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The nonlinear stage of development of ion-acoustic instability of a weakly ionized, current-carrying plasma is investigated under 
the conditions of applicability of the hydrodynamic approximation. The amplitude of the stationary wave, its period and 
propagation velocity, and also the development of instability can all be studied near the instability threshold, when only the 
fundamental mode increases. It is shown that the growth of the ion-acoustic oscillations is limited by the ion viscosity. The 

case corresponding to conditions of large excess above the threshold is also studied. 

1. INTRODUCTION 

IT is well known that, excitation of ion-acoustic oscil­
lations is possible in a spatially homogeneous, noniso­
thermal plasma, with Te » Ti, which is located in an 
external electric field. The linear theory of the ion­
acoustic instability of plasma of both the collision-free, 
and collision-dominated varieties has been considered 
in detail in an external electric field in a number of 
researchesfll (see alsof 2l), In contrast with the linear 
theory, the nonlinear theory of this instability, which 
describes the stationary ion-acoustic oscillations and 
the process of their establishment, is still far from 
complete. The results obtained in this region refer 
only to collision-free plasma,£31 or to a plasma with a 
small number of collisions.r4l The reason for the insta­
bility of the ion-acoustic oscillations under these con­
ditions is the Cerenkov effect on electrons; the mecha­
nism of the stabilization of the instability is due to the 
quasi-linear action of the excited oscillations on the 
electron distribution function. 

The present research is devoted to the investigation 
of the nonlinear stage of development of the ion-acoustic 
instability in a dense, weakly ionized plasma with a 
large number of collisions, under the conditions when 
the hydrodynamic approximation is applicable. The 
cause of the instability here is the drift of the electrons 
relative to the quiescent ions, which changes the 
character of the electron heat conductivity and diffu­
sion; the growth of the ion-acoustic oscillations is 
limited by the weak ion viscosity. The mechanism of 
stabilization in a bounded system is connected with the 
appearance in the nonlinear stage of damped higher 
harmonics of the fundamental growing mode of the ion­
acoustic wave. We have succeeded here in tracking the 
distortion of the wave profile, and of determining the 
stationary amplitude, period and propagation velocity 
of a wave of finite amplitude, 

2. INITIAL ASSUMPTIONS AND FUNDAMENTAL 
EQUATIONS 

We now consider a weakly ionized plasma in an ex­
ternal constant electric field E0 • Under the action of 
this field, the electrons of the plasma will drift relative 
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to the ions and the neutral particles with velocity 

u = eE,/mv,, (2.1) 

where 11 e is the collision frequency of ions with neutral 
particles. Moreover, thanks to the ohmic heating, the 
temperature of the electrons in such a plasma will 
deviate from the temperature of the ions, so that T e 
>> Ti. We shall neglect the effect of the electric field 
on the ions. 

Under the conditions when the drift velocity u is 
larger than the velocity of ion sound Vs = (Te/M)112 , 

excitation of ion-sound oscillations in a weakly ionized 
plasma is possible with a wavelength greater than the 
free path length of the electrons (kVTe < lie) and with 
a frequency greater than the frequency of ion-neutral 
collisions ( w > IIi). For the description of the picture 
of the development of such an instability of the plasma, 
the following hydrodynamic equations are applicable: 

eV<P- T,V Inn- mv,v, = 0, 
Mdv, I dt = -eV<P- Mv,v, + Ml)o~v,, 

a Inn I at+ v,V Inn+ Vv, = 0, 
a In nl at+ uV Inn+ Vv, = 0, 

(2.2) 

where c1> is the potential of the field of the ion-acoustic 
wave, Ve and Vi are perturbations of the velocities of 
the electrons and ions, and l'lo = Ti/MIIi is the specific 
ion viscosity. In the description of the system (2.2), 
the temperature of the electrons was assumed to be 
constant, which is valid under the conditions of large 
electron heat conductivity, when Wile << k2vTe' 

Introducing the quantities 

.P=e<PIT,, p=lnn, D,=T,/mv, (2,3) 

and limiting ourselves to a consideration of the one­
dimensional case, we write down the system (2.2) in 
the form 

a 
v, = D,8;" (ljl- p), 

dv, 2 aljl a'v, 
""dt = - v, a;-- v,v, + T)o ax' ' 

ap op av, 
at+ v,a:; +a;-= 0, 

op - op - av, 
at+ua;-+a;-=0. 

(2.4) 

Eliminating ve and l/J from this set, we obtain a set of 
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two equations (dropping the subscript i of Vi): 

iJp I iJt + viJp / iJx + iJv I iJx = 0, (2.5) 
iJ ( iJv iJ'v ) [ m ( iJ iJ ·) , iJ' ] - -+v,V-1']0 - = -v, -+u- -v, -, p. 
iJx iJt iJx' M iJt iJx . iJx 

The set (2.5) can now be reduced approximately to a 
single equation by replacing ap/at in the small com­
ponent, which is proportional to m/M, by -avjax (in 
accord with the linear approximation of the first equa­
tion), and by replacing the quantity apjax in the small 
nonlinear component of the first equation by 
-v-;avjat (which is a consequence of the second equa­
tion if small dissipative components are neglected). 
As a result, we get 

!:!.- v.'!:!.=[ _!!!_v,( ~+ u~)- v,!_ 
iJt' iJx' M iJt ax iJt 

iJ' ] iJ'v' 
+11•~ v- iJtiJx. 

(2.6) 

This equation is the basis of the entire further analysis 
of nonlinear ion-acoustic oscillations. 

In the linear approximation, for excitations of the 
-wt•ikx t th t f · t' form e , we ge e spec rum o wn-acous 1c 

waves from (2.6) (w- w + iy) 

w'=k'v.', y=+·;·C. -1)v,-}v,-+k'1l•· (2.7) 

It is then seen that at drift velocities 
u M v, M k'11• (2 8) 
->1+-·~+-- . 
v~ m 'Ve m _'Ve 

the ion-acoustic oscillations become unstable for a 
given k. It is evident that in a bounded system, the 
greatest wavelength oscillations, with kmin ~ 1/L, 
have the minimal threshold for oscillation. Here L 
is the linear dimension of the system.1> 

3. DEVELOPMENT OF THE ION-ACOUSTIC 
INSTABILITY NEAR THRESHOLD 

Let us consider a plasma near the instability 
threshold u ~ umin• such that obey the fundamental 
mode with k = kmin was increasing, and all higher 
modes are damped. In such a state, we can expect the 
establishment of nonlinear ion-acoustic oscillations of 
finite amplitude. The existence of a steady state here 
is guaranteed by the transfer of energy from the funda­
mental, increasing mode of oscillations to the higher, 
damped mode. In the study of the development of the 
ion-acoustic instability near threshold, it is convenient 
to introduce the above-threshold parameter 

wv.(ulv.- 1)- "'- k'1']o 
e=~ (3.1) 

k 21']o 

where 11. = m/M. Near threshold of instability, when 
E « 1, the solution of the exact nonlinear equation of 
ion-acoustic oscillations (2.6) can be sought in the form 

v = v,(t)e'"1•-".'> + v,(t)e'"1'-"•" +.c.c., (3.2) 
where v1 and v2 are slowly changing amplitudes of the 
first two modes of oscillations (for simplicity, we have 
neglected possible nonlinear distortion of the frequency) 

l)We note that in a rigorous consideration of the boundary problem, 
the longitudinal wave number k, is quantized: k,z7Tn/L, where 
n=l,2, .... 

Substituting (3.2) in (2.6), and equating the coefficients 
in the same exponents, we get 

da, i. da, ., 
-=a1-~a1a2, e-=-3a2.-tat, 

dr: e dr: (3 .3) 
-r: = yt, a,,, = kv,,, I 'Y•· 'Y• = y + k'1']o I 2. 

From (3.3) we get a nonlinear equation which de­
scribes the time development of the fundamental mode 
of ion-acoustic oscillations, A1 = a1ai: 

dA, 2 A,' 
~=2At--•~ 

dr: 3 e · 

The solution of this equation has the form 

{ 1 ( 1 1 -· A,(-r:)= -+ ---}e-"} , 
. 3e A,(O) 3e 

(3.4) 

(3.5) 

where A1 ( 0) is the initial value of the amplitude of the 
ion-acoustic waves, which is determined by the thermal 
noise in the plasma. 

From (3 .5) we find the stationary amplitude of the 
fundamental mode of the ion -acoustic waves' 

A,(oo) = 3e. (3.6) 

It is easy to see that A2( co) = a2 a~ ~ E2 and so on. As 
was to have been expected, the proposed method of de­
termination of ion-acoustic waves in a weakly ionized 
plasma near the instability threshold that is an expan­
sion of the solution of the nonlinear equation (2.6) in 
powers of the parameter E : the square of the amplitude 
of the n-th harmonic is proportional to En. 

4. ION-ACOUSTIC WAVES OF FINITE AMPLITUDE IN 
THE CASE OF LARGE SUPERCRITICALITY 

In the general case of arbitrary superthreshold, the 
solution of the nonlinear equation (2.6) presents serious 
difficulties. This equation is relatively easily analyzed 
in a case of large superthreshold, when E » 1. This is 
in contrast to the case considered above. We shall as­
sume here that in the limit as t -co, an ion-acoustic 
wave of finite amplitude is established in the plasma 
and therefore all the quantities can be assumed to be 
dependent on the argument 1; = kx - wt. This allows us 
to reduce Eq. (2.6) to the usual equation of second 
order, which describes the stationary ion-acoustic 
wave of finite amplitude, 

1']ok'd'~ +( 1 - k'v.' _ 2w)dw +[!!!_Y::.. (4.1) 
w d\;' w' d£ M w 

( ku ) v, J X -;;;-- 1 ---;; w = 0, 

where w = kv/w. 
Equation (4.1) is identical in form with that investi­

gated in[ 5l for a stationary drift wave. Therefore, 
following[s,sJ, we write (4.1) in the form 

dw df = g == P(g, w), (4.2) 

1']ok' dg · 
2c;"df=- !:>g+gw- rw == Q(g, w); 

21:1 = 1- k'v.' 
2 ' w 

1.1 v, ( ku ) v, r = 2 -;,;- --;---1 -~> o. 
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Using the criterion of Dulac, 21 £?J we find the condition 
for the existence of periodic solutions of the system 
(4.2): 

(4.3) 

Thus, the dispersion relation for ion-acoustic waves 
remains in force for arbitrary excess above threshold 
and amplitude of the wave. 

Equation (4.1) is materially simplified with account 
of the relation (4 .3 ), and takes the form 

1 d'p p dp (4 4) 
e+ 1 d~' -rdf+P =O. • 

In writing down of this equation, we have taken it into 
account that, in accord with (2.5), with accuracy to 
small dissipative terms, w = p. Finally, by substitu­
tion of the variables 

T 

s= [2(e+1)J"'' ( 2 )''• dh. p= -- r-
e+ 1 d-r 

(4.5) 

Eq. (4.4) reduces to the form studied in£ 61: 

2 d'h. -(~)'+h.= 0. 
d-r:' d,; 

(4.6) 

This equation has a first integral 

g' == ( ~~ ' ' = ce• + h + 1, (4.7) 

where C is the constant of integration. According to 
the analysis carried out previously, [61 the periodic 
solutions (4.6) correspond to closed integral curves in 
the ( g, h) plane, to which correspond the values 
0 > C > -1. The values C ~ -1 correspond to almost 
sinusoidal solutions, which in turn correspond to the 
case considered above of small superthreshold t: « 1. 
Actually, inasmuch asr 6J C = -exp(-g~), where gm is 
the amplitude value of g, then gm « 1. Recognizing, 
moreover, that 1 hI « 1 here we find from (4. 7) 

( 2 )''• . (f-g,.').IJ-gm1 (4.8) 
T R~ 1 , arcsm ---'---=-,--'----='-"-

-gm 2'f•gm 

Finally, according to (4.5) we have 

) 2''•rg,. [(1 + ) (1 ' 1'' 
P(s = [(e+i)(1 -gm')J''•cos e -gm) •s. (4.9) 

Since the period of this function in ~ should be equal to 
T ~ = 27T, then satisfaction of the condition 

(1-g,.')(1+e) =1, (4.10) 

2 >Choosing F = A/(g- n as an arbitrary function, we see that the 
expression 

a a t.•r 
- (FP)+- (FQ)= ---;;;. 0. 
ilw ilg (g-f) 2 

Therefore, according to Dulac's criterion, the system (4.2) has periodic 
solutions only for A= 0, i.e., for the condition (4.3) 

is necessary, whence it follows for the case considered, 
t: ~ g~ « 1, and 

p(s) = (2e)"'rcoss, (4.11) 

which corresponds to the result (3.6). 
In the opposite limit, when C - -0, the integral 

curve essentially passes close to the separatrix corre­
sponding to C = 0, and only for a large positive value 
of h = hm ~ h0 = g~ » 1, which corresponds to the 
larger root of the equation 

ce•. + h + 1 = 0, (4.12) 

does it drop down sharply, undergoing transition from 
the upper branch of the separatrix to the lower. In this 
case, the oscillations take on a sawtoothed form with 
period raJ 

(4 .13) 

From the condition T ~ = 27T, it follows that gm 
= 2-1/ 2 7T(t: + 1)112 , whence, with account of (4.5), in the 
limit t: >> 1, we find the amplitude of the wave 

(4.14) 

The physical meaning of the sawtoothed shape of the 
solution thus found is easily understood if we take it 
into account that, for larger superthreshold (t: » 1), 
the excitation of a large number of different harmonics 
occurs and the oscillations have an essentially non­
harmonic character. 
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