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The spontaneous parametric scattering of light in an ionic nonlinear, noncentrosymmetric crystal over the entire range of 
additional frequencies of the lower polariton branch (w2), including the resonance, is investigated on the basis of a specific model 
by using the method of the theory of nonequilibrium fluctuations. The medium is assumed to be transparent at the pumping 
frequency and at the frequency of the observed light. Formulas are derived for the linear and nonlinear (quadratic) susceptibility 
tensors, describing the dispersive properties of the crystal in the frequency range under consideration. 
The intensity of the scattered light as a function of the frequency and direction of observation is determined by the nonequi­
librium spectral function (liP·IiP)~L -k of the nonlinear polarization, which is calculated for the regime of linear (with re­
spect to the intensity of the pump) scattering (luminescence). The investigation is carried out by a method which permits 
an immediate generalization to the case of superluminescence. The obtained formula expresses the spectral function in terms 
of phenomenological parameters of the medium (the linear and quadratic susceptibilities) and contains three terms: I) po­
lariton, 2) polariton-phonon, and 3) phonon. The contribution of the cubic susceptibility to the spectral function is negligi­
ble for the regime of luminescence. The polariton contribution determines the parametric scattering in media which are trans­
parent or weakly absorbing at w2 , but the contribution of the remaining terms is negligible in this region; in the region of 
strong dispersion of the linear and nonlinear susceptibilities near the resonance w 2 ~ Wi, where Wi is the frequency of a 
w2 = wi and for large phonon wave vectors k2 ? 105 cm- 1 the parametric scattering is completely determined by the pho­
non term. Accordingly, the well-known results for parametric luminescence in transparent and weakly absorbing media and 
for Raman scattering by transverse optical phonons follow as limiting particular cases from the general formula derived for 
the scattered power. 

INTRODUCTION 

THE question of the spectral distribution of light 
scattered by a nonlinear crystal has been investigated 
in a number of articles from various points of view. 
The majority of these articles are devoted to an inves­
tigation of a limited region of the additional frequencies 
w2:. the case of parametric luminescence in a medium 
which is transparent and weakly absorbing at w2 was 
investigated in the articles by KlyshkoPl and by 
Zel'dovich, [2J scattering by polaritons far away from 
the resonance was considered by Strizhevskil and 
Obukhovski1,l31 and finally the resonance case w2 = Wi, 
where wi denotes the frequency of a transverse optical 
phonon (Raman scattering by phonons) has been 
treated, for example, in the article by Loudon.[ 4J 

Macroscopic methods based on the fluctuation­
dissipation theorem (FDT) for the electromagnetic 
field [l-SJ are usually used to calculate the line shape of 
the scattered light associated with absorption at the 
frequency w 2 • Such an approach is valid if the fre­
quency w2 is far from a resonance frequency of the 
medium. The case when the frequency w2 approaches 
and becomes equal to the resonance frequency of the 
medium is also of interest. In this region the nonlinear 
susceptibility is complex and strong dispersion is ob­
served. Remaining within the framework of the macro­
scopic approach, one can obtain information about the 
shape of the line in the region near the resonance by 
enlisting the aid of the generalized FDT relations for 
nonlinear media, established in the article by 
Efremov. [51 

We note, however, that, as will be evident from what 
follows, even for the case of a weakly nonequilibrium 
medium the generalized FDT does not completely de-

scribe nonlinear scattering, since it does not take the 
polarization noise of second order in the pumping field 
into account. The generalized FDT is not, in general, 
applicable for a strongly nonequilibrium state. In 
virtue of this, another approach based on a specific 
model of matter and the application of the theory of 
nonequilibrium fluctuations to this model (as is done, 
for example, in the statistical theory of lasers [BJ or 
parametric generators [7J) is of interest. Precisely 
such an approach is taken in the present article. In 
this article the scattering of light by polaritons of the 
lower branch is considered over the whole range of 
admissible frequencies 0 :s w2 :s Wi for the case of a 
noncentrosymmetric medium (a crystal of the type 
GaP[ 8l). A classical model of a nonlinear medium for 
this case was proposed and discussed in detail in the 
artie le by Garrett. [91 (A similar model was used 
earlier by Akhmanov and Khokhlov[loJ in order to de­
scribe Raman scattering.) A quantum model of the 
medium, corresponding to the classical model [91 is 
utilized in the present work, and on the basis of this 
model the line shape of the spontaneous parametric 
scattering is calculated. A calculation with the aid of 
the generalized FDT is also carried out for compari­
son. 

1. MODEL OF A NONLINEAR MEDIUM. INITIAL 
EQUATIONS 

Let us consider the two subsystems of a diatomic 
crystal. For a classical description, this system can 
be described by effective ionic oscillators with fre­
quency Wi and electronic oscillators with frequency 
we. These subsystems interact among themselves 
when the anharmonic terms are taken into considera-

411 



412 V.I. EMEL'YANOV and Yu. L. KLIMONTOVICH 

tion. Each of the oscillators possesses a dipole 
moment; therefore both subsystems interact with the 
field. Such a model is considered in the article by 
Garrett.r 9l Let us consider the corresponding quan­
tum model. We denote the displacement of the effective 
ionic oscillators with eigenfrequency Wi by u(R, t), 
and the interaction energy of the ionic oscillator with 
the electric field is denoted by Zeu ·E. As the second 
subsystem we consider a system of effective two-level 
atoms; -er · E denotes the dipole interaction of the 
atoms with the field. The interaction of an ionic oscil­
lator with an atom is determined by the expression 
C · u. The quantity C is connected with the optical 
deformation potential e by the relation c = e/d, where 
d is the linear dimension of the cell. It depends on the 
electronic state of the effective atom. 

Using the eigenfunctions of the effective atom, let 
us write down the expression for the matrix element 
of the Hamiltonian describing the interaction between 
the atom at the point R and the field E(R, t) and the 
displacement u( R, t) of the ionic oscillators: 

H",}n' = C",u(R, t) - e(rnm- Zu(R, t) 6nm)E. 

The corresponding equation for the elements of the 
density matrix of the atoms takes the form 

a . . 
atflnm(R,t)+\ironmflnm = -T ~ {H:~tflhm- fln;H~~~}. (1.1) 

Let us denote the upper level by a, and the lower 
level by b. In the approximation of two levels, paa 
+ Pbb = 1. Let D = Paa - Pbb denote the difference of 
the populations, and let r = raa - rbb denote the dif­
ference between the diagonal matrix elements of the 
displacement r. Here we confine ourselves to the ap­
proximation in which the matrix describing the inter­
action with the lattice is diagonal, that is, Cnm 
= <'lnmCnn, and we introduce the notation C = Caa 
- Cbb· We then obtain from (1.1) the following system 
of equations for the functions D, pab, and Pba: 

( a ) 2ie at+ '\'n D = -/i-(r,,p,,- p,,r,,)E, 

( a . ) ie ie i at+ ,ro,, + y,, p,, = -hr,,ED +TrEp,, -TCup,,; 

(1.2) 

(1.3) 

(1.4) 

The relaxation constants I'D and Yab are introduced 
in these equations. 

Let us supplement this system by the equations for 
u and E: 

( a'u . au ) Ze e C at'+r-at+roru =-MeuE- 2~ D, (1.5) 

iJ'E a'P 
fit'- c'/',.E = -4n iJt' , divE= 0. (1.6) 

In these equations M denotes the mass of the ionic 
oscillator, r denotes the attenuation coefficient of the 
displacement, and P is the polarization vector: 

P = en[(r,,p,a+rMpao+ 1/,rD) -Zu]. (1.7) 

Here e denotes the effective charge of the atomic 
dipole, and n is the concentration of atoms. 

2. THE NONLINEAR SUSCEPTIBILITY 

Let us denote the frequency of the external field by 
W3, by Wr the frequency of the signal, and by w2 the 
frequency of the additional field: w3 = w1 + w2 • In 
order to calculate the nonlinear susceptibility at the 
signal frequency we assume that two average fields 
act on the crystal: 

E,(R, t) =e,E,exp(-iro,t+ik,R) + c.c. (2.1) 
E,(R, t) =e,E,exp(-iro,t+ik,R)+ C.C. (2.2) 

E3 and E2 are complex amplitudes; e3 and e2 are 
unit vectors along the directions of the field intensities. 
Below we shall assume that the frequencies w I, w2, 
and W3 are far away from the transition frequency 
Wab· In addition, wi, W3 >> Wi, that is, there are no 
resonances at the frequencies WI and w3 ; w2 ;;, wb 
therefore a resonance of the additional wave is possible 
at the ion frequency Wi. 

The average nonlinear polarization at the frequency 
w I is given by 

(2.3) 

NL NL 
where Pab and D are the solution of Eqs. (1.2)-
(1.5) in second-order perturbation theory with respect 
to the parameters 

erE c ZeE 
ll{~,, -uJ,;-;-}' Mw,r li(w-,,-, --w-,.-,)- «: 1. 

(In Eq. (2.3) we have neglected the contribution from 
u, which is small at the frequency WI» Wi.) Let us 
determine the nonlinear susceptibility in the usual 
fashion: 

(2.4) 

Solving Eqs. (1.2)-(1.5) we obtain the following result 
for the range of frequencies in which w r, w3 >> Wi and 
w2 ;S Wi: 

(2.5) 

where the contribution from the electronic part of the 
polarizability is given by 

x:sY(w,,- w,) = Cu>Yf(w,, w,) + C,ayf(w,, w,) + C.v,f(w,- ro,), 
Ca.f>v = -fi- 2ne3rabrxrr.rabv(D), 

f(ro,,w,)= 1 + 1 , 
( ro,, + w,) ( w,, + w,) ( ro"'- w,) ( ro,,- w,) 

(2.6) 

where the components of the vectors rab, r, and sub­
sequently C are denoted by the Greek letters a, (j, 
and y. The contribution from the electronic-ionic part 
of the polarizability is given by 

,, Zne'r,,.C,r,"<D> f(w,,w,) (2.7) 
Xa.f)v = - Mh2 wl- Uh2 - i6hf 

The formula for X~f3Y agrees with the corresponding 
expression from the article by Graham and HakenPl 
(in Eq. (2.6), j~st as in[ 7 l, it is assumed that rab 
= rba), and x~1 corresponds to the classical formula 
of .GarrettYl l~t us note the connection of the tensor 
x~1!3Y from (2. 7) with the nonlinear polarizability tensor 

aa.f3y due to the lattice displacements; the cross section 
for Raman scattering by transverse optical phonons is 
usually expressed in terms of this tensor (see, for ex­
ample,f11l). The tensor aa.f3y is defined by the relation 
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From Eqs. (2.4) and (1.5) we obtain 

Zen ( {J)z' i{J),r) "' ) (2.8) 
a, (w2 - Oh) =- ~.-. , 1--,--,- Xo;t>v(wzl -u)s , 
"' ' a,(O) Ul; Ul; 

where ai ( 0) = nZ2e 2/Mwi is the static ionic polarizability. 

3. THE SPECTRAL FUNCTION OF THE FLUCTUA­
TIONS OF THE NONLINEAR POLARIZATION 

Now let an average pumping field ( Es( R, t)) act on 
the crystal. Let us find the power of the electromag­
netic noise, scattered in a given direction s 1, as a 
function of the frequency of the observed radiation. 
The assignment of the direction of scattering together 
with the synchronism conditions 

k, = k, + k,, Ul, ~ (3.1) 

and the dispersion law for the signal (scattered) wave 

{J) 1 = jk,jc/(e/)'0 (3.2) 

determine the vector k1 = s1l k1( w2) I as a function of 
w2 such that a maximum will be observed in the scat­
tered power at the frequency w2 (in this connection, 
the vector k2 is also uniquely determined: 
k2 = k2(W2))/l 

The power of the electromagnetic noise, scattered 
at a frequency w in the direction s 1 per unit spectral 
interval dw and angular interval da u can be ex­
pressed in terms of the spectral function of the flue·· 
tuations of the nonlinear polarization according to the 
formula 

W =V . dko k-k,--((J)-{J),) (IIPIIP -··-••(3.3) ( 8 ,')'i•{J)1 1 J ( s, ) )NL 
··•• 4n'c" (v,) 

where oP denotes the negative frequency part of the 
fluctuations of the nonlinear polarization, and v1 
= aw1/ok1 is the group velocity. Expression (3.3) is 
obtained from Eq. (1.6). 

Let us calculate (oP ·oP)~B -k by using Eqs. 

(1.2)-(1.7). We recognize that the average pumping 
field produces additional (nonlinear) fluctuations in a 
nonlinear quadratic medium. Therefore, we represent 
the operators of the system in the form 

p., = (p,,) +lip.,+ llp.,N~ D =(D)+ W + bDN~ (3.4 ) 

u = (u) + llu + bu"", E = (E3) +liE+ 1\E,NL+ oE,N~ 

where the spectra of the fluctuations oE~L and oE, 
oE~L are concentrated, respectively, near the fre­
quencies w1 and w2. In (3.4) the additional fluctuations 
satisfy the condition opNL = onNL = ouNL = oENL = 0 ab 1,2 ' 
provided that ( Es) = 0. The fluctuations of the non­
linear polarization can be expressed in terms of the 
nonlinear fluctuations op~J' and oDNL. 

(3.5) 

In what follows we confine our attention to an inves­
tigation of the linear scattering region, in which one 

llWe note that the fulfilment of the dispersion relation w2 = w 2 (lk2 1) 
for the polaritons is not assumed beforehand; this dispersion relation is 
not valid in the resonance region w2 s; wi. 

can neglect the reaction of the pump-produced noise on 
the system. Then, in calculating 5pNL one can 
neglect ouNL and oE~!-' in (3.4) and regard opab, ou, 
oE, and oD as the "natural" fluctuations of the 
medium and of the field. In this approximation we ob­
tain from Eqs. (1.2)--(1.7) a closed system of equations 
for the fluctuations op~J-', onNL, ou, opab, and oE 

( :t +i{J),,+y,,)llp,,= i~ r((E,)op.,+(p,,)oE)- i~ 15u(po~,).(3.6) 

The first two terms on the right-hand side of Eq. (3.6) 
are nonresonant, but the third is a resonance term 
(at w2 = Wi). They are of the same order of magnitude, 
since C/Mw ir ~ r. The term containing ( u) is 
omitted since it is not resonant and it is r/'Pi times 
smaller, 

( fJ ) NL 2ie , Tt + VD oD = T(r.,( (p,.)oE +<E,)Ilp,.) 

-r.,((p.,)llE+(E,)IIp.,)), (3.7) 

(3.8) 

Here it is taken into account that the contribution from 
the term CD/2M in Eq. (1.5) is small (of the order of 
( Cr/fiwi) ( eroE~L /liwab)); ous denotes the random 
source of the fluctuations ou. It is introduced in ac­
cordance with the methods expounded in( 6l by one of 
the authors. 

The equation for the linear fluctuations opab has 
the form 

(3.9) 

On the right hand side, only the major contribution ac­
cording to perturbation theory is taken into account; 
op~b denotes the corresponding source of the fluctua­
tions opab· The equation for oE has the form 

fJ'bE fJ'.SP 
--- c' 1'1oE = - 4n--

fJt' at' ' 

6P = en(r,,op,, + r,,6p,0 - Zt)u). 

The average value (pab) in Eqs. (3.6) and (3.7) is 
determined by the equation 

(3.10) 

(3 .11) 

(3.12) 

In what follows we shall omit the source of the fluctua­
tions op~b in Eq. (3.9) since its role is negligible for 
the frequency region w2 « Wab (we recall that w2 s Wi), 

Let us determine 5pNL. In order to do this, we 
substitute op~bL and oDNL, found with the aid of Eqs. 
(3.6)-(3.9), into expression (3.5). As a result we ob­
tain 

llPNL(- {J),- k) = x(Q,- "")E3bE(Q,q) 

__ e (r.,e,) (Ce,) (r,,e,) (D) E , /( ) •p, (" ) 
Zfi2 :l (tJ, (i)J u ~ .. ~, q I 

(3.13) 

where 
6P ' (.Q, q) = -Zen{)u' (Q, q), (3.14) 

a = Ws - W, q = ks - k denote, respectively, the 
changes of the frequency and wave vector of the photon 
upon scattering; 
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e1 and e2 are unit vectors along oP~~"L and liE. 
Let us also express liE(O, q) in terms of 1iP8 (U, q): 

4:n:Q' s (3 15) 
1\E(Q,q)=- Q'e(Q)- q'c'I\P (Q,q), • 

where E(O) = Eaf3(0)e2ae2tJ, and Ea(3(0) is the die­
lectric constant tensor of the electron-ion system, de­
termining the dispersion law of the polarizations :[aJ 

s,~(Q) = 1\,, + 4:n:a,~'(Q) + 4:n:a,~'(Q), 
nZ2e2 eua.eu~ a,,'(Q)= , 
M w.'-Q'-iQI. (3 .16) 

'(Q) __ 2ne'w,,r,,,r,,,(D) 
a,, - n(w,,'- Q') ' 

where a~(3(0} and a~f3(U)denote the linear polariza­
bilities of the ions and electrons, respectively. From 
Eqs. (3.13} and (3.15) it follows that (liPiiP)~~-k is 

determined by the spectral function (liP liP~ ,q. 

We obtain an equation for the double-time correla­
tion function ( oP( t) liP( t' )h ,q = (liP liP h ,q from 
Eqs. (3.8) and (3.14): 

a' a 
(-+f-+w,')<6P1\P),! =0. (3.17) 

fJt' {)t ' 

Let us solve this equation for the initial condition 
which corres:Ronds to taking only the Stokes component 
into account: l 

, nZ'e'n 
(6P6P),_,_. = -.1-1-(n. + 1), 

"(fJ, 

(3.18) 

where nq denotes the occupation number of the phonon 
state with wave vector q. Formula (3.18) is obtained 
with the aid of Eq. (3.14) if we change from ou(R, t) 
to the annihilation operators of the transverse phonons: 

( It )''• 6u(R, t) = 2Nw,M E e,,a.,.e'•a 
q,A=t,2 

(here, just as in the initial equation (1.5), we neglect 
the dispersion of the long-wavelength phonons). From 
(3.17} and (3.18) we obtain 

s lie"(Q) (3,19) (6P1\P)o,q = ----z;-(n. + 1), 

where E " ( ft) is the imaginary part of the dielectric 
constant tensor given in (3.16}. By using (3.19), we ob­
tain the spectral function (liP ·liP)~~ -k of the fluc-
tuations of the nonlinear polarization from Eqs. (3.13) 
and (3.15). 

It is convenient to present the final result in the 
following form: 

NL ind ind-s s 
( 1\P6P) -·.-• = ( 6P1\P) -•.-• + ( 1\P6P) -•.-• + ( 1\PI\P) -•,-•· (3 .20} 

The induced (polariton) part is defined by the expres-
sion 

(3 .21) 

where the spectral function of the polaritons is given 
by 

· 8:n:lie"(Q)Q' 
(6E6E)o,q = jQ'e(Q)-q'c'd'(n, + 1). (3.22) 

2lHere l)p denotes the positive frequency part of the fluctuations of 
the linear polarization. 

The crossed polariton-phonon part has the form 

(I>POP)~~~~·~ =- 2x'"(Q,- w,) jE,j'(1\E1\E)o,q 
x(1 x'(Q,-w,) Q'e'(Q)-q'c'). 

+ x"(Q, -w,) Q'e"(Q) 
(3 .23) 

The contribution from the phonon source of fluctuations 
is given by the formula 

s x'"(Q,- w,) jE,j' 
(6P6P)-w,-k = 8:n:li e"(Q) (n. + 1). (3,24} 

The notation n = Ws - w, q = ks- k is used in Eqs. 
(3.20}-(3.24). 

Formulas {3,3), {3.20}-(3.24), simultaneously with 
the expressions for x given by Eqs. (2.3)-(2.5) and 
formula (3.16) for E, give the solution to the problem 
of determining the power of the noise, scattered in a 
given direction, as a function of the frequency of the 
observed radiation over the entire range of the lower 
branch Of the polariton frequencies: 0 < 0 ::S Wi. In 
this connection, the position of the maximum of the 
power scattered in a given direction (that is, the fre­
quency w 1) and also I k1l in the general case are de­
termined from Eqs. (3.1} and (3.2}, where by W2 one 
should understand the value of the frequency 0 which 
maximizes the expression for ( oP • oP)fj"~-k obtained 
from Eqs. (3.20}--(3.24). 

In calculating oPNL we have neglected the back 
effect on the system of the electromagnetic noise 
created by the pump. By a similar method one can 
give a more accurate description and systematically 
take the effect of the nonequilibrium nature of the 
medium on parametric scattering into account. We 
note that in the assumed approximation the crossed 
polariton-phonon part-given by expression (3.23)-in 
macroscopic approach can be obtained from the 
generalized FDT for nonlinear media (see the Appen­
dix}. The contribution ( oP • oP) ~w -k is not deter-
mined by this theorem. ' 

Formulas (3.20}-(3.24) take into account the con­
tributions to (oP • oP)~~.-k determined by the quad­
ratic susceptibility tensor x. Consideration of the 
cubic nonlinearities of the polarization gives an addi­
tional contribution. In this case one can represent 
(liP· oP)~~. -kin the form 

(6P6P)~!:-• = (1\P6P)~2.-• +(6P1\P)~~--•• 

where ( oP • liP )(X) is given by Eqs. (3 .20 ). In this 
-w -k 

connection it turns 'out that 

(1\P6P)~~--• = 4/iv"IEsl'n-•., (3 .25) 

where 'Y = 'Ya(3ra(ws, -ws, -w~)elaes(3esye1U, Ya(3ya 

is the cubic susceptibility tensor, n_k1 is the number 
of thermal phonons in the state -k1. By using the 
methods of Sec. 2 of the present article, one can obtain 
an explicit expression for r. In this connection one 
finds that 

v" ~ (ne'r' I li'w,,') (C' I Mw,r). 

By using this estimate, from (3.25) and (3.24) we have 

( 1\P6P) ~~--• ~ n-t, ( 6P1\P) .:_~,-•, 

that is, the contribution from y is negligible in the 
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luminescence mode, when 
n_., = [ exp (liro, / xT)- 1] _, ~ 1. 

In concluding this section we note that for certain 
applications another way of writing (liP ·liP)~~ ,-k is 

more convenient. By combining Eqs. (3.21) and (3.23) 
we obtain 

(.SPiiP)~=--• = (1\EiiE)o .• jE,j' {R~x'(Q,- w,) (3.26) 

q'c'-e'(Q)Q'} x'"(Q -<oJs) 
+Imx'(Q,-ro,) e"(Q)Q' +Sn/i 8 ,(Q) IEal'(n.+1). 

4. ANALYSIS OF THE GENERAL FORMULA FOR 
(liP ·liP)~~.-k· CERTAIN SPECIAL CASES 

Let us divide the admissible range of the additional 
(polariton) frequencies 0 < 0 s Wi into three charac­
teristic regions: a) the region of transparency: t:"(O) 
- 0 and x"(O, -ws)- 0; b) the region of weak absorp­
tion and weak dispersion of €(0), x(O, -ws); and 
c) the region of strong absorption and strong disper­
sion near the resonance. For cases a) and b) one can 
neglect the contributions (3.23)-(3.24) to 
(liP ·liP)~~.-k' and also one can simplify (3.22) by 
making use of the narrow-band nature of (liE ·liE) o ,q 
in these regions. The dispersion relation w2 

=I k2l c/(€~)112 follows from (3.22) as t:"(O)- 0; this 
dispersion relation together with Eqs. (3.1) and (3.2) 
uniquely determines k2, w2 and k1, w1 for a given s 1. 
Therefore in (3.22) we set 

Q = ro,- W = (l)z + ro,- W- ro,""' Wz + ~w, 
jql=lka- kl=lkz + ks- k- k,l""' lkz + ~kl 

and expand in powers of ~w and ~k. Then we obtain 

(liE E) = 4nliw,v,(n.,+ 1)y2 

li "·• c(s,')Y•[(ro-ro,-v,(k-k,))'+Y•']' 
(4.1) 

where 

k,c' / ( , . 1 fJe,' ) 
Vz=- 82 +-(1)2-

(tlz 2 iJro, 

are, respectively, the damping constant and the group 
velocity of the polariton. ' 

The parametric scattering due to the induced part­
given by Eqs. (3.21)-was calculated inP,2l on the basis 
of the macroscopic theory. Expressions are obtained 
from (3.3) with the aid of (3.21) and (4.1) which agree 
with the results given in[1,2J. In the article by Bur­
stein et al.l 11J (see alsol 12])3 > a calculation of the para­
metric scattering by polaritons is carried out for 
r = o, that is, without taking the damping of the pho­
nons into account. In this case we have x"(O, - ws) 
= 0 for 0 < Wii therefore expressions (3.23) and (3.24) 
vanish and only the induced contribution remains. In 
this approximation, by using (2.8) we have 

Ze a 
x(Q,-ro,)=x'-M wt-Q'. 

Substituting expression (3.21) into formula (3.3) and 

3lln the article by Benson and Mills, [IZJ the analysis is carried out with 
the damping of the phonons taken into consideration. 

using the expression for the spectral density of the 
fluctuations of the field in the region of transparency 
(formula (4.1), where Y2 - 0), we obtain 

W =VIiw,'(e,')'bs·( _(w,'-w,')M ·)'lEI' 
oo,Sj 4nc3nwiM t a Ze 'X 3 

xl ( v, l(n.,+1)1i(ro-ro,), 
s, v,-v,) 

(4.2) 

S, = 4nnZ'e'w,w2v2 

M ( e,') 'l•c ( w,' - ro,') 2 

This expression differs from the result cited in[11• 12] 
by the presence of the factor I v1/s1· (v1- v2)1. The 
presence of this factor is due to the fact that v2--the 
group velocity of the scattered oscillation (polariton)­
does not vanish, and parametric scattering differs . 
from Raman scattering, for which V2 = 0 (seel2] ). 

In the region near the resonance it is necessary to 
take all the terms in (3 .20) into account. Let us con­
sider the limiting case of large q Z 105 cm-1 in more 
detail. From (3.16) we obtain t:"(wi) = 47Tai(O)wi/r. 
For GaP, for example, Wi /r Rl 88 and ai ( 0) Rl 1.4 
x 10-1_[9] Then from (3.26) and (3.22) we obtain the 
result that the contribution proportional to 
(liE • liE) p q is negligible and of the order of 
wit:i/q2c <: 10-1 of the contribution from the phonon 
source. In this case from (3.3) and (3.26) we have 

W =V2/i(e,')'1•ro,'x"'(Q,-w,)IEal'( + 1) (4.3) 
w,s! nca . e" ( Q) nk2 • 

Let us proceed in (4 .3) to the nonlinear susceptibility 
due to the displacement of the lattice-that is, the 
quantity a (given by formula (2.8)), and we use the 
explicit expression for t:"(O) given in (3.16). Then we 
obtain · 

W - li(e,')''•w,' 'IE I' Qf (n + 1) 
"·'•- V 2n'c'Mn a 3 (Q'- ro,')' + Q'r' •• ' 

which agrees with the usual expression for the power 
of Raman scattering by transverse optical phonons 
(see, for example,P2J). Thus, the general formula ob­
tained for (liP ·liP)~~ -k with increasing 0 and q 
describes a gradual transition from cases of para­
metric luminescence in transparent and weakly ab­
sorbing media to the case of Raman scattering by 
trans verse optical phonons. 

The authors express their gratitude to D. N. Klyshko 
for reading the manuscript and making a number of 
comments, and to G. F. Efremov for helpful discussions 
of certain questions pertaining to the present work. 

APPENDIX 

SCATTERING IN NONLINEAR MEDIA AND A 
GENERALIZED FDT 

Let us calculate the contribution to the spectral 
function (liP ·liP)~t.-k (see (3.20)) described by a 
generalized FDT for nonlinear media.ts] The nonlinear 
polarization ( P > NL is related to the average field by 
the relationship 

(P(R, t))NL= jx.(R- R', t -t';R-R", t-t") 

X (E(R', t'))(E(R", t")) dR'dR"dt'd.t''. 

(A.1) 

Let an average field specified by (2.1) act on the sys-
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tern. Let us represent the fluctuation &PNL in the 
form 

(lpNL(R, t) =liP exo fi(w,t- k,R)] + C .c. (A.2) 

From (A.2) we have 
NL --

(.SP.SP)-•.-• = (IIP.SP)c .• , (A.3) 

where il = Ws - w and q = ks - k. 
From (A.l) (neglecting the spatial dispersion of x), 

by changing to random deflections and introducing a 
source of the fluctuations, we obtain an equation ana­
logous to (3.13) for lil:S(il, q): 

IIP(Q, q) =:x;(Q, -w,)E,'.SE(Q, q) +liP' (Q, q). (A.4) 

From (A.4) we obtain 
(IIPIIP)c,q =j:x;(Q,-oo,) j'jE,j'(IIEIIE)c,q 

(A.5) 
+x•(Q,- o~s)E,(.SP' .SE)c .• +c.c. +(.SP.SP)c~•. 

Using Maxwell's equation, let us express liE(il, q) in 
terms of the source: 

4nQ' 
.SE(Q,q)=- Q's(Q)- q'c'.SP s (Q,q). (A.6) 

Now the problem reduces to the calculation of the spec­
tral function (liP ·liP) t , and it is expressed in 

' q terms of a fluctuation function of first order in the 
pumping field from the work by Efremov.rsJ We have 

(IIPIIP)c\ = 21ix;"(b1,- w,)E,o (n. + 1). (A. 7) 

(In (A.7) it has been taken into account that, in com­
parison withr 5l, here twice as large a value of xis 

used.) , 
Using (A.7), (A.6), and (A.5) we obtain formulas for 

(liP ·liP) and (liP ·liP) ind-sk which are in agreement 
-w-

with (3.23) and (3.21). As Is clear from this considera-
tion, the contribution (oP ·liP)~,q =(liP •liP)~w,-k 
(the polarization noise of second order in the pumping 
field), which is responsible for Raman scattering by 
transverse phonons, remains indeterminate upon using 
the generalized FDT. 
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