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The electron Green's functions of a doped semiconductor in the presence of impurity-band transitions induced by a strong 
electromagnetic field are found. Quasiparticle damping due to electron scattering by impurities and the specific damping due 
to electron confinement near the impurity by a strong field are taken into account. The spectral dependence of absorption and 
amplification of a weak electromagnetic field in the presence of a strong one is determined. It is shown that scattering by 
impurities does not remove the peculiarities of weak wave absorption due to the gap in the electron energy spectrum. Coherent 
interaction with an electromagnetic field thus becomes noticeable at very small field strengths. The effect of impurity scattering 
on the shape of the fundamental absorption edge and of the impurity level-band transition absorption edge in a degenerate 
equilibrium semiconductor under conditions of the Burstein-Moss effect is considered. The impurity-band absorption edge is 
found to be sharp in contrast to that for the fundamental absorption, which is smeared out to an extent which is proportional 
to the inverse time between collisions between the electrons and impurities. 

INTRODUCTION 

A study of the interaction of a strong electromagnetic 
field with semiconductors is an urgent problem, owing 
primarily to the high energy density of the electromag
netic field in semiconductor lasers (1, 21, The problem 
lies in taking consistent account of the influence of the 
interactions between the semiconductor electrons and 
the impurities, phonons, and electrons on the character 
of the optical transitions in the strong field[ 3J. Such a 
problem was considered for band-band transitions 
in [4• 51. Of particular interest is the study of transitions 
between a discrete (acceptor) impurity level and the 
conduction band, since theoretical and experimental 
investigations have shown that optical transitions of 
this type are realized in lasers based on doped semi
conductors [ 61. 

The state of a semiconductor in a strong field was 
considered by one of the authors[7l in the case of im
purity-band transitions. It was shown that the energy 
level of the impurity in the field of a strong monochro
matic wave E0 sin (Uot) is transformed into an impurity 
band, since the impurity electrons become delocalized 
as a result of the impurity-band-impurity transition, 
and a gap 2 X" appears in the energy spectrum of the 
conduction-band and impurity-band electrons at a 
quasimomentum value p0 = ../ 2ma(Uo- Ei), where rna 
is the effective mass of the electron and Ei is the dis
tance from the level to the edge of the band. In[ 7l, how
ever, the excitation damping due to scattering by im
purities and the specific damping due to the confine
ment of the electron near the impurity by the strong 
field were neglected. 

In the present paper, using a graphical technique of 
averaging over the impurity coordinates[8 • 9 l, we obtain 
the Green's function with allowance for the aforemen
tioned dampings, and consider impurity absorption of 
a weak electromagnetic field of frequency U in the 
presence of a strong field. It is assumed that the elec
tron-electron and electron-phonon interactions cause 
a quasi-equilibrium stationary state, characterized by 
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the Fermi quasilevel of the electrons in the band, to be 
established. It is assumed also that the quantity IL 0 

= U 0 - Ei greatly exceeds the gap and the reciprocal 
time 1/ra between the collisions of the electron with 
the impurities. The presence of the small parameters 
(IJ.oTat\ "X/ IJ.o « 1 makes it possible to perform the 
calculations in the ladder approximation [ 81, 

One of the results is that at (IJ.oTat\ "X/IJ.o « 1 the in
fluence of the impurity scattering on the absorption of· 
the weak wave can be neglected. The absorption 
(amplification) turns out to be equal to zero in the 
interval I U - Uol < 21. and increases strongly at 
IU- Ool2: 2"X. 

It should be noted that in band-band transitions the 
impurity scattering disrupts the gap effectively[sJ and 
it can be shown that the impurity state annihilates in 
this case the singularities of the weak-signal absorp
tion at impurity concentrations such that 1/Ta becomes 
larger than the gap. In this respect, band-band and 
band-impurity transitions differ noticeably. There is 
likewise a difference between the corresponding coef
ficients of absorption of the weak field by a degenerate 
equilibrium semiconductor, i.e., under the conditions 
of the Burstein-Moss effect .. As shown in the present 
paper, the impurity-band absorption edge turns out to 
be abrupt, in contrast to interband absorption, where 
the edge is smeared out by .an amount proportional to 
the reciprocal time between the collisions of the elec
tron with the impurities. 

1. FORMULATION OF PROBLEM. HAMILTONIAN OF 
SYSTEM 

The system "impurity semiconductor in a strong 
electromagnetic field of frequency u~ is described 
approximately by the Hamiltonian 

.. 
+ t. •• ·b.*a.e'"''}+ LU(p- p')a.+a •. + H,. 

PP' 

(1) 
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Here E~ is the law governing the electron dispersion 
in the band, the energies reckoned from the edge of the 
band, 

eE, ( p ) "'··= 2Q, w.·-;;'1'· ' fi=c=i, 

bn and ap are the operators for the annihilation of the 
electron at the impurity level and in the band, 
U( p - p') is the Fourier component of the impurity 
potential 

U(q)= ~ EJ dre'•'u,(r-r.), 

• 
the summation over n extends over the impurities that 
give the level -Ei. and the summation over k is over 
all the impurities and defects. The term H1 describes 
the electron-phonon and electron-electron interactions 
that cause the establishment of a quasi-equilibrium 
state characterized by the Fermi quasilevel (the direc
tion of going around the poles in the Green's function 
is specified). The same term leads to damping of the 
excitations, which turns out to be weak in the presence 
of a Fermi surface rsJ, to a screening of the impurity 
potential, and consequently to a shift of the impurity 
level, and even to its vanishing at a sufficiently high 
free-electron concentration(loJ. In addition, owing to 
the electrostatic repulsion, it is impossible to place on 
the impurity level more than one electron even in the 
presence of spin-connected degeneracy. 

We assume that the screening radius is larger than 
the radius of the bound state, so that the impurity does 
not vanish. In the case of a hydrogen-like acceptor 
level and Debye screening, this condition is satisfied 
if 

(2) 

mv is the effective mass of the hole, ~ is the static 
dielectric constant, and va is the electron velocity on 
the Fermi surface. H1 can be omitted from now on if 
the ground state is chosen to be a quasi-equilibrium 
stationary state and if Uk( r) is assumed screened. 

We have neglected in (1) recombination, the non
resonant transitions in the field of the strong wave (the 
corresponding estimates are given in(SJ and[ 7l), and 
also the scatter of the levels of the individual impurity 
atoms. The role of this scatter is discussed in the 
Conclusion. 

Since the Hamiltonian (1) does not contain separately 
the number of particles in the band and on the impurity, 
it is convenient to change over to a new variable with 
the aid of the canonical transformation 

where IJ.a is the Fermi quasilevel of the electron in 
the band, and IJ. b is the level at the impurity. From 
the requirement that the transformed Hamiltonian be 
stationary it follows that IJ. a - fJ. b = Oo. 

Further, in accordance with the notions developed 
inf?l concerning the impurity band, we introduce the 
operator 

with commutation relations 

1 N 
L\ __ '\1 e-i(P-P')t 

PP' - N .l..J n, 
n=1 

N is the number of impurities with the level -Ei. If 
the impurity atoms are located at lattice sites, then 
Apn can be represented in the form 

(4) 

Ap does not depend on the position of the impurity. For 
example, for acceptor-conduction band transitions we 
have 

. eE,V •• M 
A,=~VN' 

8 ( nNaB') ''' 
M= (i+p'a~~· -v- ' 

(5) 

where Vav is the matrix element of the interband 
transitions, and aB is the radius of the bound state. If 
the strong-field frequency lies in the impurity absorp
tion region 1 p0 < a_J{ I, then Ap can be regarded as 
independent of pf ur;- In the case of forbidden interband 
transitions or in acceptor-valence band (donor-con
duction band) transitions, Ap depends on the angle be
tween p and Eo. 

When (3) and (4) are taken into account, the Hamil
tonian (1) takes the form 

H = .E { s,a, +a, -TJ.Sf.lb, +b, + X,a, +b, + X, "b, +a, 
(6) 

+ LU(p- p')a,+a,, }• 
P' 

where 

and we have used the relation 

b, = 1] .E 6 .,,b,,, 
P' 

11 = N/N0 is the percentage impurity concentration, and 
N0 is the number of unit cells in the crystal, equal to 
the number of states in the Brillouin band. We note 
that 1J can be regarded as the statistical weight of a 
state with momentum p in the impurity band produced 
as a result of the transitions in the strong field. Un
like in( 7J, we use exact commutation relations and take 
impurity scattering into account. 

The system is described by four Green's func
tions[7l: 

c;,,(ro) =- i J e'•'(Ta,(t)a,,+(O) )dt, F,.,(ro) = J e'"'(Ta,(t) b,,+ (0) )dt, 

F,:,(ro) = J e'"'(Tb,(t)a.,+(O))dt, G~.,(ro) =- i J e'•'(Tb.(t) b,,+(O))dt. 

(7) 
From the equation of motion for the Heisenberg op

erators we obtain equations for the Fourier components 
of the Green's functions: 

(ro- 6.)c.;,(ro) = o,.,- iX.F,!,(ro)+ LU(p- p")G,.~ •. (ro), (8) 
P" 

(ro + Of.I)F.;.(ro) = i L x;,,6,,,G.,,,(ro), (9) 
P" 

(ro- £,)F •• ,(ro) = iX.c,:,(ro) + LU(p- p")F,,.,(01), (10) 
P" 

P" 
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2. GREEN'S FUNCTION OF DOPED SEMICONDUCTOR where 
IN A STRONG ELECTROMAGNETIC FIELD WITH 
ALLOWANCE FOR IMPURITY SCATTERING 

We shall be interested in Green's functions averaged 
over the coordinates of randomly distributed impurities. 
The averaging can be carried out with the aid of the 
diagram technique developed by Abrikosov and 
Gor'kovrsJ and Vdovin and Galitskii rsJ. We begin the 
averaging with the function G~ ', a closed equation for 
which was obtained by substitufing F• from (9) in (8): 

. E x.x: .. G,,.(OJl = ll,,.Go"(p) + Go"(Pl --t.,, .. G, .. ,.(OJl 
OJ+t'lft ... 

(12) 

+Go"(pl Eu(p-p"lG,:.,.(OJl, 

with 
... 

Go"(p)=[OJ-;.+ills(;.)J-•, s(xl ""'sign(xl, ll-+O+. 

With the exception of the last term, Eq. (12) coincides 
in form with the equation for the photon amplitude in a 
medium of resonant molecules rsJ, and it is therefore 
convenient to use the graphic notation of[9 l, We let a 
dark circle correspond to the vertex 

A A • 
• P' et<•-•·> .. 
~ .. 

The impurity scattering uk( p - p') exp [ i( p - p') · rk] 
will be denoted by a cross. A circle can be treated as 
a transition of an electron from a band to an impurity 
and then back to a band, with emission and subsequent 
absorption of a strong-field quantum. The circles and 
crosses pertaining to the same impurity atom are 
joined by a dashed line, which is taken to mean averag
ing over the coordinates of this impurity. 

We carry out the calculation under the assumption 
that (JJ.oTat 1 « 1 and I "X 1/JJ.o « 1. These conditions 
cause the "intersecting" diagrams to be small raJ. If 
the scattering is by charged impurities, then (JJ. 0Tat 1 

« 1 is equivalent to the condition 

2n±e' I 3n,ev. ~ 1, (13) 

i.e. (at n± ~ n0 ), to the Born approximation for the 
impurity potential. Here n± is the concentration of all 
the charged impurities and n0 = p~/37r2 is the maximum 
number of electrons that the electromagnetic wave can 
"pour into" the band. 

The smallness of the Born parameter makes it pos
sible to omit also diagrams in which a cross and a 
circle are joined by a dashed line. The order of rela
tive smallness of such diagrams is Le2n-/n€v0 << 1, 
n-/n is the ratio of the number of charged impurities 
with level Ei to the total number of such impurities, 
and L is a logarithm of the order of unity. We note 
that simultaneous satisfaction of the conditions (2) and 
(13) is possible in a rather wide strong-field frequency 
interval, in view of the usually large difference be
tween the masses of the electron and of the hole. 

Iterating and averaging in (12) we obtain, in accord
ance with the diagram of Fig. 1a, 

a •• = ll,,·G,, G."= [(G,"l-'- a.)-', 

a.= g.N + Eg,, 
• 

(14) 

E IA•·I'G,"(p', OJ) 
IAI'{ ~ P' • g.=--·- 1+ 

OJ + 61-1 E [ OJ + o1-1 ] } ·-· 

P' 

g, =I: lu,(p- p'l I'G,•(p', OJ). 
P' 

Replacement of the intermediate Go in ga and gk by 
the more exact function leads to small corrections of 
the order of 

1 I floTa, Ill I flo <i;, 1. 

We shall be interested in what follows in the values 
p ~ Po and w + OJJ. ~ I X I, i.e., the energy-spectrum 
region in which the gap is produced[ 7J. 

In calculation of ga and gk, integration regions that 
lie far from the surface Ea = JJ.o can be excluded, 
since the integrals over alP the regions do not depend 
on w and yield real constants which, together with 
Uk( 0 ), renormalize Ei and IJ.a· The integrals over the 
values of p' close to p0 lead to an imaginary part in 
G: 

1 
G,"(OJl= , 

OJ-;, -ll.I'Jf'-' + is(OJ)12-r:. 
»" =<W + ~~~~ + iWs(w) I 2, (15) 

w = Parol ~IA(6l lldQ, Ta-l= Parol ~~I uk (6ll'dQ, 
k 

pa(€) = ~0(€ - E~)-is the density of states in the 
p 

band, 
Averaging Eq. (9) in similar fashion, we obtain 

ilp F, + (wl = --:------:=-::.__ ____ _ 
11" [OJ - ;, - IJ., I'»"-' + is ( w l 12-r:.] 

(16) 

Let us find the averaged functions F and Gb. Substi
tution of Gb from (11) in (10) yields a close equation 
for F: 

E x.x ... 
F,,.(wl = t.,,.F,(pl+ Go"(pl --t.,, .. F, .. ,,(OJ) 

OJ+ Oft ... (17) 

+ G,"(pl E U(p- p")F,..,.(OJl, 

where 
,, 

F,(pl = ii...G,•(pl I (w + llfll. 
As a result of the iterations we arrive at the dia

grams of Fig. 1b, which the triangle corresponds to 
the quantity N- 1 exp [ i ( p - p.') · rn ] , and the function F 
is a solution of Eq. (17) in which .6.pp' in the first 

Ga t"7 r--, 
+--+:--• ~ + )' ... v. ~ +~~ 

a 
I 1 -T---1 -,---r---, 

!a' • • + ..______....+ a. • h )' 1 + ... 

f ~ 
r----... 

-= + ' ' ~ .A 
b f <7 r--, 

-==-= -- + ·-~"-=-
Gb r---, --= - + ~ .6. .;,. 

c fb <"7 

-= ......._. .~ 
I I -T---, -,---.,. ---., 

gb6 =&+~+ ,, ,.~, .,~ .... 

FIG. l. Structure of equations for the Green's functions . 
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term is replaced by opp'. The diagrams in which the 
cross and the triangle are joined by a dashed line con
tain the Born parameter and are therefore discarded. 

After averaging, in accordance with Fig. 1b, we 
obtain the following expression for F: 

F,(w) = tl, (18) 
»"[w- £.- IX" I'Jf' '+ is(w) /2T.] 

The function G~( w) can be determined by averaging 
Eq. (11) directly with the aid of the diagrams for F. 
However, bearing the subsequent calculations in mind, 
we obtain a closed equation for ab, expressing F in 
terms of Gb. Taking i "XpG~( p) Gb in (1 0) to be the 
zeroth approximation for F and iterating, we obtain 

F,,.(w) = i _EG~;,(w) l,nG,~ .•. (w). (19) 
P" 

After substituting (19) in (11) and averaging, we can 
replace the Green's function of the electrons scattered 
by the impurities in the absence of an external electro
magnetic field by its mean valuefBJ 

--:-- .s,,, 
G,,, (w) = " + . ( )/2 , 

(J}- SP lS W 'Ta 

(20) 

since the cross and the circle will be joined by a 
dashed line in all the discarded diagrams. We obtain in 
place of (11) 

• b ~ ll,,l'4,, G. 
G,,.(w) = to.,,.G.'(p) + G, (p) l..J w- [;,, + is(w)/2T. ,,,,(w)' (21) 

P" 

G,'(p) = (w + ll!l)-•. 
Representing the quantity 

IA.,·I'e'"-•'l•. I [w- s~>'+ is(w) /2-r.] 

by a light circle, we obtain in accordance with Fig. 1c 
w-6.+is(w)/2T. (22) 

G.'(w) JP[w- 6.- I l,l'»" '+ is(w)/2T.]. 

Relations (15), (16), (18), and (22) determine the 
Green's functions of a doped semiconductor in the field 
of a strong electromagnetic wave with allowance for 
scattering by impurities. 

3, ENERGY SPECTRUM, DAMPINGS, AND CHEMICAL 
POTENTIAL OF THE ELEMENTARY EXCITATIONS 

The Green's functions (15) and (22) differ from 
those obtained inr 7J in the presence of the dampings W 
and 1/Ta. If W, 1/Ta « I"X 1, then the Green's functions 
can be represented in the form 

[ u z v z ] 
G,•(w) = El(w) •. + .6 + + •, + .6 (I)- Ep ~ W €p L 

[ u,' v,' ] +El -w) + . , 
( w-ep"-ill w+el-u'i 

[ v z u z ] 
G.'(w)= <9(w) '·+ .6 + + :+ .15 W- Ep L W Bp l • 

(23) 

+9(-w) • + • . , [ v' u' ] 
w- ep"-ill w+e,'-£il 

u,',v,'=~{i±· s.+llll }. <9(x)·=.!...(1+s(x)). 
2 l'<s.+~>lll'+4lll' 2 

The poles of the Green's functions, which are the same 
for all four functions, determine the spectrum of the 
elementary excitations of the system: 

e."''=± '/,(6.- bll) + ['f,(s. + ll!l)' + IX. I']'". (24) 

The dependence of the poles of the function G~, 
which describes the behavior of the impurity electrons 
as a function of the quasimomentum p denotes that the 
impurity level is transformed into an impurity band. 
The impurity band is produced as a result of impurity
band-other impurity transitions, as confirmed by the 
physical meaning of the damping W. According to the 
diagrams of Fig. 1, W results from transitions from 
the impurity to the band and back to the same impurity. 
Such transitions lead to a retention of the electron near 
the impurity and prevent delocalization, facts indeed 
manifest by the damping. Using the definition (15), we 
can show that W coincides with the probability of in
duced absorption of a strong-field quantum on the 
transition from the level of one impurity atom to the 
band. 

The condition W « I~ 1, which is necessary for the 
production of the impurity band, can be represented 
(when n0 ~ n) in the form 

lc=v,j Ill ':$-n-'1•, 

which means that the coherence length lc should ex
ceed the mean distance between impurities. At an 
arbitrary ratio of the concentrations we have 

W 3n n, Ill (25) 
w=2-;~· 

Scattering by impurities, as seen from (15) and (32), 
leads to a damping 1/2 Ta, which is analogous to the 
damping in a normal metalf 8l. 

The chemical potential IJ.3., which depends on the 
frequency and intensity of the strong field, and also on 
the number of the electrons in the band ( n~) and at 
the impurity level (nf,) prior to turning on the electro
magnetic field, i.e., in the equilibrium semiconductor, 
can be obtained from the electroneutrality condition. 
An analysis of the electroneutrality equation in the 
case of small 11 (usually 11 -;; 10-4 ) shows that in the 
region of the strong-field frequencies 

[3:rt'(n.' + n0'- n) ]'1• Q,=E,+ , 
2m. 

(3:rt' (n.' + n0°) ]'1• 
Q, = E, + .::..........:--::-:...-.....:....:....::._ 

2m. 

(26) 

the chemical potential is IJ.a ~ IJ.o (I OIJ. I « I 'X I). In 
this region, the excitations coincide with those ob
tained inf7l, At il 0 > il 2 all the impurities become free 
of electrons and IJ.3. < IJ.o· The case il 0 < n 1 can be 
realized in a degenerate semiconductor, when the 
strong field couples the impurity level to a state in the 
band below the equilibrium Fermi level. In this case 
/J.a > /J.O• 

4. ABSORPTION (AMPLIFICATION) OF A WEAK 
ELECTROMAGNETIC WAVE IN THE PRESENCE 
OF A STRONG ONE 

Of considerable interest, particularly in the investi
gation of multimode lasing in a semiconductor laser, 
is the line shape of the impurity absorption of a weak 
electromagnetic field E sin ilt of frequency il close to 
the frequency of the strong wave. Expressing in the 
usual manner the linear-in-E current of the transition 
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from the impurity level to the band in terms of the re
tarded two-particle Green's function GR of pairwise 
coinciding arguments (see, for example,P21), we obtain 
for the weak-field absorption coefficient 

K(Q) = Re 8n((jE sin !Jt)) 
xE' ' 

(27) 

4ne' ~ - - nn• 
K(Q) =- 3xQVm' ~('I'. *p'l'.)('l" •. p'l' •. ) lm G. (p, p'; 6Q), 

... 
where 

G. (p,p';6Q)= -i e'""'S(t)([b.,+(t}a,,(t),a,+(O)b.(O)]->dt .,., J 
is the Fourier component of the retarded Green's 
function at the frequency 60 = 0 - 0 0 • In deriving (27) 
we have carried out a canonical U(t)-transformation 
and have used the fact that the transformed GR in the 
stationary state depends only on the difference between 
the temporal arguments. The bar denotes averaging 
over the impurity positions, the brackets denote 
quantum-mechanical averaging, the double brackets 
denote additional averaging over the volume, time, and 
polarization of the wave, and K is the refractive index. 

According to[ 8l, GR(IiU) is expressed in terms of 
the Fourier transform of the causal Green's function 
as follows: 

Gn(6Q) =ReGc(6Q)+is(bQ)ImGc(6g), (28) 

Representing Gc in the form of a product of 
single-particle Green's functions and calculating the 
Fourier component, we rewrite (27) in the form 

K(Q) = K,(Q)/(Q), K,(Q) = 4:rt'l v •• I'M'e'p.(Q- E,) (29) 
3QxV 

is the absorption coefficient in the absence of scatter
ing, a strong field, and electrons in the band, 

s(OQ) EJ • . /(Q) = , Re . G,,.(ro -1\Q)G,.,(ro)dro, 
2:rt p.(Q-E,) ... (30) 

I(U) takes into account the influence of the strong field, 
the impurity scattering, and the populations on the ab
sorption. We note that the term F+F, which arises to
gether with GbGa in the two-particle function 

Gc = -i(T{b,,+(t)a.;•(t}, a,+(O)b,(O)}), 

does not depend on the time and makes no contribution 
to the absorption. 

We consider first the absorption when the dampings 
are small and the Green's functions (23) can be used in 
the calculation. The average of the product in (30) is 
equal in this case to the product of the averages. Sub
stituting (23) in (30 ), we obtain after integration 

2s(6Q) ~ ~ Q) 
/(Q)= p.(Q-E,) ~El(e,~)E>(I6!JI-e.~)[u.'6(e.~+e, -6 

(31) 

(31) coincides in form with the absorption coefficient 
for interband transitions[lSJ, and in the frequency range 
IOU 1 <min(~~+~~)= 21"X] the absorption coefficient 
is equal to zero (I = 0 ). This agrees fully with the 
notions concerning the impurity band and the gap in the 
excitation spectrum [71. 

Changing over in (31) from summation over p to 

FIG. 2. Spectral dependence of the absorption (amplification) of a 
weak electromagnetic wave at different positions of the Fermi level: a) 
0 < 61-1 < lXI, b) fill< -!XI, c) -!XI< 61-1 < 0, d) 61-1 >!Xi. The dashed 
curve corresponds to absorption with allowance for the dampings. 

integration with respect to ~p. we obtain 

/(Q)= B(IB!JI-2I~I)s(IIQ) {e(.1~1'+(6f.l)' ·III!JI) 
4p.(Q- E,) iii!Jil'(IIQ)'- 41] ~I' illf.li 

X Po(f.lo ± y(OQ)'- 41 ~I') (6g ± l' (BQ)'- 41 ~~ ')' (32) 

+ Pa(f.lo + Y(6Q)'- 41 ~~ 2 ) (6Q =F l' (6Q) 2 -41 ~~ 2 } 2 } 

for I liiJ.I :s I X' I , and 

I(Q)= s(BQ) e(lb!JI- 1~>1-11'+1~.1') 
4p.(Q E,) I6!JI'f(6Q)'-41~1' \]6f.ll 

' (33) 
· Po(f.lo =F l':-;-:(6:-::::Q-:-;)'--~4:-:"'I ~;-'llo;:-:-') (6Q =F f(6Q)'- 41 ~~ 2} 2 

for I Iiili > li 1. 
In (32) and (33) it is necessary to take the upper 

sign for liiJ. < 0 and the lower one for liiJ. > 0. 
We note that, as seen from (32) and (33), a contribu

tion is made to absorption not only by the usual elec
tronic transitions but also by transitions from the band 
to the impurity with emission of two strong-field 
quanta and absorption of one weak-field quantum, and 
from the impurity to the band with absorption of two 
strong-field quanta and emission of a weak-field 
quantum. It is precisely because of these transitions 
that we have absorption at the frequencies 0 > OiJ. at 
liiJ. < - I 'X I when all the impurities are practically free 
of electrons, and amplification for the frequencies 
0 < UiJ. at liiJ. > I "X I, when the impurities are occupied 
by electrons. 

In (32), these transitions correspond to the second 
term at 60 > 0 and to the first at on < 0, Oil = 0 0 

- [IX12 + (liiJ.)2VoiJ.. 
The spectral dependence of K(O) is shown in Fig. 2. 

The gap singularities of the· energy spectrum of the 
excitations are most generally pronounced in absorp
tion at I liiJ.I < I~ I, which is satisfied in a wide strong
field frequency interval (U1 ~ 0 0 'S U2). 

Expression (32) becomes infinite as IOU I - 21~ 1. 
This is the consequence of the singularity and the 
density of states in the strong field, the same as in 
interband transitions[ 13 l, Obviously, it is impossible to 
neglect the damping in this frequency region. 

5. ABSORPTION OF WEAK ELECTROMAGNETIC 
WAVES WITH ALLOWANCE FOR IMPURITY 
SCATTERING 

In this section we shall show that if W/1 XI« 1 and 
(1J.oTat1 « 1 then the impurity scattering does not in-
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fluence the absorption, so that the spectral singulari
ties of the absorption coefficient remain also when 
such scattering is taken into account. We change over 
in (30) from summation over p to integration with 
respect to ~ p· Since the main contribution to the inte
gral is made by a narrow region near ~ p = &1 - Ei 
- JJ.a, the density of states pa( Ep), being a smooth 
function, can be taken outside the integral sign at Ep 
= n - Ei. As a result we obtain 

S(/lQ) f , _ '\1 b a I(Q) = 2n'Re II(s, w)d£dw,TI(1;, w)- i.... G,,,(w -llQ)G,.,(w). 

P' (34) 

In the calculation of the double integral in (34) it is 
impossible to change the order of integration, since 
the integral converges only conditionally. We get 
around this known difficulty[BJ by reducing the integra
tion with respect to the frequency between infinite 
limits to integration between finite limits. To this 
purpose we note that 

oo . oc oo o 

fiidw = f (II- II,)dw + f IIndw + f (IIA- IIn)dul, (35) 
-"" 0 -oo -oo 

where 

Tin= I: Gn'(w -llQ)Gn'(w), nA =I: GAb(w -llQ)GA"(w); Gn, GA 

P' P' 

are respectively the retarded and advanced Green's 
functions and are connected with the causal Green's 
function by the relation (28 ), and GA = GR. For con
creteness we assume that on> 0. 

Since IIR is an analytic function in the upper half
plane and behaves like 1/ w2 as w--oo, the second in
tegral in the right-hand side of (35) vanishes. The last 
integral is pure imaginary, since ITA = II]3. Conse
quently 

f Ml oo 

I(Q)= 2n,faw fd£Re[II(£,w)-IIn(6,w)], (36) 
0 -~ 

The average of the product of two Green's functions 
is not equal to the product of the averages, and in 
averaging it is necessary to sum over a set of diagrams. 
In accordance with Figs. 3a and 3b, we obtain for 
o s w s on: 

fl(£, w) = Gb(w- oQ)G"(w) [ w +: 611 +A]- F+(w- oQ)G"(w)A,, 
w (37) 

w + ll~t ) II,(£, w) = F(w- oQ)G'(w)-_-+G"(w- oQ)G"(w)A,, (38 
w 

where 
w = {•) + '~11 + iW I 2, w_ = "'- 6Q +Of!- iW /2, 

I ), 1'1 "I' 
A= I: Iii(;,- 6Q- !',,,- i/21:,) II(!',,., w), 

' 

... 
L, lu,.(p- p') I' }n, (!',,·, w). 

p' k 

Multiplying (38) by 

l: lu,(I-vJI'+IA.I'IXI'/ww_ 
• 

and summing over p, we obtain A2 and then ana-

FIG. 3. Structure of the equations for the average product Green's 
functions. 

logously A 1> and from (37) we get A: 

l iiXI'W _i ] -- + ' ww_ t,.. 

iiXI'(,,+ort)W [1 

(6Q)w [ x+ ;,~;~)] 
il Xl'wx-' ] 

+ T,(IJ.,I'/w-i/T,-IlQ)oQ ' 

where x = ww + lA 12 • 

Similar calculatior ~ for IIR( L w) at 0 s w s oil 
yield 

IIn(s, w) = Gb'(w- 6Q)G"(w) w ~ 611 , 
w 

(39) 

(40) 

(41) 

After substituting (37) and (41) in (36) and integrating 
with respect to ~, we obtain 

I(Q) = -~s·"aw Re { i(w + 611)' + i(w + 6~t) WI Xi' 
n 0 xllQ 2(6Q)'-r.x(x + iww_j/lQ'r,) 

><(i+ lXI' )}-
w_( I X 1'/w- i/-r, -llQ) (42) 

At W « lA 1, the integral of the second term in (42) 
can be neglected, for even at Ara << 1 its value is of 
the order of w;'A « 1 for on< 21A I and ~1/jJ.oTa 
« 1 for on > 2iA I. The first term in (42) does not 
depend on Ta. Thus, impurity scattering at (J.1.oTat1 

« 1, lA I « J.lo 2n/ 3nn0 does not influence the absorp
tion. 

The integral of the first term (42) expressed in 
terms of elementary functions. We present the result 
at OJJ. = o and on - 2IA 1 » W: 

(oQ)'-21X_I' ( 2 2IXI'] 
J(Q)= _ 1 +-arctg~- . 

2l'(llQJ'-4IA.I' :t oQW 
(43) 

If on < 1 A 12/W, then (43) coincides with (32). If on 
» 1 A 12/W, then I is equal to 1/2 rather than unity as 
in (32). This difference is due to the fact that the for
mation of the impurity band ceases to influence the 
absorption at frequencies on > lA 12/W » lA I· Indeed, 
the energy, in the impurity band, of an electron absorb
ing a weak field with such a frequency turns out to be 
smaller than the damping W(t.f> f';:j lA 12/on < W), and 
the energy of the final state in the conduction band does 
not depend on lA l(t-0!"" on). Therefore the absorption 
is by independent impurities with electron populations 
equal to 1/2 owing to the transitions of the "impurity
band-the same impurity" type in the strong field. 

At the frequency on = 21A I we have I = "I A II 8W' 
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i.e., W eliminates the divergence in (32). At M2 
< 21"X I, the absorption decreases sharply practically 
to zero on the interval ~ 1 "X 1 ( W /1 A 1)213 

The spectral dependence of K, with allowance for 
the damping, is shown dashed in Figs. 2a and 2c. 

We have considered transitions for an electron with 
one spin projection. If transitions of the electrons with 
opposite spin projections become equally probable, 
then it can be shown, taking the electrostatic repulsion 
of the impurities into consideration, that allowance for 
the spin leads only to a replacement of "X in all the 
excitations by "X/ !2. 

It is useful to compare the results with absorption 
in the absence of a strong field. For concreteness, we 
consider an n-type semiconductor in which, owing to 
donor impurities, there are degenerate electrons in 
the conduction band and the acceptors are compensated. 
The electrons in the bands are described by the 
Green's function (20), and on the acceptor level by the 
function 

(44) 

In calculating I(~), the average product of the Green's 
functions can be replaced by the product of the aver
ages, since all the discarded diagrams contain the 
parameter e 2 / ~ va << 1. As a result we obtain 

1(&2) = El(.rl- f!.-E,), (45) 

i.e., the impurity absorption near the edge has the 
form of a step and does not depend on the elastic scat
tering, just as in the presence of a strong wave. Al
lowance for the discarded diagrams decreases only the 
magnitude of the step, but does not smear it out. 

Such a result becomes understandable if account is 
taken of the energy conservation law, which is satisfied 
in elastic collisions with impurities. Impurity absorp
tion of a field of frequency lower than ( ll a + Ei) is 
impossible, since the final state in the band for transi
tions with absorption of a field of such a frequency lies 
below the Fermi level and is occupied. 

A new result is obtained in the case of intrinsic ab
sorption. After averaging, in accordance with Fig. 3c, 
the product of the Green's functions of the valence
band and conduction-band electrons scattered by the 
impurities, and integrating, we obtain 

K(Q)= 4IV •• I'e'(z m,m. )'I,YQ-E,.~,[_::_ 
3Qx m, +m. :t 2 

2(Q- !l)'C,m,m.] 
+arctg ( J_ )' , 

ma 1 mv 

(46) 

where Eb is the width of the forbidden band and 
D. = Eg + JLa( 1 + ma/mv). 

Expression (46) describes the smearing of the in
trinsic absorption edge as a result of impurity scatter
ing. When ~ = D., the absorption is smaller by a factor 
of two than in a pure semiconductor, and when ~ < D. 
there is an absorption "tail." 

The smearing of the edge of the intrinsic absorption 
occurs as a result of indirect transitions (without mo
mentum conservation) whose final states lie above the 
Fermi level. In interband absorption, unlike impurity 
absorption, such indirect transitions are present also 
for frequencies for which the direct transition is for
bidden. 

CONCLUSION 

As explained in this paper, impurity-band transi
tions in the field of a strong electromagnetic wave have 
a number features that distinguish them from interband 
transitions. An important distinguishing feature is the 
fact that the impurity scattering does not disrupt the 
gap singularities of the absorption spectrum. There
fore the requirements imposed on the intensity of the 
strong field are much less stringent in the case of im
purity--band transitions than for inter band transitions. 

The result obtained here, and also inr 141 on the ab
sorption and spectrum of recombination radiation can 
be directly used to analyze the conditions of multimode 
generation in a semiconductor laser, where, according 
to a number of experimental investigations, the radia
tive recombination occurs in a band-impurity level 
transition. Since the gain vanishes in an interval 
2IA. I near the frequency ~o of the strong wave (first 
mode) and increases sharply on the boundary of this 
interval, the second mode occurs when the intensity of 
the first is such that the gap 21~ 1 reaches a value 
equal to the distance between the resonator modes[ 5l. 

We have disregarded in our analysis the broadening 
of the impurity level as a result of the possible scatter 
of the levels of the individual impurity atoms. Appro
priate calculations show that when allowance is made 
for the broadening, the damping W is replaced in all 
the Green's functions by Y = W + o, if the distribution 
function of the impurity atoms over the levels is as
sumed to be[ 15l 

E _ 6/2n 
/( ) - (E- E,)' + 6'/4 

Coherent interaction of the impurity electrons with a 
strong field and the associated singularities of the ab
sorption of the weak wave should become manifest if 
Y < 1 "X 1. Numerical estimates for gallium arsenide at 
E 0 = 104 V /em and at an acceptor concentration 
n = 1018 cm-3 yield I~ 1 = 10-4 eV, and for InSb at the 
same strong-field intensity and n = 1017 cm-3 we get 
I'll ::::: 2 x 10-3 eV. 

The authors are grateful to Yu. A. Bykovskil and 
V. M. Galitski'l for useful discussions of the present 
work. 
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