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The time course of luminescence quenching in the presence of excitation migration along donors is studied theoretically and 
experimentally. The quasidiffusion and stepwise cases of migration in a disordered medium are considered theoretically. 
Nd3+ in glass is investigated experimentally at temperatures between 20" and 600'C. Migration is found to be of a stepwise 
nature. The NdJ+ -Nd3+ interaction underlying the migration is assessed. 

A study of the migration of electron excitation over 
like rare-earth ions, particularly over Nd3+ ions, is of 
interest both for a more precise analysis of the lasing 
process and for clarification of the physical nature of 
the interactions that lead to transfer of the excitation 
energy. 

The migration effect has been usually investigated 
either under laser generation conditionstt-<~l or else 
immediately after generation. ts,s] The interpretation 
of the experimental results is not always unique, since 
an important role is played, for example, by the inhomo­
geneity factor, the ratio of the inhomogeneous and homo­
geneous broadenings. 

We attempt here to estimate the effect of migration 
in the case of weak nonlaser excitation. For such an es­
timate it is possible to use the plots of the time depen­
dence of luminescence after brief excitation in the pres­
ence of a quencher. 

1. THEORETICAL PART 

The time dependence of luminescence in dipole-dipole 
quenching and in the case when the excitation migration 
has a diffuse character has been considered in a number 
of studies, for example in ttl. At low active-ion concen­
trations, however, when 41Tnr~/3 < 1 (r 0 is the minimum 
possible distance between active ions), the excitation 
migration cannot be described by the diffusion equation, 
owing to the large fluctuations of the ion-ion transition 
probability. 

Let us consider from somewhat different points of 
view, without resorting to the diffusion equation, the mi­
gration of excitation over donor ions when the excitation 
is simultaneously quenched by acceptors. We assume 
that both the donor-donor excitation transfer and the ex­
citation quenching by the acceptor result from dipole­
dipole interaction. (The reasoning can be generalized 
to include also other types of interaction.) 

We consider a certain definite excitation and deter­
mine for it the probability of not being quenched by the 
instant t. Mathematically it is necessary for this pur­
pose to find the quantity 

• 
(N(t))=( exp{-.EJ W.[R(t'))dt'};), (1) 

a o 

averaged over the ensemble of the possible realizations 
of the excitation trajectory. Here Wn [H(t')] is the prob­
ability of quenching by the a-th acceptor, and the sum­
mation is over all the acceptors. 

This problem is formally similar to the problem of 
the line shape in gases, considered by Anderson. tal Go­
ing over to the limit when the volume of the system V 
- oo and the number of acceptors Na - oo, under the 
condition Na /V = nA = const, we obtain, in analogy with 
Anderson's resulttsJ 

(N(t))= ( exp{- 4nnA j R'dR[ 1- exp(- J W[R(t') ]dt'}]}) 
0 0 (2) 

Here nA is the number of acceptors per cm 3, and the 
angle brackets denote averaging over the ensemble of 
the trajectory realizations. 

We note that, unlike in gases, where the motion is 
over trajectories characterized by an average velocity 
v, tal in our case the migration represents a random 
walk of the excitation over randomly disposed donors 
with average concentration nn. 

Let us discuss qualitatively the character of the time 
variation of the luminescence.· If the quenching pre­
cedes the migration, then the quenching occurs in quasi­
static fashion (R in {2) does not depend on t): 

(N(t) )= exp{- 4nnA j R'dR [1- e-w<n"]}. {3) 
0 

When W{H) = CnA/H6 (CnA is the characteristic of 
the donor-acceptor interaction) we obtain from this 
Forster's well-known result 

(N(t)) = exp (-yytj, 

The same result is obtained for the initial stage of the 
process at small values oft. In the final stage, the pro­
cess becomes exponential, N{t) = exp (- Wt), with W de­
termined by the migrating excitations (excitons) whose 
paths enter the region of strong interaction with the ac­
ceptors, where they are quenched. 

We introduced the strong-quenching sphere (Rw) de­
fined by the condition W(Rw)T = 1, where W{Rw) 
= CnA/Rw is the probability of quenching when enter-
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The transition from the initial quasistatic part of the 
process to the exponential one is determined approxi­
mately by the limiting time, from the condition that the 
number of nondepleted quasistatic excitations exp (- 4wnA 
x R\.v /3) (the number of excitations that do not fall ini­
tially into the strong-quenching sphere) be equal to 
exp (- Wt), i.e., 

(4) 

The passage of the exciton through the sphere Rw 
differs in character, depending on the ratio between Rw 
and the average donor-donor distance L = (3/4wnn)1/ 3• 

When Rw » L, the passage is via a large number of 
jumps and has a quasi-diffuse character. When Rw :>. L, 
the exciton, falling on a donor located inside the sphere 
Rw, "sits" for some time on the donor, and then leaves 
Rw as a result of single jump; we call this a jump pas­
sage. Similar situations for the case when the donors 
make up a crystal are considered in Agranovich's book. [QJ 

We make a few estimates in the quasidiffusion case. 
We begin with Rw. By definition, W(Rw) = CnA/Rw, 
T = Rw/D, (Dis the diffusion coefficient), i.e., 

Rw = (Cv .. !D)''•. (5) 

As already mentioned, at small values of nn, the con­
cept of the usual diffusion coefficient is not valid. We 
are more likely to have in this case a distribution of 
diffusion coefficients. We can, however, introduce a 
certain quasidiffusion coefficient D1, which determines 
the average time of spreading of an exciton packet. In­
deed, for the packet to spread it is necessary that the 
distance from the donor on which the exciton is located 
to the neighboring donors be approximately the same, 
for otherwise an exciton falling on a pair of closely­
lying donors will settle on this pair, and will spread 
only to the extent that it interacts with the more remote 
donors. Therefore, to estimate D1 it is necessary to cut 
off the integral in terms of which D is determined in the 
usual manner at a distance on the order of L, i.e., 

(6) 

(Cnn is the donor-donor interaction characteristic). 
To estimate the characteristic of the exponential de­

cay W, we use the result obtained in c71 : W = 4wnADa, 
where a is the scattering length, which has the same 
meaning as Rw, i.e., 

(7) 

With the aid of (4) we can estimate the limiting time 
of transition from the quasistationary decay to the ex­
ponential one : 

t 1=Rw'i3D. (8) 

As expected, this time has the same order of magni­
tude as the time of spreading over a distance Rw. 

As indicated above, the quasidiffusion case takes 
place when Rw » L, so that when (5) and (6) are taken 
into account the condition for the applicability of the 
results reduces to 

(9) 

ing the sphere and T is the time of passage of the exci­
ton through this sphere. 

We emphasize once more that by virtue of the semi­
quantitative character of the analysis, formulas (5)-(8) 
should be regarded only as estimates. 

We now proceed to consider the case of jump motion 
of an exciton (Rw :>. L). To estimate Rw we must take 
as the time of passage of the exciton through the strong­
quantum sphere the most probable donor-donor transfer 
time Tm, since the contribution of one nearby pair during 
the time of "sitting" does not exceed the corresponding 
contribution of an unpaired donor, and the number of un­
paired donors is much larger than the number of pairs. 
Since we have in dipole-dipole interaction Tm = (3/2w)3 

x 1/nnCnn. c1o] it follows that 
Rw = (CnA / nn'Cnn)'1•(3/2n) 'i•. (10) 

To determine W we recognize that in the case of fre­
quent jumps of the excitation, the averaging of the decay 
law (2) is equivalent to averaging of its rate. The latter 
is determined, in the case of the Poisson distribution of 
the lifetime of the exciton on the donors, exp (- TjT0 )T~1 dT 
(T0 is the average time), by the product of the jump fre­
quency by the average efficiency of "sitting": 

W= ~n .. fR'dR+j rp(ro)droj[ 1-exp(- C;:T)]e-'''• ~:- (11) 
0 0 

We have introduced here w = wn - w A• which is the dif­
ference between the transition frequencies of the donor 
and the acceptor, and cp ( w ), which is the density of the 
distribution of this difference; these two quantities take 
into account the existence of the inhomogeneous broad­
ening. For 1/T 0 = ~m we use the most probable value of 
the donor-donor transfer rate with allowance for the in­
homogeneous broadening, i.e., the donor-donor deviation 
w' with distribution density f(w'). Using the Markov 
method and following Rozman, c1oJ we obtain 

6m= (2n/3)' [I }"Con(ro')j(ro')dro' r no'. (12) 

Calculation of the integrals in (11) and the use of (12) 
yields 
W = n(2n/3)'1• [S l'Co .... (ro)rp(ro)dro] [ J }"Coo(ro')f(ro')dOi'l n .. nn 

(13) 
= n(2n/3)'1•K,.K,n .. no. 

To estimate the integrals K 1 and K 2 we assume that 

CDA(ro) == CDA(O)y,' 
ro'+y,' ' 

Cno(ro) = Coo(O)y,' 
ro'+v.' 

and we make use of the fact that 

-- 2 --s~ dx l'Co .. (ro\ = -y,fCnA(O) · . . 
n 0 ro'+y,'+x' 

Then, breaking up the integration into regions from 0 to 
~1, 2 and from ~1, 2 to co (~1, 2 are the widths of the dis­
tributions cp(w) and f (w)) and assuming ~/'Y >1, we ob­
tain 

2 -{ [A' 1/~] K, =-y,fCn .... (O) mp(O)ln -+ f~, + 1 
n Y• y, 

n 1 A,} +---arctg- . 
2y, y, Y• 

(14) 

When ~ » y we have 
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2y, -( 21'>.,) K, =---.l'CDA(O) i+In- . 
:riLl, . Y• 

A similar result is obtained for K2• 

The initial quasistatic section of the time variation, 
with the inhomogeneous broadening accounted for in 
similar fashion, will be described by the expression 

N(t) = e->i'; y = 'f,n'l• [ J l'CDA(w)<p(w)dw] nA = 'f,n''•K,nA. (15) 

The limiting time of transition from the quasistatlc 
section to the exponential one in the jump case is 

3 3 1 t,=(-) ~ 2n ·K,'nD' · (16) 

We have thus obtained expressions for the time de­
pendence of the luminescence in terms of the character­
istics of the donor-acceptor and donor-donor interac­
tions. 

2. EXPERIMENTAL PART 

The time dependence of the luminescence was regis­
tered with a stroboscopic setup covering a dynamic 
range of intensity variation up to 40-50 dB. The error 
in the initial section was 1-2% and towards the end of 
the dynamic range not more than 10%. 

The functional diagram of the setup is shown in Fig. 
1. Sample 6 is excited at a frequency 120 Hz by short 
( ~ 10 J.l.Sec at 0.35 level) light flashes from an ISSh-400 
lamp 2. The luminescence past the monochromator 7 
is registered by an FEU-22 photomultiplier. The photo­
current from the output of the photomultiplier 8, in the 
form of a periodically repeating curve of the time vari­
ation of the luminescence, is fed to the photocurrent 
meter, which is opened by strobing pulses for 5-10 J.l.Sec 
in synchronism with the light flashes, but at double the 
frequency (240 Hz). 

When the signal and the strobing pulses are simul­
taneously applied to the photocurrent meter 12, every 
second strobing pulse receives an amplitude increment 
proportional to the instantaneous value of the signal at 
the instant of coincidence. The measuring circuit sup­
presses all the harmonics with frequencies above 120 
Hz (carried), and the fundamental amplitude of the en­
velope of the strobing pulses (120 Hz) is separated and 

FIG. 1. Functional diagram of stroboscopic setup. !-High-voltage 
rectifer, 2-block for switching the ISSh-400 lamp, 3-block for syn­
chronizing the ISSh-400 lamp, 4-G5-48 pulse generator, 5-strobing 
pulse generator, 6-investigated sample, 7-ISP-51 monochromator, 8-
FEU-22 photomultiplier, 9-disc modulator (four main and eight auxil­
iary holes), 10-6.3V lamp, 11-photodiode, 12-strobing photocurrent 
meter, 13-EPP-09 potentiometer. 

measured with the aid of a synchronous detector. Such 
a method of strobing and separating the signal ensures 
high linearity and small null drift owing to the automatic 
cancellation of the de component that always appears as 
a result of the strobing. 

In the case of slow (smooth or stepwise) variation of 
the delay of the strobing pulses relative to the start of 
the light flashes, the synchronous-detector output volt­
age, averaged over a large number of flashes, also 
changes smoothly or stepwise in accordance with the 
time variation of the luminescence. The setup was de­
scribed in detail ear Her. [UJ 

It should be noted that if the characteristic damping 
time of the luminescence is comparable with or larger 
than the repetition period of the strobing pulses, then 
the reference strobing pulses also acquire increments, 
i.e., an error appears as a result of the fact that the 
luminescence intensity is no longer measured from a 
zero level. To eliminate this error it is necessary to 
interrupt the light flux from the sample at the instant 
when the reference strobing pulses appear. This is 
done with the aid of an additional disc modulator 9, 
against which all the units of the setup are synchronized. 

The time dependence of the luminescence of Nd3 + was 
registered in the 0.9 J.l. region, where there is practically 
no reabsorption. The experimental time dependence was 
plotted in a semilogarithmic scale (log J vs. t). We then 
determined the difference between the semilogarithmic 
curves corresponding to the active ions with and without 
the quencher. The difference curve made it possible to 
exclude from consideration the damping constant without 
quenching, which is important for glasses, where the 
time dependence of the luminescence of the samples 
without the quencher is no longer exponential, apparently 
as a result of the presence of various types of lumines­
cent centers in the glass. An example of the semiloga­
rithmic curves and of the difference curve is shown in 
Fig. 2. 

We investigated in detail the time dependence of the 
luminescence in a series of silicate glass samples 
{53.0% Si02, 25.9% BaO, 21.1% K20, 1.0% Sb20 3) at Nd20 3 

concentrations from 0.5 to 8% (percentages by weight in 
excess of 100%). The measurements were performed at 
room temperature and on samples heated by a specially 
constructed quartz electric furnace to 200, 400, and 
600°C. 

The following results were obtained: 
1. The time dependence of the luminescence corre-

sponds to the formula J ~ e -yfi in the initial section 
and J ~ e-Wt in the final section. This can readily be 
seen by pl9tting the difference curve in terms of the 

FIG. 2. Time dependence of 
luminescence (log J vs. t). a) 6% 
Nd2 0 3 , b) 0.5% Nd2 0 3 , c) differ­
ence curve). 
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coordinates log log J and log t (Fig. 3): the curve has 
an initial slope close to 7'a, which subsequently ap­
:proaches unity. 

2. The value of y is approximately proportional to 
the concentration of the quenching acceptor, which is 
assumed here to be equal to or proportional to the 
Nd20 3 concentration. It should be noted that, generally, 
speaking, the role of the quencher can be played both 
by the Nd3 .. ions themselves (owing to the transitions 
4F312- "11512 in the donor and 4I912- "11512 in the ac­
ceptor), and by a random uncontrollable impurity in­
troduced with the neodymium oxide; in addition, the 
quenchers can be nonluminescent Nd-Nd pairs. We 
shall present later on certain arguments favoring the 
assumption that the main quenchers in the investigated 
glass are the Nd3 .. ions themselves. 

Table I gives the values of the ratio yfcA, where CA 
is the concentration of Nd20 3 in weight percent (with ac­
count taken of subtraction of 0.5% Nd20 3, corresponding 
to the practical absence of quenching, and with recalcu­
lation of the glass composition to 100% to allow for the 
introduction of the Nd20 3). 

The error is estimated from the measurements for 
quencher concentrations from 1.46 to 5.16%. 

3. The dependence of W/cA on the donor concentra­
tion en, with indication of the errors, is shown in Fig. 4. 
As seen from the figure, the errors in the quantities are 
quite large for the first two donor concentrations. This 
is due to the fact that the difference curve is obtained 
by subtracting curves that are very close to each other. 
For the two concentrations, the error, with the excep­
tion of one case, is less than 10%. The obtained depen­
dence of W/CA and en can be approximately regarded 
as linear. The slope of the lines in Fig. 4 gives the ra­
tio W /c ACD for different temperatures. 

4. The temperature dependence obtained for B 
= W/CACD is shown in Table TI. 

Figure 5 shows the dependence of log B on the recip­
rocal absolute temperature. We see that up to 400°C the 
dependence is approximately linear, i.e., B = WfcAcD 
- exp (- E/kT), where the activation energy E ~ 140 
cm-1; near 600°C, a sharp bend upwards is observed. 

5. The temperature dependence of the ratio c A has 
the same character (Fig. 5), and the activation energy 
is also close to 140 cm-1• 

3. DISCUSSION OF RESULTS 

Since the time dependence of the luminescence atten­
uation due to quenching and migration (curve c on Fig. 2) 
turned out to be close to the theoretical one, we consider 
it possible, by using the results of the theoretical part, 
to estimate the donor-acceptor and donor-donor inter-

t, J.&&eC 

FIG. 3. Difference curve (Fig. 2c) in coordinates log log J and log t. 

Table I 

'· •c I 20 200 

TfCA 13.32±0.3914.4±0.4814.9'!:0.62,6,4±0.54 

FIG. 4. Plots of W/cA against the donor concentration at different 
temperatures. 

Table II 

vel 20 1 200 1 400 1 .oo 

B I 23 I 30 I 34 I 46 

f,3 

6911 5§0 l!JU u ' u 
I Z J !U4/T'K 

FIG. 5. Temperature dependence of B = W/cACD (a) and of "fiCA 
(b). 

action characteristics K1 and K2 • Indeed, by determining 
experimentally the values, averaged over the set of con­
centrations, of the quantities y/cA (Table I) and W/cAcD 
(Table TI), we can use formulas (15) and (13), from which 
we see that the parameter of the initial part of the time 
dependence (y/cA) depends only on K1, and that of the 
final part (W/cACD) depends on K1 and K2 • 

Using Table I, we estimate by means of formula (15) 
the quantity K1 = j.,tcnA(w) cp(w)dw. The result is given 
in Table m. 

As already mentioned, we assumed that the acceptor 
is the Nd3 + ion. If the acceptor were a randomly intro­
duced impurity, whose concentration was smaller by 
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Ta6JIJiqa 3 

t. ·c 1 20 1 200 1 400 1 600 

K,.[O"I ~-5 I 0.661 0. 731 0,94 

several orders of magnitudes than the concentration of 
the Nd3 \ then the value of K 1 would be much larger and 
the corresponding Forster radius R0 would reach ~50 A, 
which is much larger than the possible values for rare­
earth ions. 

To estimate now the donor-donor interaction charac­
teristic CnD or K2 from the experimental values of W, 
it is necessary to ascertain whether the exciton motion 
is jumplike or quasidiffuse, i.e., to estimate the quan­
tity C = % 7TnAR~. From the drop of the difference 
curves at the transition time, from the ..ff law to the 
linear law, we find that in our experiments C does not 
exceed 0.4, i.e., Rw < L, and consequently the exciton 
motion is jumplike. 

Using formula (13) and Tables II and III, we obtain 
the values of K2• We get K2 ~ 2.8 x 10-20 for tempera­
tures up to 400°C, and K2 ~ 3.0 x 10-20 at 600°C. The 
fact that K2 is practically independent of the tempera­
ture is the result of the parallel temperature depen­
dences of Bandy (Fig. 5), which confirm the correct­
ness of the assumption that the migration has a jump-
like character, for in this case W and y are proportional 
to K1• Thus, the observed activation energy ~ 140 em -1 

is connected with donor-acceptor excitation transfer, 
and this quantity amounts to approximately one-half the 
energy of the third level of the multiplet 419; 2 of the Nd3+ 

ion. [12J. Such a result, with allowance for the empirical 
level scheme of the lower multiplets of Nd3 + in glass, [13J 

is evidence in favor of the assumption that the quenching 
is a result of the transitions 4F3; 2 ~ 4l 15;2 and 419/2 ~ ~15;2 
in the Nd3 + ions with participation of the third level 41912• 

The activation energy of B and y corresponds to E/2, 
since B and y are proportional to ) CDA , and CnA 
~ exp (- E/kT). 

Using the obtained value of K2 , we can attempt to es­
timate the migration velocity that can appear in esti­
mates with lasing. This velocity is apparently an inte­
gral characteristic of the type 

where r 0 is the minimum Nd-Nd distance. We know of 
no experimental data on r 0, but there are x-ray investi­
gations from which it follows that the Ba-Ba distances 
in silicate glass amount to approximately 4 A. [141 Since 
the radius of the Ba2 does not differ much from that of 
Nd3 +, and since we are only interested in the order of 
magnitude of F, we assume r 0 = 4 A. We then obtain 
F ~ 2.8 x 104 sec-1 for the interval from room temper­
ature to 500°C at an Nd20 3 concentration of 5.66%. This 
estimate is close in order of magnitude to that obtained 
in [2,51. 

In conclusion we note that the experimentally ob­
tained values of the limiting time tz decrease, in ac­
cordance with the theory, approximately quadratically 
with increasing concentration en (3.9% at 400 JJ.Sec, 
5. 7% at 250 JJ.Sec, and 7.4% at 150 JJ.Sec ). 

The authors are grateful to L. V. Levkin for useful 
discussions. 
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