilinear increment 

n 4ne2w2 2 r • [ow 11 J ftRp=-z-k-2-b'J,'(Ap)~rdr~ avuh(r, W) - dw,, 
0 W11 

(49) 

In the derivation of (49) we used the presence of the 6 
function and integrated with respect to the variable w 11 , 
so that w11 is the root of the equation v11 (wr, w11 ) 

= wz/kll: 

- 2 ~ph ( 2 2 + ') own m (1 + w,' )'" (50) 
wu = 1- ~ph m c w, ' Bv; = (1- ~P~)'I• m'c' ' 

where ,Bph = w2/ck11. 
Taking (49) into account, we represent the equation 

for the field energy density in the form 

oE't, = n 4ne2w2m 2 E~" r r ( 
at k' b'J 2 (i.. ) .,, .\ rdr' 1 

1 p (1-~ph') ;, • 
.,, 

+ w;',) h(r,w) I dw" me _ 

"''I 

(51} 

To obtain an equation for the background component 
of the beam distribution function f0 , we substitute fk 
from the second equation of (43) in the first equation 
and then average over the variables r and Wr· As a 
result we obtain 

a b "" a E' r l' I at~ rdr~f0dw,- ne• ;8 a;;;- v"~ ~ rdr ~ h(r, w) _ dw, = 0. 
o p=l II P o wn (52) 

The integration with respect to k 11 was carried out with 
the aid of a 6 function. 

It is impossible to integrate Eqs. (51) and (52) in 
general form, since the integrals in the right-hand 
sides of (51) and (52) are different. To continue the 
calculations and to obtain an analytic solution, we take 
the factor ( 1 + w~ / m2c2)112 outside the integration sign 
at the point wr, where the steady-state distribution 
function reaches a maximum with respect to the trans
verse momenta. Then, integrating Eqs. (51) and (52) 
and using the second equation of (50), we obtain 

00 b' ( A 2 4 ' d I b • ~TJ,'(I-.p) 1+ k.ib")E~,= :v<P d:n_~rdr~(/00 -f,.)dw, 
p~l I, II ph w," (53) 

where f00 is the height of the plateau, with respect to 
the longitudinal momenta, on the distribution function, 
and fM is the initial distribution function of the beam. 

Expressing foo in terms of the number of particles 
per unit beam length 

2 N 
f =---

00 b:.:. w2- Wt' 

b 

N= JrdrJ f,dw 

" 
(54) 

and transforming the left-hand side of (53) with the aid 
of the relation 

b' ( )., ' ) b 
E,p'ZJ,'()..P) 1 + k ;b' = J jE,P(r) l'rdr, (55) 

II ,1 

we obtain the formula 

"" b ' ;8 \I Ekp (r) i'rdr = 4nvphiV ~I w II- w,' (56} 
p=l ~ k 11 dvph ;;;, w, -- w1 

where w2 > w1 are the limits of the plateau with re
spect to the longitudinal momenta on the beam distribu
tion function [ 61. 

Integrating both halves of (56) with respect to the 
phase velocities, in analogy with[ 6l, we determine the 
energy density of the field excited by a relativistic 
bounded beam in the plasma 

1 s· .. 1 ( 1 1 + ~. ) v, < > - IEI'rdr=-Nmc' y,--ln-- , ~.=--. 57 
8n , 4 2~, 1 - ~. c 

We note that when recalculated in terms of a unit 
volume of the plasma, formula (57) leads to the same 
result as the analogous expression in [sJ, which was 
derived for the unbounded case. 

We analyze the transverse particle motion in the 
beam on the basis of the equation 

at. v, a o'f, 
-+--(rf,)-D(r)--= 0, 
at r or· ow,' 

(58) 

which is obtained from (43) (by retaining the highest
order term of the expansion in the parameter TJ, which 
vanishes after averaging over wr in Eqs. (51) and (52}}. 
Simultaneously with the formation of the plateau on the 
distribution function and with the cessation of the growth 
of the field amplitude, a stationary transverse state of 
the beam is established, a f0 /<H = 0. The solution of 
Eq. (58} was obtained for this case in[aJ and makes it 
possible to express the steady-state distribution func
tion f oo ( r, wr) in terms of its value on the axis 
f(O, wr), or equivalently, to express the beam radius 
R in terms of 'Wr· The same result can be obtained by 
comparing the second and third terms in (58) and using 
for the estimates D ~ JTe 2n1mc 2 w21: 

(59) 

The transverse velocity vr can be estimated by 
noting that the transverse beam temperature increases 
with increasing field in accordance with the diffusion 
law. Comparing the first and third terms in (58), we 
obtain vr ~ c, and from (59) it follows that 

R ~ cy, / <uzV. (60) 

The establishment of a stationary transverse state 
of the beam can be explained physically in the following 
manner. The interaction of the electrons with the in
homogeneous random radiation field leads, on the one 
hand, to radial focusing and diffusion of the electrons 
towards the beam axis, and on the other hand to trans
verse heating and thermal expansion of the beam. The 
equilibrium between these processes is established 
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when the beam radius reaches a value R determined 
by formula (60). 

Using formula (60 ), we find that the expansion 
parameter (45) in the kinetic equation turns out to be 

(61) 

It should be noted that for a beam with a distribution 
function that is smeared with respect to the velocities 
we can obtain nonlinear stabilization of the beam insta
bilityP2l as a result of transfer of the oscillation en
ergy into the nonresonant part of the spectrum via in
duced scattering. 
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