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An equation for the density matrix of an atom is derived in which allowance is made for the simultaneous effect of collisions 
with foreign particles on the internal and external degrees offreedom of the atom. Both elastic and inelastic scattering are taken 
into account, as well as the structure of the perturbing particles; the collision term in the equation is expressed in terms of 
the exact scattering amplitudes. As an example of the application of this equation to the calculation of the optical characteristics 
of gases, the spontaneous emission spectrum of the atoms is considered. It is shown that a correct description of collisions leads 
to a number of new qualitative effects. It is found, in particular, that light and heavy perturbing particles lead to essentially 
different types of broadening and to a different form for the statistical dependence of the Doppler and impact mechanisms of 
broadening. 

THE development of quantum electronics and of many 
of its physical applications has attracted attention to a 
number of new problems in the theory of spectral line 
broadening and of other optical characteristics of a 
medium, including characteristics that are nonlinear in 
the electromagnetic field. The most convenient and gen
eral method for describing the different optical phenom
ena in gases is the method based on the equation for the 
density matrix. This method, however, is usually used 
in an extremely limited form-the density matrix is used 
to describe only the motion of the atomic electrons, 
while the interactions of the atoms and molecules are 
taken into account by the introduction of relaxation 
times. For this reason, difficulties arise in the treat
ment of a whole class of problems (stabilization of a 
laser frequency, laser spectroscopy, etc.), in which the 
fine effects of the interaction of the atoms and mole
cules of the medium are of considerable importance. 
The point is that, in the general case, collisions of an 
atom with the surrounding particles perturb both the 
electronic wavefunctions and the motion of the atom as 
a whole. Related to this, for example, is the well-known 
effect of the influence of collisions on Doppler broaden
ing, and also the effect of the statistical dependence of 
Doppler and impact broadenings (cf., e.g.,[I-3J). Because 
of this, the need arises for an equation for the density 
matrix that takes into account the simultaneous effect of 
collisions on both the internal and external degrees of 
freedom of the atom. 

In the present paper, we obtain an equation for the 
density matrix of an atom in a neutral gas, without any 
simplifying assumptions about the motion of the atom as 
a whole. We make the single physical assumption that 
the perturbation experienced by the atom due to the sur
rounding particles reduces to collisions separated in 
time. Such a gas-kinetic approach makes it possible to 
describe the perturbation by a collision term expressed 
in terms of the exact scattering amplitudes, with allow
ance for both elastic and inelastic channels. The equa
tion takes into account the degeneracy of the atomic 
levels and also of the levels of the perturbing particles. 

As an example of the application of the equations ob-
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tained, the problem of calculating the spontaneous 
emission spectrum of an atom is considered. Using 
this example, it is shown that the correct description of 
the collisions leads to a number of new qualitative 
effects. In particular, it is found that light and heavy 
perturbing particles lead to essentially different types 
of broadening. 

A theory of spectral line broadening that takes into 
account the effect of collisions on the external and in
ternal degrees of freedom of the atom was developed 
earlier in the framework of different approximations 
(cfP'4 J). The nature of these approximations and their 
effect on the results will be discussed below. 

1. EQUATION FOR THE DENSITY MATRIX 

In this section we shall obtain an equation for the 
density matrix p of an atom without any simplifying as
sumptions about the motion of the atom as a whole. The 
interaction of the atoms is treated in the framework of 
the gas-kinetic approach, which makes it possible to 
describe the perturbation by a collision term (dp/dt)col' 
Throughout below, we shall consider perturbation by 
foreign particles. Therefore, the collision term 
(dp/dt)col is linear in p and our required equation for 
the density matrix has the form 

dp - i ( dp ) ( dp ) dt- h[Hp]+ dt co!' dt col= Gp, (1) 

where H = Ho + V, H0 is the Hamiltonian of the unper
turbed atom, V is the interaction of the atom with the 
electromagnetic field and G is a linear integral operator. 

We turn now to the calculation of G. We shall con
sider a system consisting of the atom and one perturbing 
particle, enclosed in a finite but sufficiently large vol
ume V. So as not to overload the derivation with minor 
details, we first consider scattering of the atom by a 
structureless perturbing particle at rest. 

Let the system at the initial moment be de scribed by 
the wave function 

(2) 

where <Pj(r) is the electron wavefunction, k is the wave 
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vector of the motion of the atom as a whole, and Ra is 
the coordinate of the center of inertia of the atom. By 
time t, the system will be described by the wavefunctions 

(3) 

where EjK = Ej + EK, Ej is the energy of the stationary 
state j, EK = n2K2/2ma, rna is the atomic mass, and 

Sjk,j'K(O, t; ~)is the scattering matrix for the time 

interval (0, t}, which depends on the coordinate Rp of the 
perturbing particle as a parameter. In accordance with 
(3), the increment ~(0, t) in the density matrix is 

.Llp (0, t) = S+pS- p = T+pT + T+p + pT, ( 4) 

where T = S- 1. Since eik · R = eik · (R- Rp) + ik · Rp, for 
the matrix elements of T, averaged over R , we have 

p 

T;l., j').' =Ill.,),' Tjl., j').'Tlx,l'x' CZl 1>,., 1.'-l.+x'• 

Therefore, the matrix element .:lpmk nk' can be written 
in the form ' 

/l Pm k.nk• = /lp~~.nk• + /lp~~.nk•o 

apgt nk' = ~ T~k. ix T i'x--k+k·•, nk'Pix, rx-ktk'' 
jj'x 

(5) 

(6) 

(7) 

where the matrix elements of T are now already deter
mined in the system of coordinates centered on the per
turbing particle. As is well-known, they can be ex
pressed in terms of the scattering amplitudes fjj'(.U') 
of stationary scattering theory (cf., e.g.,r5J) 

t 
. 2nn , 1 c ' i 1 

T;1.., ;·•· = 1 '-;n"- iii' (1.., 1..) V ~ exp j 11: (E;x- En:) xrdx. 
a o 

(8) 

It is obvious from physical considerations that we are 
interested only in that part of (6) and (7} which, after 
separation of the time factor exp(i(Emk- Enk')t/n], 
increases linearly with t, since, by describing the per
turbation in Eq. (1} by the collision term (dp/dt)col• we 
are assuming such a dependence a priori. The situation 
here is analogous to that which arises, for example, in 
the determination of the transition probability per unit 
time from a dimensionless transition probability in the 
interval (0, t). 

It is not difficult to see that the necessary dependence 
on t arises in (6) if the summation over j in the first 
sum in (6) is confined to states m', and in the second 
sum, to states n', where the states m' and n' belong 
respectively to the same energy levels as m and n 
(Em' = Em, En' = En)· The sum over j and j' in the 
expression (7) can conveniently be decomposed into two 
parts: 

I- j = m', j' = n'; II - j =I= m', j' =I= n'. 

It can be shown that if we are not interested in the spec
ial case of overlapping spectral lines (when the frequen
cies Wmn• wjj' of several different atomic transitions 
fall in the same spectral region .:lw ~ 1/T, where 1/T 
are the characteristic frequencies of collisions for the 
problem considered), then for the off-diagonal matrix 
elements (Gp)mk, nk' (Em# En}, the sum II can be 

omitted. For matrix elements of the type (Gp)mk m'k'• 
A ' 

and (Gp)nk', n'k'' including those diagonal in the elec-
tron quantum numbers, we have a different situation. 
We shall come back to this question below1>. 

Since p., .,, mexp(i(E.,- E.,,,)t/n], each term of 
]"-,]"- J"- J " 

the sum I contains the time factor 

exp [*(Emk-Enk')t]]exp [*(Em·x-En'lx-k+k'l- Emk+Enk•)t] 

X~ exp [ * (Emk- Em•x) :r J dx ~ exp [ * (En'lx-k+k'l - E,.k') x' J dxl 
0 0 

The expression in curly brackets oscillates rapidly in 
all cases with the exception of the case when EK - Ek 
= EIK-k+k'l- Ek'' In this case, for the produc::t of the 
time integrals, we have 

I j exp [; (Em> -Em••>x] dx 11
-+2:rtfill(E,- E.)t = 2:rt~ll(x- k)t. 

, - M (~ 

By defining (dp/dt)col as the proportionality coefficient 
in the relation .:lp(O, t) "-' t, we obtain an expression pro
portional to 1/V, which is natural, since there is only 
one perturbing particle in the volume V. In the frame
work of the gas-kinetic approach, the passage to the gen
eral case is effected by multiplying this expression by 
NV, where N is the concentration of the perturbing par
ticles. After this, we can pass to the limit V - oo, re
placing the summation over IC by an integration: 

As a result, we obtain 

~ r Vdx 
" -+ ~ (2:rt)8 0 

(GP)mk,nk' =iN 2nn .~ [llmm·/n'n (k, k) -ll,.,.·f;,..,. (k', k')]Pm•,.•(k, k') 
ma m'n' 

+ N !!:!!_ ~ ~ dO,.f;,..,. (x, k) /,.·,. (x- k + k', k') Pm'n' (x, X- k + k'). 
m. ,..,., (10) 

Here, w~ have changed the notation pjA.,j')l.' to 
p .. t(A, A.) for convenience. 

JJ In exactly the same way, we can also calculate 
(dp/dt)col in the case when the perturbing particle is 
moving.' Let Ra_ and Rp be the coordinates of the atom 
and the perturbing particle, R = tJ.aRa + tJ.pRp be the 
coordinate of the center of inertia, r = Ra- Rp be the 
relative distance, and m be the mass of the perturbing 
particle: P 

mtJ mp mump 
~'• = m. + m, ' ~'• = m. + m, ' I' = m. + m, · 

(11) 

We write the wavefunction of the system, without allow
ance for the interaction, in two representations-in 
terms of Ra_ and Rp. and in terms of R and r: 

,.... exp(ik.R.) exp(ik,R,) 
"';• • = lpj---'~::---'- -~-=-...:.:.. 

• • l'V )'V 

exp[i(k. + k,)R] exp[i(!',k.- j'.k,)r] 
=~ 0 -yv yv 

(12) 

llln solving problems that are linear in the electromagnetic field, such 
as the calculation of an emission or absol'{ltion spectrum, it is sufficient 
to know the matrix elements of the type (Gp)mk.nk' (cf. Sec. 3). The need 
for matrix elements of the type (Gp >mk, m'k' arises in solving nonlinear 
problems. Therefore, we shall consider these matrix elements in Sec. 2, 
where we shall give the approximate expressions for (Gp) that are most 
convenient for deriving concrete solutions. 
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All the subsequent calculations are repeated without 
substantial changes. The matrix elements of p, ob
viously, must be determined by means of the wavefunc
tions in the laboratory system of coordinates (we recall 
that the operator p acts only on the atomic wavefunc
tions). To calculate the matrix T, we must use the 
representation of ~ in terms of Rand r. In this case, 
the averaging over R is replaced by integration over R 
It is necessary to av;frage the expression for (dp/dt)col 
thus obtained over the distribution W 0 (kP.) of wave vec
tors of the perturbing particle. We glve the final ex
pression: 

h • 2nli ~ J (. !!•k- q) · 
(Gp)mk,nk• = 1N--;-m~ dq Wp I!• [1\mmo/nn•(q, q) 

- 6 ••• /: .... (q- k+ k',q- k+ k') ]p ...... (k, k') 

+N.!_}2 J dxdqw.( k- j.t.x-q )6(jx-k+k'J-q) (13) 
J.t mrn• Jl.a 

. 1 • 
X-Jx-k+ qjj ....... (x-k+q,q) 

q' 

X j.,.(x-k+q+ !!.(k' -k),q+ !!•(k'- k))p ... ,.,(x,x+k'- k). 

As can be checked easily, in the case of a particle at 
rest (ma/mp- 0, J..l.p- 1, J..l.a- 0}, (13) goes over to 
(10). The apparently greater complexity of (13) com
pared with (10) is associated only with the fact that the 
matrix p is defined in the laboratory coordinate system, 
while the matrix T and scattering amplitudes fare cal
culated in the center- of- mass system. 

It is not difficult to generalize expression (13) to the 
case when the perturbing particle has internal structure 
characterized by the quantum numbers a. For this, it 
is sufficient to make the replacement 

in the first term of the right-hand side of (13), and the 
replacement 

in the second term, where W a is the population of the 
state a. 

In deriving the expression (13) in the framework of 
the gas-kinetic approach, we have made practically no 
supplementary simplifying assumptions-the motion of 
the atom as a whole is treated quantum-mechanically, 
the interaction is described by exact scattering ampli
tudes, the degeneracy of the levels is considered, and 
so on. 

The following treatment will be performed for the 
simplest case of non-degenerate atomic levels and a 
structureless perturbing particle, when the summation 
over m' and n' does not appear, with fm'm = fm and 
fn'n = fn. 

As will be seen from the following, in applications 
we shall be interested in the matrix elements Pmn(k, k') 
for which the difference k- k' is equal to the wave vec
tor p of a photon. Therefore, the small difference k- k' 
can be omitted from the arguments of the scattering 
amplitudes. Further, we shall transform the first of 
the integrals in the right-hand side of (13), adding and 
subtracting the term 

in the square brackets. We shall expand the scattering 
amplitudes in a series in partial waves (cf., e.g.,[6J): 

/(q, l.) = 2!q ~(2l + 1)181 :.....f) Pz(cos8q~). S1 = e2i 31; (14) 

here, l is the angular momentum of the relative motion, 
and oz = Tlz + i 8z are the complex phase shifts. Substi
tuting (14) into (13) and using the orthogonality proper
ties of the Legendre polynomials, we obtain (we recall 
that we are now considering non-degenerate levels 
m, nand a structureless perturbing particle) 

(Gp) ........ =-['/,r(k) + i;i (k) ]p,...(k, k')-~ (k) p .... (k,k'} 

1i J ( k-j.t.x-q) 1 +N-; dxdqW. !!a 6(Jx-k+qJ-q) q.-lx-k+ql 

X /m"(x-k+q,q)f.(x-k+q,q)p,...(x,x+k'-k), (15) 
where 

~ f(k)+i;i(k}=N J dq!!!_w.( !!•k-q) [o'(q)+io"(q)], 
j.t !!· (16) 

v(k)=NJ dq!!!_w.( 11.k-q )o;"(q), (17) 
j.t 11· 

o'(q) + io"(q) = ~ }2 (2l + 1) [1- S.1S,.. 1•], (18) 
q I 

cr;'"(q)= J dO.f,.."(q,)..)j.(q,)..)=; }2 (2l+1)[S.1 -1](S,..1 -1]•. 

I (19) 

The quantities a' and a" are the effective cross-sections 
for the width and shift in the quantum theory of impact 
broadening[7J. Moreover, the quantities f and K differ 
from the usual expressions for the width r and the shift 
c.. of impact theory, since they depend on k. Only in the 
limiting case of very light perturbing particles 
(J..L - 0, J..La- 1) does the dependence on k disappear an• 
~P ~ ~ 
r(k) - r, A(k) -C... The parameter v(k) in (15) plays 
the role of the gas-kinetic collision frequency, depending 
on k. However, the effective cross section a:rn, unlike 
the elastic scattering cross section ae, is expressed not 
in terms of the square of the modulus of the scattering 
amplitude lfl 2 , but in terms of the product f:Ufn. For 
this reason, the quantities a~n and v are complex in the 
general case. If one of the scattering amplitudes, fm or 
fn, is equal to zero, then amn and v = 0. At the same 
time, the integral over K a8d q in (13) goes to zero, and 
the form taken by the collision term (15) is as if the 
motion of the atom as a whole experienced no perturba
tions at all. If the scattering is purely elastic 
({31 = 0, ISZI = 1) and, !!)-Or~over, the same for both 
states (fm = fn)' then r = c.. = 0. 

2. THE LIMITING CASES OF HEAVY AND LIGHT 
PERTURBING PARTICLES 

In the limiting case of scattering of a light atom by 
heavy perturbing particles 

j.t.-+0, j.tp-+1, j.t-+m., w.((j.t.k-q)/j.t.)-+6(k-q} 

the expression (15) takes the form 

(Gp)mk, ""' = - N .!!:!!._ I o' (k) + iu" (k) + u;m (k)J Pmn (k, k') 
ma 

+ N .!!:!!._ i dO,.fm" (x, k) fn (x, k) Pmn (x, X- k + k'). 
mal 

(20) 
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If the scattering is almost isotropic, then, taking the 
product f~fn outside the integral, we obtain 

(Gp)mk,nk' = - N !k [a' (k) + ia" (k) + a;'n (k)J Pmn (k, k') 
a 

N nk mn (k ~ dOx ( k k' + -cry ) -4 Pmn x, X- + ), m. n 

(21) 

where IK I = k. 
In the other limiting case of light perturbing parti

cles, it is convenient to represent (15) in a different 
form, introducing in place of K the integration variable 
l>k = K- k: 

(Gp) mk,nk• = - [ 1/zf(k}+ i~ (k)] Pmn(k, k')- V (k) Pmn(k, k') 

+N J A(k+H,ak)p,..(k+ ak,k' + ak)d(ak), (15a) 

A()., ~k) = J dq wp ( "'~tP- q)~.s(iq + akl- q) 
Ita IJ.q 

xf,.'(q+ak,q)f.(q+ak,q). (22) 

In th~ limit lla- 1, JJ.p- 0, Jl -~JJ.P' the q~antities f(k) 
and t.(k) no longer depend on k: r(k)- r, t.(k)- t.. 
Moreover, neglecting terms of order mp/ma, we can 

bring the integral term in (15a) to the form vpmn(k, k'). 
We finally obtain 

(Gp),.t,nt•=-[ 1!.r+ia]p,..(k, k'). (23) 

In the next order in the ratio mp/ma, using the standard 

procedure for deriving the Fokker-Planck equation, we 
can obtain 

(Gp),.k, nk' =- [ 112f + ~]p,..(k, k') +vd[div.{).p,.n(l..,)., + k'- k) )•=•] 

+ a[A.p,.n(l.., 1.. + k'- k) l•=•• (24) 

vdk= Ja(ak)akA(k,ak), (25) 

(26) 

It is possible to show that Eq. (24) is also applicable for 
an arbitrary relation between the masses ma and mp, if 
the amplitudes fm and fn have a sharp maximum at small 
scattering angles. 

The parameters vd and a are complex. If fm = fn, 
then v d and a become real and coincide with the corre
sponding coefficients of the Fokker- Planck equation 
describing diffusion of particles. In this case, a 
= v2 vd/2 (cf., e.g.,(BJ). In the case of a perturbing ac
tion by particles of different sorts Jl 

( dp ) . ( dp ) '"' 
dt col=~ dt col ' (27) 

• 
and therefore the approximate expressions (21), (23) 
and (24) for (Gp) enable us to describe practically all the 
concrete situations of interest. 

In the solution of problems that are not linear in the 
electromagnetic field, we also need the matrix elements 
of (Gp) that are diagonal in the internal quantum num
bers. We shall give these for the two limiting cases of 
heavy and light perturbing particles. In the first case, 
with m = n, it follows from (18) and (19) that a" = 0, 
a' = a~ and amn = am where a~ is the total (summed 

1 ' e e ' 1 
over all transitions m - j) inelastic scattering cross-
section, and a~ is the elastic scattering cross-section 
for the state m. In addition, form = n, we must take into 
account the terms j = j' = m in the sum over j and j' in 

(7). Repeating all the calculations, in the approximation 
(21) it is not difficult to obtain 

(28) 

N !i.k m (" dOx 
+ ma Oe (k) J 4Jt Pmm' (x, X- k+k') 

+ N :. ~ x;a;m (x;) ~ ~:1-p;; (x;. X;- k + k'), 

where E. + 1i 2K~ /2ma = Em + 1\2k2/2ma; the summation 
J J 2 2/ over j is extended over the levels Ej ~ Em + 1\ k 2ma; 

a. is the cross-section for the transition j - m. 
3 ~n the case of light perturbing particles, we can con

fine ourselves to the approximation 

(Gp) ........ = -y,.p,.,.(k,k')+ ~ Y~mp,.,.(k,k'), (29) 
j 

where Ym is the total probability of a transition from 
level m and Y·m are the transition probabilities for 
. J 
J -m. 

3. THE SPONTANEOUS EMISSION SPECTRUM 

As the simplest example of the use of the equations 
obtained above, we shall examine the problem of calcu
lating the contour I(w) of an isolated spectral line corre
sponding to the atomic transition m - n. 

The function I(w) can be calculated if the density 
matrix p(t) of the system is known (cf., e.g.,[ 9J). 

w 

'~'' ( ) s '"' '~'' ( )dt p~''' oo = e- p •• ,, t . 
0 

(30) 

(31) 

The subscripts a, a' and (3, (3' respectively label the 
states belonging to the initial and final levels of the 
systems, W a is the population of the state a, P is the 
radiation transition operator, and p(O:i3ht) is the 0' 1 (31 

0'/3 
element of the density matrix p(t), the superscripts a(3 
denoting the initial conditionp(a,B),(O) = o ,o88,. In 

()I (3 ()I Ql 
our case, 

a-+ mk,, ~-+ nk, a'-+ mx,, ·~'-+ nx, P = de'•a., 

where d = er is the electric dipole moment of the atom, 
and p is the photon wave vector. 

Using the wavefunctions (2) and (12) and taking into 
account that 

(2n)' 
(mk.IPinx,) =-v-d,. • .S(k,- p- x.), 

(2n)' 
(mkiPinx) =-v-d,.n6(-k+p+x), 

it is not difficult to obtain, after passing to the limit 
v-oo 

' ld 12 w 

I(oo) = ~Re J dk,dk W(k,) p~:::~-·'(oo) 
I 1t Q I 

f m 

=-Re J dkF,.n"(k,k-p), 
Jt 0 

(32) 

where the function F~n(k, k- p) is defined as the corre
sponding element of the density matrix p(w), averaged 
over ko. 

Using Eq. (1), where H = Ho, it is not difficult to ob
tain the following equation for the function F: 
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where b.W = w- wmn· In Eq. (33), we have neglected the 
effect of the photon recoil, putting k2 - (k- p) 2 i'::! 2k · p. 

We start with the simplest case of perturbation of an 
atom by electrons. In accordance with (32), (33) and (22) 
we obtain2 > 

1 J fV(k}dk 
l(ro}=-;-Re i(6.ro+ll-likp/m~H-r/2 · (34) 

This expression is the usual convolution of Doppler and 
dispersion contours. 

We shall now consider the case of isotropic scatter
ing of an atom by heavy perturbing particles, which is 
comparatively simple for concrete calculations and 
conserves, moreover, all the basic qualitative features 
of the general case. For applications, an isotropic dis
tribution of the velocities of the atoms is of greatest 
interest. Accordingly, putting 

1 ~ 

fV(k) = --w(k) J w(k)dk = 1, (35) 4nk' ' 
0 

integrating over the directions of k in the right- and 
left-hand sides of (33), and making use of (21), we find 

dQ w(k) [ li . ]-' J ~Fm."(k,k-p)= 4rrk' g(k,ro) 1-N-;;;:karg(k,ro) (36) 

h li ]~ 
4rrg(k, ro) = J d0 0 [ i { 6.ro- m. kp) + N m. k(a' + ia" +cr.,"'"} 

= i2rr~tn{[ il'.ro + N'!!!_ (a'+ ia" +a.;"")- if!_kp] 
likp m. m. 

[ lik li ] -1} 
X it.ro+N-(a'+ia"+ae"'")+i-kp . 

ma ma 
(37) 

(38) 

It is easy to see that at small densities the expression 
(38) goes over to ~e usual D__?ppler intensity distribution 
with width b.WD = vp, where v is the average speed 
v = nk/ma of the atom. If we assume that the scattering 
in one of the states m and n can be neglected, when 
a~n = 0 (see (19)), then 

1 ~J fV(v}dv 
l(w}=-Re ~· . 

rr 0 i{6.w-vp)+'/,r(v}+it.(v} 
(39) 

This formula differs from (34) in that the parameters 
:f and b. depend on v. Unlike (34), the contour (39) is 
asymmetric. If we omit the term v · p, then in place of a 
single Lorentzian contour, as in (34), we obtain a super
position of Lorentzian contours, each of which is charac
terized by a width Nva' (v), a shift Nva "(v) and a weight 
w(v); the asymmetry of the distribution (39) is con
served. If a' = a" = 0 (the scattering is purely elastic 
and f = fn), and aemn "'0, then (38) describes the effect 
of na~owing of the Doppler contour by collisions. In 
fact, expanding (37) in a series in the parameter p/Na~n 
up to terms of order (p/Na~n)2 , we obtain for suffi
ciently large N 

1 ~s w(v) 
I ( w) = - Re dv . , + " , 

1t o !oW JJP 

2) Below we omit the factor ldmn 12 in expressions for the intensity 
I( w) throughout. 

= ~S dv w < v l Re D P' -:-:--:-::---::,..,--=--c-::::--=...,...,. 
o n (L1w + ImDp')'+(ReDp')'' 

(40) 

where i5 = Y3v/Na~I?-(v). The intensity distribution (40) 
is a superposition of Lorentzian contours with widths 
2Re Dp2 "' N-\ shifts Im Dp2 N-1 and weight w(v). The 
resulting contour (40) is asymmetric. Thus, (40) gives 
a generalization of the well-known Dicke effect of diffu
sional narrowing of the Doppler contour!:10J. We recall 
that Dicke's theory gives a single Lorentzian contour 
(symmetric) with width 2Dp2 , where D is the diffusion 
coefficient, and zero shift. 

If a' and a" are less than a~n but are not equal to 
zero, then on increase of N there is first a narrowing of 
the Doppler contour to a width ~ Nva', and then a broad
ening. 

We turn now to examine another limiting case, des
cribing the small- angle scattering. Substituting the 
collision term from (24) into Eq. (33) and solving the 
resulting equation by the method used in[3J, in which 
equations with a similar structure were considered, we 
can obtain 

1 • li r ]} I ( w) = --;- Re J exp { i [- dw + m. kp - 2- i6. t 
0 

X exp{ -+-P(t)p'}dt, (41) 

2a . 1 1 ( ii' a ) P(t)=-3 [v.t-1+e-••]----, ---
"• 'Vd 2 Vd 

x{e-'•'-1- ~ (e-''•'-1)). (42) 

As was noted above, the parameters vd and a are com
plex. If we assume that the scattering is the same in 
states m and n and fm = fn, then vd and a become real 
and coincide with the corresponding coefficients of the 
Fokker-Planck equation for the classical distribution 
function. In this case, a = vdv2/2[ 8J, the second term 
in expression ( 42) vanishes, and ( crPJ) 

J(w)=~Re( 11wD' -i{6.w+_!'__+it.)]-• 
n 2v. 2 

(43) 

where b.WD = vp, and <l>(/3, y, z) is a confluent hyper
geometric function. By considering the different limiting 
cases of expression (43) (cfPJ), it can be shown that 
(43) describes the same effects as formula (38) does. 
The parameters r, b. and vd, however, do not depend 
on k. 

The chief difference from (43) in the general case 
fm "'fn consists in the fact that for complex parameters 
v d and a, the intensity distribution becomes asymmetric 
and an additional shift of the maximum appears com
pared with b. • 

4. DISCUSSION OF THE RESULTS 

The results of the calculation of the spectrum I(w) by 
means of the equations obtained above for the density 
matrix contain a number of new elements, the most 
interesting of which are the following. Even in the treat
ment of the most simple example-purely impact broad
ening, qualitative differences from the formulae usually 
used arise. Only in the case of broadening by light par
ticles, such as electrons, does a single Lorentzian 
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contour arise, with width r = N (va' (v)) and shift 
~ = N(va"(v)), where vis the speed of the electrons 
and the angular brackets denote averaging over v. In 
the general case, after averaging over the velocities of 
the perturbing particles, the widths f and K retain their 
dependence on the velocity v a of the atom. 

The greatest difference arises in the case of scatter
ing of a light atom by heavy (almost stationary) perturb
ing particles. Here, a single Lorentzian contour appears 
only for N - oo, when the function w(v) can be regarded 
as a o-function; however 

f=Nv,a'(v,), ~=Nv,a"(v,), 

where Va is the average velocity of the atom. In the 
intermediate region of pressures, the line contour is 
asymmetric. The same differences in the operation of 
averaging over the velocities of the atoms and of the 
perturbing particles also appear in all the other results, 
e.g., in (40). 

The perturbations due to perturbing particles of dif
ferent sorts combine in completely different ways, de
pending on the masses of these particles. If the pertur
bing particles of type 1 and type 2 are heavy, then in 
formula (39), for example, the sum 

f\(v,) + f,(v,) + Lii,(v,) + i~z(v,). 
appears. But if the perturbation is created by heavy 
particles and electrons, then 

i\ = N,v,a'(v,), r, = N,(v,a'(v,)), 

li, = N,v,a"(v,), ~' = N,(v,a"(v,)). 

All this is a reflection of the statistical dependence of 
the Doppler and impact broadenings, which is expressed 
in the equations for the density matrix by the depen
dence of the parameters r, t::, v, vd, and fi on k. 

The second characteristic feature of the equations 
obtained is the fact that the parameters a mn• v, ZJd, and 
a responsible for the Doppler broadening compensation 
effect are complex. It is not difficult to show that in the 
examples treated, and also in the general case, asymme
try arises for two reasons-the dependence on k of the 
parameters of the equation, and the fact that a mn' v, Zld, 
and a are complex. 

It is interesting to note that the difference between 
the cases of heavy and light perturbing particles remains 
also in the equation for the diagonal matrix elements 

Pmn(k, k} =Nm(k}, 

where Nm(k) is the population of the state mk. Putting 
k' = k in (28), assuming the distribution of atoms to be 
isotropic ink and integrating over the directions of k, 
it is easy to obtain an equation for the populations 
Nm(k) = Jd~Nm(k): 

(44) 

Because of the k-dependence of the coefficients of this 
equation, it is not possible to integrate this over k to 

obtain the usual equation for the populations Nm of the 
levels 

dNm ~ 
---;jt =- '/mNm + ~ '/;mNm, ( 45) 

j 

which, for the case of light perturbing particles, follows 
from (29). 

In conclusion, it is interesting to compare the results 
obtained with the results oP•4J. 

11PJ, the kinetics of the motion of the atom as a 
whole were described by means of the classical distri
bution function of the atoms in the coordinates and 
velocities f(R, v, t); therefore, the parameters of the 
type v, vd, and a in the equations were determined by 
starting from model collision terms unconnected with 
the true scattering amplitudes. Therefore, to describe 
the effect of the statistical dependence of the Doppler 
and impact broadenings in[3J, specific assumptions 
were made on the form of the collision term in the 
equation for f(R, v, t). The asymmetry of the spectral 
characteristics arose because of the fact that the 
parameters of the type v, vd and a were complex. 

In[ 4J, an equation was obtained for the density ma
trix, describing the elastic scattering of an atom by 
stationary perturbing particles in the Born approxima
tion. The equation for the density matrix obtained ini: 4 J 
has the same structure as Eq. (20) (the k-dependence of 
the parameters of the equation, the complexity of the 
parameter v, etc.), while the expression for I(w) in the 
case of isotropic scattering coincides with (38), if in (38) 
we replace the exact scattering amplitudes fm and fn by 
the elastic scattering amplitudes in the Born approxima
tion. 

In the most recent work known to us[ 2J , a detailed 
analysis of the deficiencies of the phenomenological ap
proach is given. In this work, an approximation of the 
same type as that ofE 4 J is used. 
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