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A phase transition involving the formation of a dielectric gap in a semimetallocated in a quantizing magnetic field is considered. 
It is shown that the electron gas exhibits properties of both one-dimensional and three-dimensional systems near the phase 
transition point under consideration. 

1. A phase transition in a semimetal with the formation 
of a dielectric gap in the absence of a magnetic field 
has been investigated theoretically in some detail (see, 
for example, the review of Halperin and RiceL 1 l), The 
investigation of the analogous transition in the case of 
a strong magnetic field is appreciably complicated from 
the theoretical viewpoint, but is more real from the ex­
perimental point of view. The phase transition consid­
ered by us has already been observed by Brandt and 
Chudinov. [2 J 

For a phase transition in a quantizing magnetic field, 
the effects connected with the one-dimensional depend­
ence of the energy on the momentum are important. 
These effects were taken into account in the work of 
Abrikosov. (3 J There, however, the electrons and holes 
were regarded as a one-dimensional gas, i.e., trans­
verse motion of the charged particles in the magnetic 
field was not taken into account. In the present work, 
the features of the correlation functions near the phase 
transition point are investigated with account of this 
motion. It is shown that the electron gas in a quantizing 
magnetic field near the phase transition point under 
study exhibits properties of both one-dimensional and 
three-dimensional systems. 

2. We shall consider a gas of interacting negatively 
charged electrons e and positively charged holes h, the 
spectra of which are isotropic in the plane perpendicular 
to the magnetic field H, and are quadratic along H with 
masses respectively equal to me and mh. Our model 
differs from real semimetals by the equal number of 
electron and hole bands. However, it allows an equating 
of the behavior of the electron-hole gas in the magnetic 
field with three-dimensional (lJ and one-dimensiona.l [3 J 

models. The necessary corrections for the case of a 
different number of bands have been made in Sec. 6. 

We shall assume the magnetic field to be sufficiently 
strong that all the electrons and holes are concentrated 
in the zeroth Landau band. Since the number of electrons 
is equal to the number of holes, their Fermi amplitudes 
are equal. Under these conditions, as has been shown by 
Abrikosov, [3 l significant multiple scattering takes place 
of the electrons and holes with small total momentum 
and with transferred momentum of the order of ± 2p0 • 

Summation of the principal terms of the perturbation 
theory series leads to a system of "parquet" equations 
for the two-particle scattering amplitudes. [ 33 These 
equations are shown graphically in Figs. 1-4. 

The straight lines in these drawings represent the 
zero Green's functions of the electrons and holes in the 

zero Landau band: 
G,, ,(e •. p,) = (ie,.- 6 •. ,(p,))-'. 

The shaded rectangles represent two-particle scat­
tering amplitudes. All the amplitudes (vertices) depend 
on the logarithms of the external frequencies and the z 
components of the momenta, measured from the Fermi 
boundary and, moreover, on the two transverse momenta. 
The "parquet" equations of Figs. 1-4 are described by 
the method of Sudakov, 4 i.e., cross sections are ob­
tained with minimal z-momentum of integration. The 
indices e± and h± for the internal lines indicate that inte­
gration over the z-momenta of the electrons and holes 
is carried out close to ±po. 

As has already been pointed out earlier by the auth­
or, (SJ it is most natural to consider the scattering am­
plitudes in the representation of the two-dimensional, 
total transverse momentum of the electrons and holes. 
We denote the vertices lying on the left sides of the 
equations of Figs. 1-4 by 

2ltP•r,(k), 2ltP•r.(k), ~f,(k), np, r ( ) 
me m~~. m. -;;;- 3 q ' 

respectively, where k is the transverse momentum 
transferred from e- to e+ or from h- to h+, and q is 
the total momentum of e+ and h- or of e- and h+. The 
dependence of the logarithmic variables is not shown. 
The transverse momenta are measured in units of li/.\, 
where i\ = (hc/eH)1 / 2 is the magnetic wavelength, i.e., 
we have used dimensionless variables. 

We note that the choice of a characteristic trans­
verse momentum is not unique. Thus, for example, the 
vertex of Fig. 3 can be chosen in the representation of 
a definite q. The momenta k and q are canonically 
conjugate quantities and play the role of the momentum 
and coordinate, respectively, for the pair e+, e-. For 
the pairs e+, h- and e-, h+, their roles change. r 2(q) 
and r 2(k) are connected with one another by the Fourier 
transform 

r,(k) = f r,(q)e••• ::. 

A simple method of transition from the representation 
in Landau functions to the representation of two-dimen­
sional momentum is set forth in [s l, 

We note that the equations of Figs. 1 and 2 for the 
vertices re and Ib differ only by the bare integration. 
Since, in the latter, we shall be interested only in the 
singular vertex parts which are the same for re and 
rh, we then set re = rh for simplicity and denote them 
by r 1 • 
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FIG. I 

FIG. 2 

FIG. 3 

FIG. 4 

Evidently, the anisotropic singular solutions for the 
vertices correspond to excitons with a moment along the 
field that is not equal to zero, and located in the upper 
Landau bands. Inasmuch as the fundamental role for the 
phase transition is played by the low-lying excited 
states, we can then limit ourselves to the investigation 
of solutions with zero moment, i.e., we assume that all 
the vertices depend only on k = I k I or on q = I q 1. Here, 
in the two-dimensional Fourier transforms, we can im­
mediately carry out integration over the angles, after 
which they degenerate into the Hankel transformation 

J j(q)e'"•~= J f(q)J,(kq)qdq, 
2n , 

where J 0 (z) is a Bessel function. 
In the region in which all the logarithmic variables 

have the same order, the equations of Figs. 1-4 have 
the following analytic form: 

X X X 

f.(k,x)= U(k)+ f!' Jr,'(k,x')dx' + Jr,'(k,x')dx'- J F,(k,x')dx' (1) 
0 0 0 

X X 

f,(k, x) = W(k) + 2 f r, (k, x') f,(k, x')dx'- 2 f F,(k, x')dx', (2a) 
0 0 

. . 
r,(q, x) = W(q) + 2 f F.,(q, x')dx'- 2 f f,(q, x') f,(q, x')dx' (2b) 

0 0 

. . . 
r,(q,x) =- V(q)- Jr,'(q,x')dx'- Jr,'(q,x')dx' + f F,(q,x')dx', (3) 

0 0 0 

where 
x=ln 80 =In 8 ' 

max {Q,], v, I q, I} max {wnT, Vo I k,- 2po I} 

(nn, qz, and wn, kz are respectively the total and trans­
ferred frequencies and momenta; one can neglect the 
difference in the Fermi levels E0 and velocities V0 of 
the electrons and holes with logarithmic accuraey), 
J.J. 2 = (m~ + m~)/4memh, ~ 

F,j(k,x)= f f,(q,x)[;(q,x)J,(kq)qdq, 
0 

-
F,(k, x) = Jr,(k,, x) f;(k,, x) K(k, k,, k,) k,k, dk, dk, 

0 

The kernel K(k, k1 , k2 ) is derived in [5 l. Here we 
only recall that this kernel describes the interference 
of the wave functions of the electron-hole pairs with 
momenta k1 and k2 in the intermediate two-electron 
state. 

3. We shall assume that all the bare interactions are 
small, i.e., g = e2/rrE v0 << 1. The Coulomb interaction 
for small transfers of the z momentum is characterized 
by the small dimensionless parameter K 2 = A.2/r2 , where 
r is the Debye screening radius. Therefore, the Cou­
lomb nuclei U and V for the transverse momenta k, q 
<< K - 1 depend weakly on them and have the form g ln K -z 
"'=i g ln g-1 • The bare vertices W(k) and W(q) are char­
acterized by large momentum transfers. (2p0 for direct 
interaction and Peh for exchange, where Peh is the dis­
tance between the extrema of the bands.) Consequently, 
these interactions are short-range, and in accord with 
[ 5 J have the form 

(4) 

Thus, we can assume that the terms with the Coulomb 
logarithms are appreciably larger than terms of type 
w. 

As was shown in [5 J, the Coulomb terms reduce to 
expressions of the form rj_- Fi which enter in Eqs. (1) 
and (3). Therefore, for not too large x, the change in 
the vertices r 1 and r 3 is determined by terms of the 
order of WZx and is small in comparison with U and 
V. Therefore, we can substitute r 1 = U and r 2 = -V in 
Eq. (2a), and remove the function V(q) (which changes 
slowly for q << K-1) from under the integral over q. As 
a result, we obtain . 

f,(k, x) = W(k) + 2 f (U + V) f,(k, x)dx, 
0 

whence 
r,(k, x) = W(k)exp{ 2 I (U + V)dx, }· 

0 

and similarly for r 2(q, x). 
It is easy to see that perturbation theory is violated 

when r 2 becomes of the order of U, i.e., when 
g ln g-1x << 1. It can be expected that the singularities 
of all the vertex parts lie in this region. Unfortunately, 
it has not been possible to connect the solutions near 
the singularities with perturbation theory. Therefore, 
we shall investigate below the possible types of singu­
larities of the vertex parts without reference to per­
turbation theory. 

4. In this section, we shall assume that the first sin­
gularities over x of all the vertices are achieved si­
multaneously for x = Xo "'=i g-1 and for the corresponding 
transverse momenta equal to zero. It is then easily 
seen from Eqs. (1)-(3) that these singularities are 
poles whose residues are easily determined. Therefore, 
for small positive 6.x = x0 - x and small k and q, the 
vertices have the following form 

f.(k, x) = (2l1x+ak')-'+f,(k, x), (5) 
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r,(k, x) = ± fl-'(2t'lx + ak') + f,(k, x), 

r,(q, XI= -(2tlx + ~q') + f,(q, x), 

r,(q, x) = ±(2Ax + ~q') + g(q, x), 

where a, {3 ~ g-1 • 

(6a) 

(6b) 

(7) 

Since r 2(k) and r 2 (q) are connected with one an­
other by the Hankel transformation, then the pole of 
one of them corresponds to a slow decrease in the other 
at high momenta. To be precise, for large k and q, 

f,(k, x) = ~-'Ko(ky 21'lx~-'), (Sa) 

r,(q, x) =·a-'Ko(qy'2Axa-'), (8b) 

where Ko(t) is the MacDonald function with asymptote 
Ko(t) ~ e-t/if72t. Thus, near the pole Xo 1 i.e., near the 
point of the phase transition, all the interactions become 
long-range of the Coulomb type with the screening pa­
rameter 

-;:;z = 2a-'IJ.x ~ g /f~ 1. 

The corrections to the pole terms are easily deter­
mined by substituting the latter in the integral over the 
transverse momenta. As a result, we obtain expres­
sions of the type 

F,;:::; g'ln'(r I g), 

F,;;:::; gr. 

(9a) 

(9b) 

Substituting Eqs. (5)-(7), (9a) and (9b) in Eqs. (1)-(3), 
we obtain a set of differential equations for the func­
tions f and g. Solving it, we obtain the result that the 
nonpolar corrections to the vertices are equal to 
g ln (r/g) in order of magnitude. 

5. We now consider the region of applicability of 
Eqs. (1)-(4). In these equations, only the bare interac­
tions of all the "nonparquet" graphs for the vertices 
are taken into account. As is well known, [sJ in the 
"parquet" equations, to which the problems of purely 
one-dimensional phase transitions reduce, the contribu­
tion of the unconsidered graphs is small only for 
r << 1. However, in our case, the location changes 
appreciably, thanks to the presence of "fast" integra­
tions over the transverse moment. Thus, for example, 
in the diagram of Fig. 5, the integrations are carried 
out over the three transverse momenta, apart from a 
single logarithmic integration. The contribution of this 
diagram to rl(k, x) for k = 0 has the form 

• 00 

f dx f dk,dk,dk,dk,f,(k,,x)f,(k,,x)f,(k,,x)f,(k,,x)lo(k,k,) 
0 0 

X lo(k,k,)lo(k,k,) 

and, as is easy to see, does not exceed g3 • Similar situ­
ations occur also in the more complicated diagrams, 

The contribution of the "nonparquet" diagrams with 
a large number of singular vertices becomes large only 
for sufficiently small T = (T- Tc)/Tc, when the non­
logarithmic integrations over the longitudinal momenta 

FIG. 5 

become significant. In this case, we can rewrite the so­
lutions (5)-(7) as 

f(k, k,) =a[-r+c(vok,iT,)'+ak']-•, 

where a, c ~ 1, i.e., they have the form of bare corre­
lation functions of a three-dimensional (anisotropic) 
system. We further note that all the kernels with which 
the integrations have been carried out over the trans­
verse momenta are of the order of unity at low momen­
ta. Consequently, in this region, the phase transition 
has a purely three-dimensional character with the cor­
relation fluctuations corresponding to this dimension­
ality and the singularities of the thermodynamic quanti­
ties, The equations of Figs. 1-4 and their solutions 
(5)-(7) are valid, in turn, over the entire range of tem­
peratures where the theory of the self-consistent field 
is applicable. 

6, It is seen from Eqs, (1)-(3) that in the case of an 
arbitrary interaction, a situation can arise in which, for 
example, only r 1(k, x) and r 2(k, x) have polar singu­
larities. Here r 2 (q, x) has a logarithmic singularity 
and r 3(q, x) and the corrections f1 and f2 are finite. 
The reverse situation is also possible, where the polar 
singularities are possessed only by f'2(q, x) and 
r3(q, x). 

Further, the case can occur in which, for example, 
r 1(k, x) has a pole and r 2(k, x) does not. It is easy to 
see that for this it is necessary that the condition 

2 fF,(k, x,)exp {- 2 I' r, (k, x,)dx, }dx, = w (k). 
0 0 

be satisfied. On the left side of this equality, the inte­
gral over x1 is not sensitive to the existence of singu­
larities in the vertices and, consequently, this condition 
can be satisfied only randomly for isolated values of k. 
Thus, these cases do not give information on the behav­
ior of the vertices near the first singularity, 

And, finally, we consider the case in which the first 
singularity lies at k = ko * 0. In this case, polar solu­
tions of the type (5)-(7) are possible, but we must write 
(k - ko)2 in the denominators in place of ~. Such a sub­
stitution changes only the form of the corrections. It is 
easy to obtain the result that all the corrections are 
equal to (gr)1 / 2 in order of magnitude. 

For real semimetals, where, in contrast with the 
model considered above, the Fermi momenta of the 
electrons and holes are not equal (in bismuth, for ex­
ample, they differ by a factor of three), the vertex r 2 

is forbidden by the law of conservation of the z compo­
nent of the momentum. Simultaneously, the equations of 
Fig. 3 and Eqs. (2a) and (2b) corresponding to it lose 
their meaning.U The equations of Figs. 1, 2, and 4 and 

!)The author is grateful to A. A. Abrikosov who called his attention 
to these circumstances. 
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Eqs. (1) and (3) corresponding to them remain in force 
if the terms containing r 2 in them are deleted. As a 
result, the equations for rl and r3 take the following 
form: 

X X 

r,(k,x) = U(k,x)+ Jr,'(k,x,)dx,- J F,(k,r,)dx,, (lOa) 

X X 

r,(k, x) =- V(k,x)- J r,'(k, x,)dx, + f F,(k, x,)dx,. (lOb) 

As before, Eqs. (lOa) and (lOb) have polar solutions 
which, however, do not now depend on one another. This 
means that the intraband and interband phase transi­
tions, which correspond to the singularities of the ver­
tices r 1 and r 2 , can occur at different temperatures, 
depending on the bare interactions U and V. 

As was shown in [SJ, in equations of the type (lOa) 
and (lOb), the terms containing the Coulomb logarithms 
are contracted. Consequently, the temperatures of the 
transitions are determined only by the short-range 
parts of the bare interactions" 

7. The character of the phase transition is deter­
mined by the singularities of the generalized suscepti­
bility of the system, The singularities of the vertex 
parts considered above show that it is necessary to in­
vestigate the susceptibility of the system II1 (k, x), 
II2 (k, x), and II (q, x) to perturbations of the following 
types, respectively: 

zero for q = q0 , qz = O, or for k = k0 and kz = ± 2p0 • 

The ground state, as in the one-dimensional model of 
Abrikosov, is characterized by the presence of a c?n­
densate of electron-hole pairs. The spectrum of smgle­
particle excitations has a gap t.(x) = Tc rp(x), which, by 
virtue of the homogeneity of the system, does not de­
pend on Px· For determination of the function rp(x) even 
with logarithmic accuracy, it is necessary to know the 
behavior of the vertices far from the singularity, which 
is impossible within the framework of the present re­
search. We only note that, in contrast with the one­
dimensional model of Abrikosov, [ 3 J or the problem of 
one-dimensional superconductivity, (6 J where the func­
tion rp(x) formally diverges on the Fermi surface, here 
rp(x) tends to a finite limit of the order unity. This is 
connected with the fact that blocks enter into the equa­
tion for the determination of the gap that are irreduci­
ble into channels giving the principal polar singularity. 

The formation of a condensate of electron-hole pairs 
is accompanied, in addition to the usual jump in the 
thermal capacity, by a jump in the magnetic suscepti­
bility X· The value of the latter is easily estimated 
from the expression for the contribution to the thermo­
dynamic potential which is identical with the analogous 
expression in the theory of superconductivity 

whence 

dn L\' 
L\Q~ --­

deo T/·' 

(12) 

(llb) Substituting in (12) the expression for Tc, we obtain the 
following estimate 

(llc) L\x ~ 8: ( ~~ )'' ~ e'Px'ya±+(qx- Px)b'F+(Px), 
px 

where a±(Px) and b±(Px) are the annihilation operators 
of electrons and holes with transverse momenta Px and 
longitudinal momenta near ±Po· The expressions (lla)­
(llc) represent the creation operators of electron-hole 
pairs with definite transverse momentum k or q. 
Moreover we determine the nondiagonal susceptibility 

I • 
II3 (k, x), which represents the amplitude of the transi-
tion of the excitation (lla) to the excitation (llb). AU 
these functions are proportional to the corresponding 
polarization operators and are easily determined by ~e 
method of Larkin and Khm el' nitskii. [ 7 J As a result, It 
is shown that all the generalized susceptibilities have 
singularities of the form 

Il;(k, x) ~ c,(2L\x + u(k- k,)')-', 

ll(q,x) ~c(2L\x+f3(q-q,)')-', 

where ch c ~ v;1 • In the cases considered in Sec. 6, 
the indicated singularities are possessed by either 
Ili(k, x) or by II (q, x). For real semimetals, the sus­
ceptibility Il 3 (k, x) loses its meaning. 

The singularities of the generalized susceptibility 
indicate the presence of a phase transition for T = T c 
= E e-Xo. On the basis of the form of these singulari-o . 
ties, it can be concluded that the average of the opera-
tors (lla) and (llb) in the new phase will differ from 

where n is the density of electrons or holes, EB 
= me4 / E2 ti 2 , Eg the overlap of the electron a~d hole 
bands. The value of the jump Ax is several times 
greater (in the ratio Eg /EB) than the phonon s~scepti­
bility of the Fermi gas and can therefore be suitable 
for experimental observation. 

In the case in which the condensation takes place in a 
state with momentum k0 (or q0 ) different from zero, a 
dipole moment P = NP0 should be observed, where N is 
the electron density in the condensate and P0 = eA.2ko is 
the dipole moment of a single exciton. The expression 
cited by us for P 0 follows from the fact that (see the 
work of Gor' kov and Dzyaloshinskii [a l) the vector A. 2 ko 
(or A.2 q0 ) represents the average distan~e betwe_e~ the 
electron and the hole, found in a state with a defimte 
total momentum. 

In conclusion, the author expresses his gratitude to 
I. Eo Dzyaloshinskii for valuable advice and constant at­
tention to the research, and also to D. E. Khmel'nitskii 
for interesting discussions. 
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