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The temperature dependences of the susceptibility of three highly conducting tetracyanoquinodimethan (TCNQ) complexes 
with the compositions quinoline+(TCNQ);, acridine+(TCNQ)2 and phenazine+(TCNQ)- have been studied at temperatures 
between 0.1 and 400"K. Magnetization curves in fields up to 70 kOe have been measured between 0.1 and 4"K. It is shown 
that the low-temperature increase in the susceptibility, characteristic of highly conducting TCNQ complexes, is not connected 
with the presence of paramagnetic impurities in the samples, but reflects properties of the complexes themselves. An analysis 
of the experimental results shows that the distinctive low-temperature magnetic properties of the complexes investigated are 
a manifestation of a singularity in the density of states of disordered quasi-one-dimensional systems, the quasi-one-dimensional 
electron system being in a "Mott" insulator state with localized electrons at T=O. 

1. INTRODUCTION 

THE theoretical study of the physical properties of a 
one-dimensional conducting chain[ 1' 21 shows that the 
question of precisely which states can actually be re­
alized in a one-dimensional case, with the electron­
electron and electron-phonon interactions taken into 
account, is non-trivial even in the case of zero temper­
ature and is far from being completely clarified at the 
present time. This makes it of interest to investigate 
experimentally the different properties of substances 
in which the one-dimensionality of the electron system 
is established by features of their crystal structure 
and which at the same time possess a considerable 
electrical conductivity. 

Examples of such substances are complex salts of 
tetracyanoquinodimethan (TCNQ) with typical composi­
tions R+(TCNQf (simple salts) and R+(TCNQ); (com­
plex salts), where H is the molecule of the cation, dif­
ferent in different complexes. A characteristic feature 
of the crystal structure of these compounds is the pres­
ence of stacks of TCNQ molecules, [3• 41 almost isolated 
from each other, along which the conduction occurs 
preferentially. [sJ 

Formally, each molecule of the complex always con­
tains one unpaired electron, and this makes it paramag­
netic. In the simple salts, there is an unpaired electron 
in each unit of the linear conducting chain composed of 
the TCNQ molecules. In the complex salts, there is one 
unpaired electron to each two units of the linear con­
ducting chain. Here, it is important to note that, in the 
highly conducting complex salts, all the TCNQ molecules 
in the chain are completely equivalent[41 and it is not 
possible to establish in precisely which units an unpaired 
electron is to be found. 

Between the electrical and magnetic properties of the 
TCNQ complexes there exists a close correlation, noted 
in the very first papers on this subject, [6• 71 which is 
clear evidence that both types of property are deter­
mined by the same group of electrons. It may be hoped, 
therefore, that the study of the magnetic properties of 
these complexes, especially at low temperatures, will 
make it possible to obtain information on the states of 
their electron system. 

In the present work, we have measured the tempera-
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ture dependence of the susceptibility of three highly 
conducting complexes of tetracyanoquinodimethan, of 
compositions: I - quinoline • (TCNQ);, II - acridine • 
(TCNQ);, and III - phenazine + (TCNQf in the tempera­
ture range 0.1-400°K, and have plotted the magnetiza­
tion curves in fields up to 70 kOe in the temperature 
range 0.1-4°K, Special attention was given to proving 
that the increase in susceptibility at the lowest temper­
atures is not connected with the presence of paramag­
netic impurities in the samples, but reflects the prop­
erties of the samples themselves. An analysis of the 
experimental results shows that the distinctive low­
temperature magnetic properties of the complexes in­
vestigated are a manifestation of a singularity in the 
density of states of one-dimensional disordered sys­
tems. 

2. RESULTS OF THE MEASUREMENTS 

1. The magnetic susceptibility x of the complexes in 
the temperature range 1.6-400°K was measured on a 
magnetic balance[aJ using Faraday's method. The para­
magnetic contribution Xpara to the susceptibility was 
determined as the difference x - Xdia• the diamagnetic 
contribution Xdia of the substrate being calculated from 
Pascal's rules. The values thus obtained for the para­
magnetic susceptibility are presented as a function of 
temperature in Fig. 1. 

In the high-temperature region (above ~ 30°K for 
complexes I and II and above ~ 80°K for complex III), 
Xpara changes little with temperature. For complexes 
I and II, there is a weak maximum here, in the region 
of 300 and 250°K respectively. For complex III, this 
maximum lies, apparently, at a temperature somewhat 
above 400°K. In the low-temperature region, the sus­
ceptibility of all three complexes begins to increase 
rather rapidly on lowering of the temperature. It has 
already been observed by Kepler[ 71 that this low-tem­
perature increase in susceptibility (which, we note, is 
characteristic of all the highly conducting TCNQ com­
plexes known to us) is less likely to be connected with 
the presence of paramagnetic impurities in the samples 
than to be a property of the complexes themselves. We 
shall now describe the results which establish this as a 
certain fact. 
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FIG. I. Temperature dependence of the paramagnetic susceptibility 
of complexes I-III in the interval 1.7 -400°K: I) complex I, 2) complex 
II, 3) complex III. 
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FIG. 2. Paramagnetic suscep­
tibility of the two modifications 
of the complex (diethylthiazolino­
carbocyanin)+(TCNQ)2: I) the 
highly conducting modification, 
2) the poorly conducting modi­
fication. 

It has been found £91 that some TCNQ. complexes can 
exist in several crystalline modifications. This is so, 
in particular, for the complex of composition diethyl­
thiazolinocarbocyanine + (TCNQ);, which exists in two 
crystalline modifications, differing from each other in 
the external appearance of the crystallites, in their 
Debye crystallograms, and in their physical properties. 
In particular, one of the modifications is highly con­
ducting, while the other belongs to the poorly conduct­
ing TCNQ complexes. It is important to note that one 
modification can be obtained from the other, merely 
by changing the conditions of crystallization. £9 J 

In Fig. 2, in which the behavior of the paramagnetic 
susceptibility of the two modifications of this complex 
is shown, Curve 1 refers to the highly conducting modi­
fication, and curve 2 to the poor conductor. If the in­
crease in susceptibility at low temperatures were con­
nected with the presence of paramagnetic impurities, 
in obtaining the highly conducting from the poorly con­
ducting modification we should have also obtained, as a 
consequence, an insignificant increase in susceptibility. 
However, a considerable increase in Xpara• character­
istic for the highly conducting TCNQ complexes, can be 
reproduced with high accuracy in this operation (at 
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FIG. 3. Temperature dependence of the paramagnetic susceptibility 
of the complexes I-III in the interval 0.1-1 0°K: I) complex I, 2) com­
plex II, 3) complex III. 

1. 7°K, x1 is approximately five times greater than X2). 
It follows from this that the low-temperature increase 
in susceptibility, or at least the largest part of it, is 
an intrinsic property of the highly conducting TCNQ. 
complexes, and the study of magnetic properties at low 
and extremely low temperatures can give information 
about the state of the one-dimensional electron system 
as T- 0. 

2. The magnetic properties of the complexes in the 
region of extremely low temperatures were studied by 
a ballistic method. The sample was attached by vacuum 
cement to one end of a cold-conductor, coiled out of 
several hundred enameled fine copper wires of diameter 
0.04 mm. The other end of the cold-conductor was at­
tached mechanically to copper wires imbedded in a pill 
of iron ammonium alum of diameter 20 mm and length 
70 mm. To measure the temperature, a monocrystal 
of cerium magnesium nitrate, mounted inside the cold­
conductor at a distance of 50 mm from the sample, was 
used. The magnetic fields for the adiabatic demagneti­
zation of the pill and for measuring the magnetic mo­
ment of the samples were produced by two supercon­
ducting solenoids. A pair of measuring coils were con­
nected in opposition and each contained 5000 turns. To 
calibrate the ballistic kicks, values of the susceptibility 
at 1. 7°K, obtained in measurements on the magnetic 
balance, were used. 

The temperature dependence of the paramagnetic 
susceptibility of the investigated complexes in the tem­
perature range 0.1-10°K is shown in logarithmic coor­
dinates in Fig. 3. It is clear that in this region of tem­
perature, the behavior of the susceptibility does not 
follow the Curie law, and is well described by the de­
pendence x crT-a, where a = 0.73, 0.74, and 0.58 for 
complexes I, II, and III respectively. It should be noted 
that such a fractional-power temperature dependence 
of the low-temperature susceptibility is, apparently, 
characteristic of all the highly conducting TCNQ com­
plexes. In particular, we have studied the behavior of 
the magnetic susceptibility of more than ten complexes 
of this type in the temperature range 1.6-30°K, and for 
all of these, at temperatures T ~ 10-15°K, Xpara crT-a, 
with a in the range from 0.55 to 0. 75. 

A characteristic feature of the magnetization curves 
of the complexes investigated is the fact that at the low­
est temperatures ~0.1°K and in fields up to 70 kOe, the 
magnetic moment still does not reach saturation. From 
Fig. 4, which presents in logarithmic coordinates the 
dependence of the moment Mpara on the field H for the 
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FIG. 4. Dependence of the magnetic moment of complexes 1-111 
on the field in strong fields at extremely low temperatures: I) com­
plex I at T = 0.115° K, 2) complex II at T = 0.144° K, 3) complex III at 
T=O.ll8°K 

complexes I (T = 0.115°K), II (T = 0.144°K) and III 
(T = 0.118°K), it can be seen that in strong fields 
(H > 5 kOe), M ex: HY, where y is equal to 0.25, 0.29, 
and 0.42 respectively. 

3. INTERPRETATION OF THE RESULTS 

A. The High-temperature Region 

The behavior of the magnetic susceptibility in the 
region where it depends weakly on temperature can be 
explained in practice with equal success both by the 
properties of a one-dimensional "Mott" insulator, and 
by the properties of a one-dimensional metal. 

1. A "Mott" insulator is realized when the reso­
nance integral for an electron transition from one mole­
cule to another is not large enough and the electrons are 
localized on the molecules because of the stronger Cou­
lomb repulsion. For T- 0, we then have a regular ar­
rangement of electrons along the chain (one per TCNQ 
molecule for complex III, and alternation of molecules 
with an electron and without an electron for complexes 
I and II). In this case, the magnetic structure of the un­
paired TCNQ electrons is described by a one-dimen­
sional Heisenberg spin Hamiltonian with antiferromag­
netic interaction: 

~ = .E (2/ mSmSm+t- gf.lsHSm'], (1) 
m 

with Jm = J 0 for a regular chain. According to the cal­
culations of Bonner and Fisher, [10l for the Hamiltonian 
(1) with Jm = J 0, the susceptibility tends to a constant 
value as the temperature is lowered, passing through 
a maximum, whose magnitude is connected with its 
position by the relation 71 = (xkT)max/g2JlhN = 0.095. 
This behavior is close to that observed experimentally; 
for the complexes I and II, we obtain 71 = 0.10 ±0.01, 
while for complex III, the quantity 71 ~ 0.1. 

2. To describe the properties of the chain in the me­
tallic model of noninteracting electrons, we can use the 
tight-binding approximation, since because of the com­
paratively large spacings between the units (3.2-3.4 A), 
the overlap of the electron functions of non-neighboring 
molecules will be negligibly small. In this case, the 
magnitude of the magnetic susceptibility can be calcu­
lated from the formula 

1 "" _X_=-- S dtch-' ~(z-sint) (2) 
g'f.ls'N 2nkT -•I' 2kT ' 

where {3 is the half-width of the band and z is deter­
mined by the condition 

1 lt/2 • 

c-1=- J dtth~(z-smt) 
n -•1• 2kT ' 

(3) 

where c is the number of electrons per unit. Numerical 
calculations using formulae (2) and (3) show that, as the 
temperature is lowered, the susceptibility tends to the 
Pauli value, passing through a maximum at which 71 
= 0.089 for c = 0.5 (complexes I and II) and 71 = 0.24 for 
c = 1 (complex III). The difference between this case 
and the preceding one lies in the accuracy of the deter­
mination of the position of the maximum. 

B. The Low-temperature Region 

It is impossible to obtain the increase in susceptibil­
ity at low temperatures, either for a regular chain of 
localized electrons described by the Hamiltonian (1), or 
for noninteracting electrons in a periodic lattice. In the 
first case, as T - 0, the susceptibility x - const for 
Jm = J 0, (UJ and x- 0 for periodic alternation of the in­
teraction. [12l In the second case, as is well-known, the 
quantity xis finite for T- 0. We shall show that, in 
both models, the low-temperature increase in suscepti­
bility can arise as a result of irregularity of the lattice. 
However, the properties of these two models turn out to 
be qualitatively different in some respects, and this 
makes it possible to make an unambiguous choice in 
favor of one of them. 

1. We shall consider a system with Hamiltonian (1), 
in which the parameters Jm are random quantities. The 
reason for the growth of x as T- 0 is easily under­
stood if we assume for the moment that the random 
quantities Jm can take arbitrarily small values. This 
means that, in a random way, interaction between cer­
tain spins is absent, i.e., the Jm for different m are 
uncorrelated: Jm = 0 with probability c and Jm > 0 with 
probability 1 - c. Then the whole system of spins can 
be divided into noninteracting subsystems, among which 
are subsystems with an odd number of spins. Such sub­
systems at low temperatures are equivalent to a set of 
a certain number of noninteracting half-integer spins­
% and their susceptibility for T - 0 is described by 
a Curie law x ~ c/2T. [tSJ 

In systems with a distribution function W(J) - 0 for 
J- 0, the singularity in the susceptibility as T- 0 
may be conserved, but the increase in x will be weaker 
than T-1• We note that such a situation cannot arise in 
two- and three-dimensional lattices, since here the 
probability of the appearance of a subsystem weakly 
interacting with the rest of the system is negligibly 
small. 

By going over from the spin operators Sm to the 
Fermi operators am and a;n, [14l we can convert the 
Hamiltonian (1) to the form 

~ = Jfl$1 + ~ •. 
dtfft =- 1/,Ngf.lnH + .E [lm(am +am+t + am+tam) + g/-lnHam +am], 

• (4) 

where N is the number of spins. 
The term ~1 in (4) corresponds to the XY model for 

the spin Hamiltonian. It is equivalent to a system of 
free spinless Fermi particles with energies Ea +gJlBH, 
where E a are the eigenvalues of the Jacobi matrix Amn 
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with Am,m+l = Am+l,m = Jm and Amn = 0 for n * m ±1. 
The chemical potential of these Fermi particles is equal 
to- gllBH; it determines their number, and from the 
relation 

(5) 

it also determines the z-component of the total spin of 
the system. 

The quantities Jm are random; we therefore intro­
duce the density of the eigenvalues Ea of the matrix 
Amn, namely the function p0 (E) = p0(- E). From (4) and 
(5 ), we have for the magnetic moment and free energy of 
of the system 

{ 1 ~ [ e + g!J..H ) -• } M(T,H)=g!J..N 2 - Lp0 (e) 1+exp kT de , (6) 

F(T,H) =- kTN r~o(e)ln{ 1 + exp [- e +k~.H]} _,de. (7) 

The term X 2 in the Hamiltonian (4) corresponds to 
the Ising model and describes the interaction between 
the Fermi particles. As in the Landau 1151 theory of 
Fermi liquids, we shall assume that the weakly excited 
states of the system (4) can be described by means of 
Fermi quasi-particles, the density of states of which 
is determined by the function p(E, T) = p(- E, T), and 
that at low temperatures we can neglect the dependence 
of p on T. By making this assumption, at low tempera­
tures we obtain, in the case of the Heisenberg Hamil­
tonian also, the expressions (6) and (7), in which p0 ( E) 
must be replaced by the unknown function p(E) * p0(E). 

The function p(E) can be determined from the ex­
perimental data on the temperature dependence of the 
susceptibility. From Eq. (6), 

x(T)=g'!!•'N fdxp(2xT)/ch'x. (8) 
0 

On the other hand, in the temperature range O.l-10°K, 
the experimental results are well described by the law 

x(T) (%) r-· (9) 

with 0 < a < 1 (see Fig. 3). Comparing Eqs. (8) and (9), 
we obtain for the density of states in the energy inter­
val 0.1 °K :S E/k :S 10°K 

(10) 

Now, the dependence of the magnetization M on T and H 
is given by the expression 

H A t-o ( g!J.aH ) M(T, ) = g!J..N T j, ~ , (11) 

foo ( chx ) _, 
f,(y)=thy· x-• 1+-- dx. 

0 ch y 

From Eq. (11), we have, in the limiting case of weak 
fields gllBH « kT, 

M(T, H) = x(T)H, 
(12) 

x(T) = 2 (1 - 21+") f(1 -a) U -a) k-'Ag'f'n'NT-•, 

where r(x) is the gamma function, and t(x) is the Rie­
mann function. In the limit of strong fields gllBH » kT, 
we obtain a power dependence for the moment on the 
field: 

(13) 
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FIG. 5. Graphs of the function fa(y), with experimental values of 
the quantity M(H, T)/gusNAT1'" for complexes I-e, II-0, III-X. 
Curve 1-a = 0.75, 2-a = 0.71, 3-a = 0.58. 

as is also observed experimentally (Fig. 4). 
In the table, we compare the parameters a and A ob­

tained from the data on the dependence of x on T and of 
M on H shown in Figs. 3 and 4. It is clear that formula 
(11) describes well the experimental data in the limit­
ing cases of weak and strong fields (the relative errors 
in the determination of a and A amount to about 2% ). 
To check it in the intermediate region gllBH ~ kT, 
graphs of the functions fa(Y) have been constructed 
numerically (Fig. 5), and on these graphs we have 
drawn the experimental values of the quantity 
M(H, T)/ULBNAT1-a with the parameters a and A 
determined from the data on the dependence of M on 
H. Figure 5 shows that formula (11) describes the ex­
perimental results with an accuracy of not less than 
10% in the whole range of variation of the parameter 
gllBH/kT. 

2. We shall consider the alternative model of non­
interacting electrons in an irregular one-dimensional 
lattice. For the reasons described in Sec. 3A, we can 
seek the spectrum of the electrons of the chain in the 
tight-binding approximation. Then, as in the XY model, 
the density of single-particle states will be determined 
by the density of the eigenvalues of the Jacobi matrix 
with Am m+l = Am+l m = f3m :s 0, where f3m is the res­
onance i~tegral for the electron transition from mole­
cule m to molecule m + 1. In an irregular lattice, f3m 
are random quantities, and if we assume that the reso­
nance integral f3m can take arbitrarily small values 
with finite probability c, the Jacobi matrix Amn is de­
composed into blocks, unconnected with each other and 
consisting of Jacobi matrices of finite order. In this 
case, at the center of the band we obtain a singularity 
in the density of states of the form co( E)/2, since Jacobi 
matrices of odd order always have a zero eigenvalue. 
One might think that the singularity of the function p 0( E) 
at zero is conserved, but will be weaker, if the distri­
bution function W( I f31 ) ~ 0 as (3 ~ 0. However, this 
singularity is manifested in the thermodynamic prop­
erties of the electrons only in the case when the Fermi 
level is positioned at the same point as this singularity. 

In simple salts with one unpaired electron per mole­
cule (complex III), we are dealing with precisely this 
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situation. Then, at low temperatures, the system of 
electrons will be described by the expressions (6) and 
(7), in which the right-hand sides must be doubled, with 
g replaced by g/2 in them. By taking again the density 
of states in the form (10), we obtain, as in the localized­
electron model also, power dependences for x on T and 
for M on H. But now the parameters A, calculated from 
the data on the dependences of x on T and of M on H, 
will differ by a factor 2a ( ~ 1.5 for complex III). Thus, 
for the highly conducting salts, it would also be possible, 
to an accuracy within the factor 2a, to describe the ex­
perimental data in the framework of the model of non­
interacting electrons. 

In the complex salts (complexes I and II), there is 
one unpaired electron for every two TCNQ molecules, 
and X-ray structural investigations, which, admittedly, 
are performed at room temperature, show that in the 
highly conducting complexes all the distances between 
neighboring TCNQ molecules are the same. l4 J The elec­
tron band must be only one-quarter occupied, and the 
Fermi level must be positioned in a region where there 
are no singularities in the density of states. Thus, in 
the noninteracting-electron model, it is impossible to 
explain the experimentally observed low-temperature 
magnetic properties of the complex salts. 

4. DISCUSSION 

The interpretation of the results in Sec. 3B is based 
essentially on two assumptions. First, we assumed that 
the Hamiltonian (4) with a random interaction param­
eter can lead to a density of states with a singularity of 
the required type. Secondly, it was assumed that the ex­
citation spectrum of such a Hamiltonian has a Fermi­
liquid character. 

1. In the XY model, the density of states of the Fermi 
particles coincides with the density of eigenvalues of the 
Jacobi matrices, of which the non-zero elements Am m+ 1 

= Am+ 1 m = Jm. If the uncorrelated random quantitie's 
Jm can'take zero values with finite probability, then as 
was shown above, this will lead to a singularity in the 
density of states of the form co( E)/2. The exact result 
obtained by Dyson l 161 for the density of eigenvalues of 
the Jacobi matrix whose elements Am m+ 1 = Am+ 1 m 
= Jm are uncorrelated and are specifi~d by a distr'ibu­
tion function of the form 

.d 
W,.' (l)""- Wn (/) = [2n"/ (n- 1) !] (1/l,)'n-t exp{- nl'/l,'), n=1, 2, ... 

dl (14) 

corroborates the argument that, if W(J) - 0 for J- 0, 
the singularity in the density of states is conserved, but 
becomes weaker. 

The density of states found by Dyson for finite n as 
E - 0 has a singularity of the form 

(15) 

as a result of which, the susceptibility in the XY model 
for T - 0 increases according to the law 

x(T) co T-'[ln (kT/J,) [-'. (16) 

The distribution function densities (14) tend to zero as 
J- 0, but the singularities in (15) and (16) are, none­
theless, very strong. We note that Dyson's sol~ttion was 
applied in l 171 to describe the thermodynamic properties 

of an XY model with randomly distributed interaction 
parameters; however, the appearance of a new singu­
larity at H = 0, T = 0 remained unnoticed. 

In the one-dimensional Ising model with antiferro­
magnetic interaction, the susceptibility is given by the 
expression 

1 ' 'Na(T) 00 

x(T)= g 11" , a(T)=J (1-thx)W'(Tx)dx, (17) 
4 2- Ta(T) , 

and x- oo as T- 0 only when W'(J)- oo as J- 0. This 
result is connected with the existence in the Ising model 
of an excitation gap determined by the minimum value 
of the parameter Jm· In the Heisenberg model, as in the 
XY model, there is no gap in the excitation spectrum of 
a regular chain. Therefore, in a real crystal, a distri­
bution function falling off even faster than (14) as J- 0 
can lead to the singularity (10), since this singularity is 
weaker than the singularity (15). 

2. We cannot justify theoretically the assumption, 
necessary to obtain expressions (6), (7) and (11), on the 
Fermi-liquid character of the excitation spectrum of 
the Hamiltonian in (4), in which the Jm are random 
quantities. However, this assumption is completely 
natural, since for a linear chain with uniform interac­
tion Jm = J 0, the results obtained in the Hartree-Fock 
approximation and in the Landau Fermi-liquid approxi­
mation agree well with the results of exact calculations. 
l 181 The fact that expression (11) describes the experi­
mental data surprisingly well can also serve as a justi­
fication of this assumption. In fact, the coefficients of 
T-a and H1-a in the relations (12) and (13) were ob­
tained by assuming that the spectrum of the Hamiltonian 
( 4) has a Fermi character, and the agreement of the 
parameters A determined from the experimental data 
for x(T) and M (0, H) is evidence in favor of this as­
sumption. 

We note that the assumption of Fermi character of 
the spectrum of the elementary excitations of a starting 
Hamiltonian with strong interaction of the electrons-a 
Hamiltonian of the Hubbard type-would certainly be in­
valid, at least in the case of the complex with phenazine. 
In fact, an exact solution for a Hubbard Hamiltonian with 
the number of electrons equal to the number of centers 
l 191 shows that there is always a gap in the single-par­
ticle spectrum of the system. Therefore, the weakly ex­
cited states of such a system cannot be described in the 
framework of a Fermi-liquid model with quasi-particles 
corresponding to the electrons. 

3. It is of interest to make a further experimental 
check on the results stemming from the assumptions 
made to explain the low-temperature magnetic proper­
ties of the complexes. Measurements of the electronic 
heat capacity c and entropy a at low temperatures can 
provide this additional check. Expressions for c and a 
can be obtained from (7), by replacing p0(E) by the func­
tion p(E, T). Neglecting the quantity CJp(E, T)/CJT for 
small T and taking (10) for p(E), we obtain at low tem­
peratures: 
c(T,O) = (1-a)a(T,O) =2(1-2"-')r(3-a)~(2-a)ANkT'-• 

(18) 

and for gllBH » kT, 

c(T, H)= a(T, H)= '/an'ANkT(g!!"H/k)-". (19) 
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It can be seen from Eqs. (18) and (19) that the heat 
capacity and entropy of the electron system are reduced 
by imposing a strong magnetic field gJJ.BH » kT, and 
this decrease is greater the stronger the field H. 

4. The question of the causes of irregularities in a 
linear chain of TCNQ molecules is not completely clari­
fied at the present time. It is obvious that the cause 
might be the presence of defects weakening the inter­
action between neighboring spins. The good reproduci­
bility of the low-temperature increase in susceptibility 
for different samples of the same complex could thus be 
connected with the equivalent conditions used in obtain­
ing the samples, leading to the same concentration of 
defects in them. However, the attempts which we made 
specifically to observe the influence of the temperature 
at which the samples crystallized ( + 86°C and - 5°C) on 
the magnitude and behavior of the susceptibility of com­
plex II at low temperatures did not give a positive result. 

5. CONCLUSION 

1. The features of the magnetic properties of highly 
conducting complexes at low temperatures force us, 
evidently, to reject a description of these systems in 
the framework of the one-electron approximation in 
favor of a model of localized electrons. We note that 
the electron-phonon interaction and, primarily, the po­
larization, by an electron, of the TCNQ molecule at 
which it is situated can lead to the formation of a po­
laron of the "molecular" type, similar to that which 
has been observed in crystals of molecular sulfur. [20J 

Since the polaron effect leads to an effective decrease 
of the electron transition integral from molecule to 
molecule, it facilitates the localization of electrons by 
the Coulomb repulsion. In this case, the conduction will 
be by a hopping mechanism and the behavior of the ther­
mal electromotive force of the highly conducting TCNQ 
complexes [21 J is indeed evidence that the conduction is 
likely to be of this type. 

2. In the work of Dzyaloshinski1 and Larkin, (2 J it is 
predicted that a quasi-one-dimensional system of elec­
trons can exist in three states: metallic, superconduct­
ing and antiferromagnetic. A state with localized elec­
trons (a "Mott" insulator) corresponds to the third pos­
sibility, since for this state the spin structure of the 
electrons is described by a Heisenberg Hamiltonian with 
antiferromagnetic interaction. (So long as the spin cor­
relation functions of the Heisenberg Hamiltonian remain 
unknown even at T = 0, this state may only formally be 
called antiferromagnetic.) However, a state with local­
ized electrons is realized only when there is strong in­
teraction between the electrons, and therefore it cannot 
be described in the framework of the approximation [2 J 

developed for weakly interacting electrons. 
3. The fractional-power dependences of the suscepti­

bility and magnetization on the temperature and field 
respectively, observed in TCNQ complexes at low tem­
peratures, are, apparently, the first experimentally es­
tablished manifestation of a singularity in the density of 
states of one-dimensional disordered systems. It should 
also be possible to observe an analogous singularity in 

the density of one-electron states in one-dimensional 
metals with half-filled bands, if such metals can be 
created. 

The authors thank M. L. Khidekel' and E. B. Yagub­
ski1 for preparing the samples, and A. I. Larkin, M. M. 
Mikulinski1, E. I. Rashba and D. I. Khomski1 for useful 
discussion of the work. 

Note added in proof (December 20, 1971 ). I) In the recent paper by 
A. J. Epstein, S. Etemad, A. F. Garito and A. J. Heeger (Solid St. Comm. 
9, 1803 (1971 )), a low-temperature increase in susceptibility weaker 
than that given by our data was noted. This is less likely to be connected 
with a difference in the purity of the samples, as the above authors be­
lieve, than with the difference in the method of measurement. The fact 
that balance measurements do not coincide with data obtained by means 
of EPR was also noted in the papers by K. Hirakawa and Y. Kurogi 
(Suppl. Progr. Theor. Phys. 46, 147 (1970)) and M. Date. H. Yamazaky, 
M. Motokawa and S. Tazawa (Suppl. Progr. Theor. Phys. 46, 194 
(1970)). 2) The heat capacity measurements performed by Epstein et 
al. for the complex (NMePh)(TCNQ) make it possible to check that 
formula ( 18) is fulfilled. The temperature dependence of the heat ca­
pacity cited in their work can bee represented in the form of a sum of a 
lattice part and a part varying with temperature like T 1·" with a= 0.58. 
The value of A obtained by this procedure agrees within 25-30% with 
those given in the table. 
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