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We construct a theory of electric conductivity of liquid metals with allowance for the influence of the dynamics of the ion 
subsystem on the electron scattering. It is shown that the resistance is determined by the scattering of the electrons by all types 
of collective ion motions connected with changes of the density. A connection is found between the coefficient of the electric 
conductivity and the dynamic structure factor of the ion subsystem. Ziman's well known result for the electric conductivity 
is obtained in the particular case when only elastic scattering is taken into account. 

1. Modern theories of the electric conductivity of liquid 
metals are based on the notion of almost- free electrons 
scattered by a disordered system of ionsC 1- 3 J, the inter­
action with the latter being described within the frame­
work of the pseudopotential theoryC4 - 6J. Such an ap­
proach leads to Ziman' s well known formula[ 1J which 
connects the coefficient of electric conductivity a with 
the static structure factor S(k) of the ion subsystem. 
Numerical calculations based on Ziman's formula have 
revealed satisfactory qualitative agreement between the 
theoretical and experimental values of a, but no quanti­
tative agreement was observed for many metalsC 7- 9J. 
This has stimulated a number of papers in whieh 
attempts were made to refine Ziman's theory. This 
refinement involved either the use of different types of 
pseudopotentials, or more accurate (theoretical or ex­
perimental) values of the structure factor, or finally a 
change in the very structure of Ziman' s formula (for ex­
ample, by taking into account the next higher terms in 
the perturbation-theory series for the electric conduc­
tivity). Springer[lo] and Neal[uJ used Kubo' s formula 
for the electric conductivity, and used its expansion in 
terms of the energy of the electron- ion interaction to 
obtain and estimate the first correction to Ziman' s 
formula. It turned out that this correction is quite large 
and its inclusion makes the results of Ziman' s formula 
worse rather than better. Therefore Ashcroft and 
Schaich[lzJ estimated numerically about 10 turns of the 
series that refines Ziman' s formula. The terms of this 
series decrease quite slowly, but the series itself is an 
alternating one, and the total correction to the Ziman 
result turns out to be small. More recently, the thought 
has arisen that the electric resistance of metals, as the 
result of scattering of electrons by the ion system, 
should depend not only on the statistical arrangement 
of the ions (which causes the appearance of the struc­
ture factor S(k) in the expression for a), but also on the 
dynamics of the ion subsystem[13- 15J. In such a case it 
is natural to expect the electric conductivity to be ex­
pressed in terms of a dynamic structure factor S(k; w), 
which contains information on all the types of the col­
lective motions in the ion subsystem. In the present 
paper we demonstrate, in second order in the pseudo­
potential, that the electric conductivity is indeed ex­
pressed in terms of the dynamic structure factor S(k, u.')· 
Ziman's formula is in this case a particular of our re­
sult. It can be regarded as the simplest approximation 

that takes into account only elastic collisions between 
the electrons and the ion. In the general case the resis­
tance is determined by the scattering of the electrons 
from all types of collective ion motions connected with 
the change of density. 

2. We consider a system of N ions with charge z and 
Ne = zN electrons occupyinf a volume V. Using the dif­
fraction model of a metal[ 4 , we write down the Hamil­
tonian :16 of the system in the form 

.ie=li,-~,~)v,+lii- fliNi; (1) 
N 2 1 

it,-ll/V,= r,g~-~,~,}+2 ~ V(IRn-Rn·l), (2) 

- - ~ { ( /i2k2 ) } II,- 11,N, = ~ ·z;;;- '"' 6,,, + p (k- k') w (k- k') a,,+ a,o; 
kk'o ( 3) 

I 0, k = 0; (4) 

w(k)= Ns 1 .v V w(r)e-ik'dr, k*O; p(k)=N.Ee-''R"· 

The indices e and i denote here the electron and ion 
subsystems; w(r) is the local screened pseudopotential 
of the electron-ion interaction; V(R) is the potential of 
the direct ion- ion interaction; lle and JJ. i' mnM are the 
chemical potentials and masses of the electrons and 
ions, respectively; aka and ~a are the operators of 
creation and annihilation of electrons in a state with 
momentum tik and spin a; okk' is the Kronecker symbol. 
In the temperature interval characteristic of liquid me­
tal, the ion subsystem can be regarded as obeying the 
laws of classical statistical mechanics, whereas the 
electrons obey Fermi statistics. Therefore only the 
electronic part .of (1) actually takes an operator form. 

To find the electric conductivity of the system we use 
Kubo' s linear reaction theory 

1 .E elik. o=- ·-f.(k), 
V m 

ko 

(5) 

(6) 

In these formulas, the Greek indlces denote the 
Cartesian coordinates x, y, and z; dv is the operator of 
the dipole moment of the electron gas; the angle brae-
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kets represent quantum-mechanical and st~tistical aver­
aging over the ensemble with Hamiltonian dfJ. It can be 
shown that, accurate to terms quadratic in the pseudo­
potential wj the function fv(k) satisfies the usual kinetic 
equationc17 : 

iJn Vo s ( E- E,) -e~=(Zn)'h dk,lw(k~k,)I'S k-k,; -h- [f,(k)-/,(k.)], 

n'k' [ (E-~-t )] -· v 
E = 2m , n = 1 + exp -knT • , Vo = N, (7) 

S(k, w) is the Fourier transform of the Van Hove corre­
lation function or the dynamic structure factor: 

1 +~ . 
S (k, w) = ZnN S ( 1: exp[- ikRn, (t) ]exp[ikRn,(O)]) e'"' dt. (8) 

The integral equation (7) is solved by expanding the 
product lwi 2 S in Legendre polynomials and the function 
fv(k) in spherical functions: 

( E- E,' '\"1 
lw(k- k,) I'S k- k,; ---It-- = ..::;,..a,P,(cosy). 

l (9) 

Here () and cp are the polar angles defining the direction 
of the vector k; y is the angle between the directions 
of k and k 1• Substituting these expansions in (7) and 
using the theorem for the addition of Legendre poly­
nomials, we obtain the following equation for fto(E) 
= f(E): 

(~),1'(-_!!3:_) ehk =~J dk,k,z] dysinylw(k-k,)l' 
3 DE m 2nh 

0 0 (10) 

( E -E,) X S k -k,; -h- [f(E)- j(E,)cosy]. 

Since the electron gas is strongly degenerate at the 
temperatures in question, it follows that E ~ EF, where 
EF is the Fermi energy. The energy lost by the elec­
tron in interactions with ions is E- E 1• In liquid metals, 
this energy is of the order of kBT. Since E ~ EF 
» k 8 T up to the critical point, it can be assumed that 
f(E 1) "' f(E). Introduction of such an approximation in 
(10) leads to an error at least of order w3 for f, and is 
therefore admissible in an approximation that is quad­
ratic in the pseudopotential. Equation (10) can now 
easily be solved: 

( 4n )'/, ( iJn) ehk 
f(E)= 3 - iJE --;;-',;(k), (11) 

,;-• (k) = 2~~,[ dk,k,' I dy sin'\' I w(k- k,) I'S (k- k,; E ~ E,) (1- cos vl. 

0 0 ( 12) 

Substituting (9) in (5) and summing over the spin varia­
ble, we obtain a final expression for the electric-conduc­
tivity coefficient: 

1 (en )'s~ ( an) ze2,;(k,) a= - dkk'T(k) -- "' , 
3 nm iJ E v0m 

(13) 

0 

where nkF is the electron momentum corresponding to 
the Fermi energy and z/v0 is the electron density. 

3. Ziman' s theory of the electric conductivity of 
liquid metals also leads to formula (13), but in his 
theory the expression for T(kF), the relaxation time, is 

different. To determine the connection between our and 
Ziman's equations, we transform (12), reversing the 
order of integration: 

X [x' -(k,- k,)']. 

From this we can easily verify that (14) goes over into 
the Ziman expression if S(k, w) has a o-like character 
with respect to w for any k. Then the second integral in 
(14) differs from zero only when 0 :=; x :=o 2kF. There­
fore the upper limit of the first integral can be limited 
to the value 2kF, and the limits of the second integral 
can be shifted by ±oo. Finally, making in the second 
integral the change of variable 

n(k/- k, 2) I 2m;:::; nkF(k,.- k,) I m = -w, 

we arrive at the Ziman formula 
z>F 

,;-' (kF) = __!:!~ S dx I w(x) l'x' S S(x; w) dw 
4nh'k/ 

0 

ZkF 

=~ Ji dxlw(x) I'S(x)x'. 
4nh'k/ 

0 

(15) 

This is precisely the conclusion arrived at by 
Mannari1 14 J and Rice[ls] in an investigation of the influ­
ence of inelastic scattering on the electric conductivity. 
Obviously, however, such an approximation is crude and 
corresponds to allowance for only the elastic scattering 
of the ion-subsystem electrons. As shown by experi­
mentC18-20J, the dependence of S(k, u.l) on w is much more 
complicated. In addition to the elastic maximum at 
w = 0, there are a few side maxima corresponding to 
the presence of collective nodes of motion of the ion 
subsystem. In addition, these maxima have by far not a 
6-like character, and the half-width of the peaks is as a 
rule very large. 

For liquids, unfortunately, there is no known exact 
expression for S(k, w), with the exception of the limiting 
case w- 0 and k- 0 (hydrodynamic limit). However, 
even in the hydrodynamic limit there exists, besides the 
elastic maximum, two side maxima corresponding to 
collective motions of the type of acoustic waves, from 
which the electrons are scattered. 

In conclusion, the authors are grateful to Professor 
I. Z. Fisher for interest in the work and for stimulating 
discussions. 
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