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Quasihydrodynamic equations for transverse waves in an inhomogeneous plasma are obtained in the geometric optics approxi­
mation. Examples of bounded equilibrium radiation blobs in which the light pressure is balanced by the plasma pressure are 
considered. The spectrum of radiation balancing a plasma of prescribed profile is calculated. 

1. The propagation of low-amplitude electromagnetic 
waves in an inhomogeneous plasma has been considered 
in many papers (see, for example, the monograph[ 1l, 
and the literature cited therein). A number of 
papersr 3- 5 l have considered monochromatic waves of 
intensities so high that the radiation pressure becomes 
comparable with the plasma pressure. In this paper 
we solve, in the geometrical optics approximation, 
certain problems involving the interaction of intense 
nonmonochromatic radiation bunches with a plasma. 

2. In the geometrical-optics approximation, the 
motion of transverse quanta in an inhomogeneous 
plasma is described by the equations 

dr aw. dk aw. ,, 2 + 'k" v=-=- -=--. ; W•= rWo (r) c . 
dt ok , dt or 

(1) 

Here vis the group velocity of the waves, k is the 
wave vector, and wa(r) = (47Te 2ne(r)/mY12 is the elec­
tron plasma frequency. If we introduce the momentum 
p = tik and the "mass" 1-L k = tiwk/ c2 of the quantum, 
then Eqs. (1) can be rewritten in the form 

P=f.tV, 
dp a e' 
-= --Vn,(r); a=2:rtl!-, 

dt w. m 
(2) 

so that the force exerted on the quantum by the ex­
ternal medium is proportional to the gradient of the 
electron density ne( r ). If we introduce the function 
Nk( r, t), representing the number of quanta in the 
state k, and normalized in such a way that the quantity 
N( r) = 2 f Nkdk/ 8113 is equal to the number of quanta 
with two possible polarizations in a unit volume, then 
all these quanta will be acted upon by the summary 
force (see (2)) 

f.=-UVn,, U=aJ~2~. 
. w. S:rt' 

(3) 

The quantity U has the dimension of energy, and we 
shall show below that it is equal to the average kinetic 
energy of an electron oscillating in the rapidly alternat­
ing field of the waves. 

3. In the absence of absorption and scattering of the 
quanta, the function Nk( r, t) satisfies the kinetic equa­
tion 

a a • 
-N. + div (vN,) + -(kN,) = 0, at ak 

(4) 

which when multiplied respectively by 1, tik, and tiwk 
and upon integration over the number of states 2dk/ 811 3 

(with allowance for polarization) yields the quasihydro­
dynamic equations for the ''gas'' of quanta: 
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f) I) ~ 
atN+ div(N(v)) = 0, Ttp =- V ·:rt+ 

~w+c'divP- U_!_n =0 
iJt fJt ' • 

(5') 

(A similar system was previously obtained for longitud­
inal waves in[ 6l.) We have introduced here the obvious 
notation 

N = J <D.dk, (v) = ~ J v<D. dk, P = J l!k<D. dk, 

(6) 

Contraction of the tensor n yields the relation 

(7) 

We note that the system (5)--(5') is not closed. In the 
stationary case we have the equation 

V ·:rt' =f.= -UVn., (8) 

which describes the equilibrium of the plasma with the 
radiation. 

· 4. It is useful to trace a more detailed derivation of 
(5') directly from Maxwell's equations 

-:-B=- c rotE,_!_E = crotB- 4n1· (9) 
vt fJt ' 

where j = env and mv = e(E + c- 1v X B). Writing down 
the relation 

iJ E'+B' c a;:----s;;- =- divz;;-[EB]- jE, (10)* 

we expand the field in plane waves 

E (r, 1) = ~ Ekei (kr-rok') dk, (11) 

which can propagate in the plasma. Here Ek is as­
sumed to be a function that varies slowly with the time 
and with the coordinates. Assuming the existence of 
many harmonics with random phases, we introduce the 
correlation function 

(E."Ek') = K. (r, t) 6 (k- k'). (12) 

The bar denotes averaging over the phases. Recogniz­
ing that Bk = ck x Ek/wk and Ek 1 k (transversality), 
we obtain the averaged Poynting vector 

- c - c f J ck' ' . k 
S=-4 [E,B]=-4 dk dk'-(E."E.,)=-c-J-K.dk. (13) 

:rt :rt w., 4:rt w. 

If we define the number of quanta Nk by the relation 

*[EB] =EX B, 
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(14) 

then, taking the definitions (6) into account, we easily 
verify that 

- 1- 1 1-1 
S = c'P,-E' =-w,-B' =-w- Un,. 

Bn 2 Bn 2 
(15) 

and thus the energy of the quantum per unit volume is 

S dk 1 --
W= 1ico.lV.2-. =-(E'+B')+Un, 

Bn' Bn 
(16) 

and includes, besides the field energy, also the kinetic 
energy Une of the electrons oscillating in the field[ 7l. 

Substituting the obtained values of V, B2 , and 'S in 
the average equation (10) 

a--- - - -Tt(E' + B')/Bn + divS =- jE = ~ en,(vE), (17) 

we obtain 
a ·a a -

iitw + c'divP- Uatn, = n, [ atU- e(vE)], (18) 

and to obtain equality with (5') it is necessary that the 
right-hand side vanish. 

5. To prove the validity of the last relation 

a 
e(vE)=atU, (19) 

we represent the position of the electron in the form 
r = R + p, where p « R. The quantity p describes the 
rapid oscillations of the charge about the average posi­
tion R. We represent the equation of motion of the 
electrons in the form (we expand the fields in terms 
of p) 

m(R + 11) = e{E(R) + (pV)E(R) + c-'[pB(R)]}, (20) 

and for fast oscillations we have 

' nij, =m~=eE(R,t), v= :LE(t')dt'. (21) 

This oscillation velocity 11 must be substituted in (19 ), 
from which R drops out. 

' t tt - a J - e' a e(vE)=- dt'e(Ev),,=--J dt'E'(t')JE(t")dt" 
at m at 

-oo -oo -co 

=_::_..!_sdkdk' ~ (22) 
m tit (co•- co.,)ill 0 , • 

The fields were represented here in the form of the 
expansions (11 ). Symmetrization under the integral 
signs in (22) 

1 1[ 1 + 1 ] 1 
(co.-co.,)w •• -+2 (w.-co.,)co., (co •. -co.)co• = 2co.co., 

leads to the result 
- e' a J K. a e(vE)=-- -dk=-U, 

2m at <•h' i}t 

which proves (19 ), as well as (5') by virtue of (18 ). 
6. Averaging the equation of motion (20) over the 

fast oscillations and recognizing that 

[pB]=-lp ;t s] =c[protE]. 

we obtain 

(23) 

mR = F, = e{(p V)E + [p[VE]]} = eV (pE). (24) 

The caret over E indicates the action of the operator 

V, but since E = mv/e, we have e(pE) = m(pv) 
= -m(1111), and consequently F 1 = -%mV(112 ). 

Using expression (21) for 11 and the expansion of 
the field (11) we obtain, taking (12) and (14) into acoount 

m--:vz e2 ---

- = -S dk ak' (E .. E •• l /co. co •• = u, 
2 2m 

(25) 

so that the quantity U introduced in (3) is the average 
kinetic .energy of the electron oscillating in the field. 

On the other hand, substituting (25) in the force F1, 
we get from (24) 

mR = F, = -VU (26) 

and consequently, the quantity U plays the role of the 
potential energy at slow electron displacements. 

We note that an analogous situation is encountered 
in thermodynamics, where the quantity Ugas 
= cvT(%kTN at y = %) is the kinetic energy of the 
fast thermal motions of the molecules and plays at the 
same time the role of the potential energy Ugas 

co 

= j'pdV = pV/(r- 1) in the slow process of adiabatic 
v 

(pvY = const) expansion of the gas. 
7. Multiplying ·F1 by ne, we obtain the force acting 

on all the electrons in a unit volume, and therefore the 
hydrodynamic equation describing the motion of the 
plasma in the field of the waves can be written in the 

pV = -Vp88,+ fE; fE = n.F, = -n,VU. (27) 

Formulas (26) and (27) generalize the results ob­
tained earlie:frs-DJ for monochromatic fields to include 
the case of a nonmonochromatic set of waves with ran­
dom phases. 

In the case of stationary equilibrium between the 
plasma and the radiation, we obtain from (8) and (27) 
the self-consistent equations 

V·n=f,=-UVne, Vpgas=fE =-n,.VU. (28) 

Assuming quasineutrality ne = Di = n(r) and, in the 
simplest case, constancy of the total temperature T. 
= Ti + Ti of the electrons and ions in space we obtain 
from the second equation 

Pgas=nT., n(r) =n(oo)e-&iT+ (at U(oo) =0). (29) 
This Boltzmann distribution is analogous to that ob­
tained inr3 • 4l for monochromatic waves. If we assume 
not the field but the plasma density profile to be speci­
fied, then we obtain from (29) the equilibrium value of 
the quantity 

U(r) =T.Ing-•, g=n(r)/n(~). (30) 
The first equation of (28) then takes the form 

V·n = n(oo)T.IngVg = -V(p888+nU) (31) 

and in a number of cases it is possible to obtain from 
it the distribution of the field that balances a specified 
plasma profile. 

8. Let us consider a concrete example of a similar 
self-consistent problem for a profile in the form (see 
Fig. 1) 
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n(oo)-n(O) q 
n(x)=n(oo)- =n(oo)g, g(x)=i----,(32) 

ch'(x/a) ch'(x/a) 

where q = 1- (n(O)/n(oo)) < 1. In the case n(oo) = 0, 
such a profile would correspond to a flat layer of a 
plasma with thickness on the order a, with a density 
that drops off towards the periphery. As first shown by 
Epstein[ 10l, the wave problem of reflection from such 
a layer can be solved exactly. In our case n( oo) 
> n(O), corresponding to a "small well," and the prob­
lem consists of finding the radiation that is strapped in 
it and has a pressure capable of balancing the indicat­
ing profile. 

Let us consider the case when the radiation consists 
of waves propagating only along the x axis. The tensor 
11 ap (see (6)) has in this case only the component 11xx, 
wh1ch obviously coincides with the contraction (7), 7Txx 
= w - 2nU, and since all the quantities depend only on 
x, by integrating (31) and assuming that there is no 
radiation at infinity (x = ±oo ), we obtain 

w- nU + Pgas= const = Pgas( oo). (33) 

Taking (30) into account, we obtain the energy density 

w(x) =E'i4rr.=pgas(oo)(1-g+glng-'). (34) 

This expression is valid for any flat layer. For a con­
crete layer, say of the form (32), we can obtain from 
this the total energy of the trapped radiation (at n(O) 
= 0, q = 1, ~ = x/a) 

+w += 

W= Jw(x)dx=apga8(oo) J (ch-'6-th'6lnth'6)d6 

= ( ~ - 2 ) apga,( oo), (35) 

per column of unit cross section dydz = 1. 
9. The radiation considered by us is not in thermo­

dynamic equilibrium, and therefore cannot be com­
pletely described by specifying only the quantities w 
and U in Eqs. (28) which do not even form a closed 
system. Their solution is therefore not unique. 

Moreover, it is clear that the specified plasma pro­
file can be balanced by the radiation pressure only at 
a definite spectral composition of the latter. In es­
sence, therefore, it is necessary to know the distribu­
tion function Nk( r, t) itself, and not only its integral 
characteristics 

e' sN• dk J dk U=2nfi- -2-, andw= fiw.N.2-. 
m w. 8n 8n' 

(36) 

In the case of a flat layer with trapped waves propagat­
ing only along the x axis (anisotropic one-dimensional 
radiation), this problem admits of a unique solution in 
the case of a monotonic density profile g( x) 
= n( x)/ n( oo ), of the type shown in Fig. 1. 

10. In fact, the general solution of (4) is the function 
Nk, which depends in arbitrary fashion on the integrals 
of motion of the quantum. In the one-dimensional case 
ky = kz = 0, and therefore the only integral of motion 
is the frequency wk itself, so that here Nk 
= f( Wk) 1i ( ky) 6 ( kz ). Taking this unique dependence into 
account, we write down the quantity U(x) (36) in the 
form ( dk = dkxdkydkz) 

+lkml 

U(x)=: J u,(w.)dk,; e' JJ N. dk,dk, (37 ) u,(w•)=2nfi- -2--. . 
m w. 8n' 

-lhml 

Here I km I is the maximum value of I kx 1 • Recogniz­
ing that Wk and hence also u1 are even functions of 
kx, and changing over to a new variable Wk, we have 

km 

U=2fu,dk,=2fu, dw. _!_Ju,(w.) dw.' , (38) 
0 · iJw.jiJk, C l'w•'- Wo'(x) 

where the integration with respect to w is carried out, 
using as limits the local plasma frequency w0(x) and 
the maximum frequency trapped in the well w0 ( x- oo) 
= wo( oo) = ,I 47re2n( oo )/ m. It is convenient to introduce 
a new integration variable s = w~/w~(oo) and the rela­
tive plasma profile in the well g(x) = n(x)/n(oo) :s 1. 
Then (38) takes the form 

Wo(oo) s' ds 
U(x)=-- u,(s) (39) 

. c <<•> Ys-g(x) 

and u(x) depends in turn, for the Boltzmann distribu­
tion (29), on the profile g(x) in accordance with the 
formula (30 ), so that if we put f( s) = u 1 w0 ( oo )/cT., then 
by equating (30) and (39) we obtain the Abel integral 
equation 

ln~ = J f(s)ds 
g ;vs- g 

(O,;;;g,;;;i), (40) 

a solution of which is the function 

!( 2 v 1- s s) = --. arctg ---. 
nVs s 

11. Gathering the results, we obtain the distribution 
function of the quanta trapped in a well with arbitrary 
plasma-wall profile 

me 1/ ( w,(oo) )' N.=ll(k.)ll(k,)4nf);'T+arctg V ~ -1, 

where Wk = ,I w~ (x) + c 2k2 • The dependence on the con­
crete profile n(x) enters in Nk only via the frequency 
Wk, so that the energy density can be represented in the 
form 

where (here II = ..fS = w/ Wo( oo)} 

( ) 2 Ss dk,dk, ak. 
w. x = fiw.N.2---

8n' aw. 
= 8 Pgas(oo) v' V1- v' 

-'-"'-:'"'--:-"---;:::==:::-arctg ---
n w,(oo) Vv'-g(x) v 

(41) 

is the local energy density per unit frequency interval. 
Integrating this expression with respect to x, we 

obtain the spectral distribution of the total energy 

- J 8 s 11 1 - s +l'tl dx 
W.- w.(x)dx=-Pgas(oo)--arctgl v-- f . 

n w,(oo) s l's-g(x) 
-1"<1 (42) 

The last integral must be taken over the region where 
s - g(x) > 0. For the concrete profile (32) considered 
by us earlier, it is equal to 

J[s-1 + qch-'(x/a)]-'hdx = na/1'1-s, (43) 

so that in this case formula (42) becomes 

dW = W,.dw = 8apga8(oo)F(v)dv, 

where the function F( 11) is 
v' l'1-v' {'/,nv' 

F (v) = --=arctg --- = 
V1- v' v 1 

for 
for 

'\)~ 1, 

v-+1. 

(44) 
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'[ZM FIG. 2. Spootrum F(•) of "!Wlibrium-
ation in a well with density profile (32). 

...!!!...._ 
6!ofao) 

Q 1 

The spectrum F( v) is shown in Fig. 2. It is easy to 
verify that the integral of (44) over the frequencies 
gives the value of the total energy (vmin = 0 if q = 0 

W=8ap88,(ooJ.:(v)dv = c; -2)ap88,(oo),· 

obtained earlier in (35). At given W and Pgas(oo), this 
relation determines the dimension a o1 the well. 

12. It is easy to consider also the inverse problem 
of finding the equilibrium plasma profile, given the 
spectrum of the total energy Ww. Then, in accordance 
with (42), one should regard as known the function 

+l~tl , 
/(s)= J lb.· = 2 Jdx(g) dg = :nw0 (oo) W. 

· l's-g(x) <•> dg l's-g 8pgas(oo) sarotgl's-'-1 
-jXfl C 

(45) 
This equation can be solved only if the spectrum Ww 
vanishes at 11 2 s g( 0) < 1 and extends up to v = 1. 
Then, solving the Abel equation (45), we obtain for the 
profile g( x) the inverse relation 

x = x(g) = _!_ j l(s)ds . 
2:Jti(O) yg- 8 

For example, substituting here J( s) = wa/ ~ 
from (43)), we get x(g) =a cosh- 1[(1- g(0))/(1- g)], 
which corresponds to the profile (32). 

13. Let us consider finally a spherically symmetrical 
well in a plasma and assume for simplicity that the 
radiation consists entirely of quanta moving only on 
circular orbits, so that kr = o. Putting k1 = (k0 
+ k~)112 and equating the centrifugal and radiant forces 
in (2), we have 

v ' a an 2 ( ) a ( ) 
JJ._.::_ = -·----., meaning c'kj_' = -~r____!_!__, 

r w. ar 2 ar 

Therefore on a circle of a given radius r there can 
move only quanta with frequency 

g(r)=~ (46) 
n(oo) 

as a result of which the quantities U and w (see (32)) 
turn out to be connected by the relation 

w= Jnw.'~2~=(2n+r~)u 
w. 8:rt' ar ' 

and the tensor i has obviously the form (see (7)) 
A A 

A(" ")(w ) (A rr) ran :n= 6-·-;;- 2 -un = 6--;:;-- U2a;-

The first equilibrium equation in (28) is satisfied 
automatically, and from the second we have 
U=T+ln(1/g), sothat 

w(r) = p88,(oo) ( 2g + r :r g )ln(1/g). 

For example, for a spherical well with density profile 
g(r) = 1 - cosh-2[(r/a)3] (see (32)) we have 

w(r)=2pg.,(oo) (th's+3s th!;)ln-1_. 
ch' 6 th' ~' 

and then the total energy in the well is 
" 

W= f w(r)4:nr'dr= ; :na'p,.,(oo)x, 

where (see (35)) 

x= J(3ch-'&+th'6lnth's)d6=5- :·. 

In view of the one-to-one correspondence of the 
radius and the frequency, which is given by (46 ), it is 
easy to write for this case also the distribution of the 
total energy with respect to the frequencies, dW 
= W wdw, where 

w. = w(r)4nr~= ..!.na"w(r)~ = ___!!_cp(v), 
dw 3 dw w,(oo) 

and the function cp ( v ), normalized by the condition 
1 J cp ( v) dv = 1, is determined from the parametric rela-

0 

tion 
4 (sh'6+36ths)'~o 1 

cp(v) =-; 5sh6 + 3sch6(1- 3th's) ln th' 6' 

11 th 6 
v = v th's+36--. 

ch's 

For small v « 1 we have, in particular, cp ( v) 
= (v 2/K)ln(2/v)2• 

In analogy with~ spherical well, it is easy to con­
struct also a cylindrical well with quanta moving in 
circles, we shall not stop to discuss this case. 

In conclusion we note that in the concentric model 
with circular orbits of the transverse quanta, which 
was considered above, four-wave processes of induced 
scattering do not change the distribution function Nk, 
so that the evolution of trapped radiation is possible 
only as a result of electron collisions and a three-wave 
process in which one longitudinal and two transverse 
quanta take part. These questions, however, deserve a 
separate analysis. 

The author is most grateful toM. A. Leontovich, 
T. F. Volkov, and L. I. Rudakov for critical remarks 
and for a discussion of the results. 
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