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The contribution of vibrational and rotational transitions to the kinetic coefficients is calculated for polyatomic gases and 
molecular mixtures. The general generating function for the kinetic coefficients can be expressed in the impulse approximation 
in terms of correlation functions which describe the translational and internal motion of the colliding molecules. The vibrational 
and rotational relaxation times and shear viscosity coefficient are obtained for diatomic and polyatomic molecules. 

IN an earlier paperC 1J (referred to as I throughout) we 
proved the compactness of the arrival term of the 
inelastic- collision integral of diatomic molecules with 
structureless particles, and considered the question of 
perturbation of the spectrum of the Boltzmann integral 
operator when account is taken of the inelastic colli­
sions. In the impulse approximation, the form of the 
spectrum and the eigenvalues of the Boltzmann operator 
are determined by the type of the pseudopotential V and 
the values of the parameters that specify the function 
V = V(r). The characteristic features of the behavior of 
the pseudopotential V{r) can be explained by calculating, 
with the aid of a corresponding collision integral (see I, 
formula (2.1)), the rate of inelastic energy loss, the vis­
cosity, the thermal conductivity, and other kinetic coeffi­
cients in high-temperature molecular mixtures and by 
comparing the results with experiment. 

1. GENERATING FUNCTION FOR THE KINETIC 
COEFFICIENTS. ALLOWANCE FOR ROTATIONAL 
TRANSITIONS 

The problem of calculating the kinetic coefficients 
with allowance for the inelastic collisions was consid­
ered many times by many authors (see the reviewsC2'3 J). 
Usually, a joint analysis of the kinetic equations for the 
distribution functions and of the balance equations for 
the populationsu is used first to construct a general 
theory of the relaxation and transport processes, in 
which the kinetic coefficients are expressed in terms 
of the cross sections for elastic and inelastic collisions. 
Only then are the cross sections, rate constants, and 
kinetic coefficients calculated with the aid of quantum­
mechanical or classical methods. For rarefied systems 
with weak nonequilibrium, the kinetic part of the prob­
lem was solved by the Chapman-Enskog method by 
Wang-Chang and Uhlenbeck (see, for example,C4J) and 
also by ZhdanovC5J, who used the Grad methodC 5J. The 
kinetic coefficients for a diatomic nonisothermal gas 
were calculated by Kuznetsov[sJ. The present author 
(seeC7J considered, using the method of correlation 
functions with allowance for rotational transitions, the 
kinetics of electrons in a nonisothermal molecular 
plasma without first calculating the probabilities of the 
elementary processes. By an analogous method it is 

1lWith respect to the internal degrees of freedom, the system is more 
frequently considered to be in local equilibrium. 

possible to express any kinetic coefficient in terms of 
the correlator of the collision operator, which contains 
only the collision potential and the internal potential 
(for structural particles). In the case of dense media, 
general expressions of this type were obtained, with 
allowance for elastic collisions only, for the diffusion, 
viscosity, etc. (seeCsJ ). Irreversible processes with 
allowance for inelastic collisions were considered re­
cently by Pokrovski1C 9J and Peletminski1[loJ. 

For rarefied systems, the linearized collision in­
tegral and the kinetic coefficients are determined by 
equilibrium two-particle correlation functions that des­
cribe the internal and translational degrees of freedom 
(see I andC 7J). In this case, different kinetic coefficients 
L (obtained, for example, in[4J) can be expressed in 
terms of a general generating function Z: 

~ N N 

Z = J dt( exp( ixp + i ,E u1H1) ~(t)exp (- iyp- i.E s}/1) ';;•(O)) 
i=l i=i 

In (1.1), N = 3(N1 + N2)- 6 is the total number of vibra­
tional and rotational degrees of freedom of the colliding 
polyatomic molecules2l. To each kinetic coefficient 
there corresponds a separate operator L. For example, 
the number of collisions is determined by the quantity 
Z 10 ; for the rate of the inelastic energy loss we have 

~ 

L; =- i(afau1+ afas1),Z = f dt([H{;(t)]~'(O)); (1.2) 

and for the rate of the elastic loss LE = (V'~ - v~)/21J.; 
for the shear-viscosity coefficient (seeC9 1J) 

~ ~ ~S a'pd'p'N.t(p)W."'(p,p')[p'sin'a 

+'/,p'(1-'/,sin'B)(e.,-e.)] (1.3) 

we can easily obtain 

(1.3') 

It is possible to consider analogously the bulk viscosity 
( ~ W) the thermal conductivity, the thermal diffusion, 

2)The system of units and the notation in ( 1.1) and throughout this 
paper (unless specially stipulated) coincide with those of I and [71• 
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etc. For various concrete kinetic coefficients it is pos­
sible to use for the generating function Z a less general 
expression than (1.1), but one that is more convenient 
for practical calculations (see Sec. 3). 

In the pseudopotential approximation 

~= ti: v,. 
'\1=1 n=t 

and for a nonisothermal system (the translational tem­
peratures of the colliding molecules are T and T', the 
rotational ones T r and T~, and the vibrational ones Tv 
and T~) the function Z is determined by a correlator 
product of the type 

(exp(iuf{;) exp (iqr;(l)) cxp ( -1si.f,)exp( -i!Jr;) )rj = <D,i (q, t + s;), 

fl;= i(s;- u;) + 1 IT;; (1.4) 

The correlation functions <I>8{q, t) were calculated in I 
(see alscPJ). For the correlation function describing 
the relative motion with a "reduced" translational tem­
perature T = f.L(T/M1 + T'/M:!), we can easily obtain 

<D~(q, t) = (exp (ixp) exp (iqR(t)) exp ( -iyp) 
·exp (-iqR))-,= exp[- 1/2q'(it + t'T) I fL 

- 1/z[LT(x- y)'- iqy- tTq(x- y)], {1. 5) 

where f.L = M1M2/(M1 + M2). We finally obtain for the 
generating function 

N1 Nz 

Z(x,y, ... )= ~ ~ j"d3qdt[V,,.(q)j'ID:;; 
ll=ln=l 

t' j' I 

X< !Df/Dr,· ;8 cDr. fr ID~".) n,n: 
r=l v'=l -

(1.6) 

For linear molecules (vm = 3N1 - 5) and for spherical­
top molecules (vm = 3N1 - 6) we obtain in the reciprocal­
mass- tensor approximation 

C!lr, ( q, t) = exp [ - 1/ 2a/I,-'q' ( 1 - z,') (it+ t'T,)]; {1. 7) 

here z1 = cos 61, a 11 is the distance between the v- th 
atom and the center of inertia of the molecule, and l1 is 
the moment of inertia of the molecule. 

We shall consider throughout homonuclear molecules 
and also centrally- symmetrical molecules of the type 
XY4 (tetrahalides with X= C, Si, Ge, Sn andY= C1, Br, 
F, and I) and XY6 (hexafluorides, for example sulfur 
hexafluoride SF6, uranium hexafluoride UF6), which 
consist of identical atoms of mass My = m (the central 
atom Mx does not take part in the collisions). We note 
that to calculate the probabilities of the elementary 
processes and of the corresponding transport coeffi­
cients one uses, as a rule, not realistic models, but 
rough classical approximations such as loaded and rough 
spheres, sphero-cylinders, etc. (see c3 '111 ). Even for the 
simplest models where the molecules are regarded as 
rigid bodies, calculation of the collision integral and of 
the kinetic coefficients is quite complicated (consider­
able difficulties arise, in particular, when it comes to 
choosing the integration region, see, for exampleP2J) 
and it is hardly possible to obtain the generating func­
tions, whereas the proposed approach takes into account 
the spatial geometry of real molecules and requires less 
labor. 

To calculate the time of rotational relaxation in a 
mixture of rigid- rotator molecules it is necessary to 
use the generating function 

Z(u,, u,) = J dt(exp[i(u}l, + u,H,) ]~(t) exp[- i(u,k + u,H,) ]~· (0). 

(1.8) 

From expansions of the type (see also( 7J) 

Z(O,O) = ~N«ka"' = J d'p d'p' f(p) W(p, p') (1.8') 

we can obtain the probabilities of the inelastic transi­
tions ap ~ a'p', the moments of different orders of the 
inelastic energy losses, etc. Thus, for the noniso­
thermal rate constant (T"' T') we easily obtain3> 

k."' = ~ s d'qdt! V,.(q) I' 
v,n 

xi (exp[iq(R,- R.)) )«a·l' exP(- 2~ (it+ t'T) + it(ea- ea•) ]. 

(1. 9) 

It is impossible to carry out the summation in (1.8) 
and (1.8') with exact rate constants and corresponding 
rotational correlators. We shall therefore use the 
mass- tensor approximation ( 1. 7). In the case of rota­
tional relaxation in a nonisothermal mixture 
(T "'T' "" T r) of structureless hard- sphere molecules 
and rigid- rotator molecules we have for the generating 
function 

Z(u)=Zo< 
(1 + [LaT,/T)'f, >. (1. 10) 

(1 +fLU)'+ 4iu[La(T- T,)/T + 4u'[LaT,/T o 

Here 

aq' = qpq = (p, sin' 8 cos' <p + p, sin' 8 sin' <p + p, cos' 8) q', (1.11) 

Z0 = Z(O) and Pi are the components of the reciprocal 
mass tensor p (see I) in the diagonal representation. 

For the rate of energy loss we obtain from (1.10) 

_ dfi, = 4f!z,t.r( a ( 1 +fLaT ,/'f) •r,) 
dt (i+~ta)' 0' 

(1.12) 

In the case of linear molecules and spherical-top mole­
cules (P1 = p 2 = a2/I, P3 = 0) we obtain from (1.12) 

1 yZ, s' (1-z')[1+y(1-z'.)T,/'f]'h 
-=4-- dz , 

T, C, 0 [1+y(1-z')]' 
(1.13) 

y = f.La2/I and Cr is the rotational specific heat. In par­
ticular, for y << 1 (relaxation of heavy molecules in a 
light thermostat) we have 

[ 16 - ] 1/T,=(8yZ,/3C,) 1+Ty(T,/8T-1) +O(y). (1.14) 

In the case of molecules of the XY4 or XY6 type, we have 
respectively y = 3f.L/8m and f.L/4m, and for the number 
of rotational collisions we have Z rot = Zo T r ~ m I f.L 
»1. 

For a nonisothermal mixture, the integration in 
(1.13) leads to a cumbersome algebraic expression, 
which becomes much simpler if Tr = T. Namely, 

3>For nonrigid rotators it is necessary to introduce in (1.9) the product 
of oscillator correlation functions from (1.6); in the isothermal case a 
formula of the type (1.9) was used in1 131 to calculate the Born rate constants 
of transitions between strongly excited states of hydrogen atoms in colli­
sions with electrons. 
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1/1:, = SZ,y(y + 5) I 15C,(y + 1) '. (1.15) 

For example, for He+ 02 we have Zr = ZoTr Rj 4; ex­
periment yields (see the reviewf:14J) Zr ~ 2. 

In a rigid-rotator molecule mixture it is also neces­
sary to take into account the transfer of excitation (and 
the simultaneous excitation (quenching) of the two 
colliding molecules). It is necessary to use the gener­
ating function (1.8) for this purpose. In analogy with 
(1.10) we obtain (we consider for simplicity the case 
Tr = T) 

(1.16) 

The rotational- relaxation time is 

(1.17) 

After averaging over the angle variables we obtain a 
final expression for the time of rotational relaxation in 
the case of linear and spherical molecules: 

~=4 "'z'SS' dzdz,. (1-z')[1+y.(1-z,'>l 
"1", C, 0 [1+y,(1-z')+y2(1-z.')]"•' 

(1.18) 

Y1,2 = J.J.aLdit,2· For a pure rotator-molecule gas we 
have4> 

~= 4Z, [3y'-y-2 1+11y'+Hy+2arctg y ]· 
-r, 15C,(1+2v)' (1+vl' v(1+2v)'l• (1+2v)'" 

(1.19) 

In the case of xY4 molecules, the parameter y =% 
+ 3Mx/16m and, for example, Zr Rj 22 for CH4 and Zr 
Rj 6 for CFa. The experimental values of Zr are 
(see[14 '15J) 9-17 for CH4 and ~a for CF4. In a pure gas 
of homonuclear molecules y = 1/2 and Zr = 5 (experi­
mentC14J yields approximately 2-10) for N2 and 02. For 
SFa the parameter is y = % + Mx/8m and Zr Rj 6 (ex­
periment yields ~2.5). Taking into account the consid­
erable scatter of the experimental data, the agreement 
should be regarded as satisfactory. 

2. VIBRATIONAL RELAXATION 

We consider in this section collisions of simple par­
ticles (nt, Mt, T) with molecules (ll2, M2, T', Tv, Tr)· 
According to I, the number of collisions is equal to 

• .... .... Zo t 

Z., = n,J dt(-r12 (t)"t12' (0) )= -- Jd'q dt exp[- q'(it + t')] J dzF; B:rt'l, 
-~ 0 

F=exp [-yq'(1-z') (it+t'T,I'f)- 1/2yq'z'{'(t}], 

f(t) = q>-' cth (q>'f IT.) ( 1- cos 2cpt) + icp-' sin Zq>t, 

cp = w/2T and y = JJ.I~. The normalization in (2.1) 

(2.1) 

4>We note that in the case of centrally-symmetrical molecules at dif­
ferent ratios of the masses of the central and surface atoms, the parameters 
1/2y=I/Ma2 varies within the same limits as the analogous parameter 
K=41/Md2 in the rough-sphere model (for different radial distributions 
of the sphere density 0 :5: K :5: 2/3; d is the diameter of the molecule). The 
dependence ofT, (of 11-see Sec. 3-and of other kinetic coefficients) on 
'Y differs, of course, from the classical model of rough-sphere molecules 
(see[J.lll). 

satisfies the condition Z12 = Zo and F = 1 (collisions of 
structureless particles). 

In I we used instead of the colliding-particle interac­
tion potential an equivalent pseudopotential chosen such 
that exact scattering by the true potential coincided with 
the Born approximation for the pseudopotential. In par­
ticular (2.1) corresponds to a pseudopotential V(r) 
~ 0 (r), which leads to isotropic scattering with an am­
plitude independent of the momentum transfer, ~V(q) 
= const (hard-sphere collisions). The pseudopotential 
V(q) ~ exp(-Xoq2/2) used in I, which is the simplest 
generalization of a 0 potential to the case of nonisotropic 
scattering, can be regarded as a consequence of the 
"smearing" of the 0 potential: 

6(r) =lim (:rtRo')-'1•exp(- r'IRo'). ,. ..... 

In the general case (see I) 

JV(q)J'-J dxv(x)e-••' 

and 

Z,= z:. Jdxv(x) Jd'qdtexp[-q'(it+t'+x)Jf
1 
dzF/Jdxv(x). 

8:rt" 0 1+4x 

(2.2) 

The pseudopotential in (2.2) is so normalized that we 
have Z12 = Zo at F = 1, and when v(x) = O(x) (hard­
sphere collisions) Eq. (2.2) goes over into (2.1). We 
confine ourselves below to the simplest Gaussian 
pseudopotential with v(x) = 0 (x- Xo), for which 

1 +4xo s s' Z 12 =---Z0 d'qdtexp[-q'(it+t'+xo)] dzF, (2.2') 
Btt312 o 

Xo = JJ. T~. In the limit as Ro-.... 0 and Xo- 0 we have 
(2.1) as before; when Ro .,. 0 the factor Xo .,. 0 is, gener­
ally speaking, an empirical parameter (see below). 

The procedure for calculating integrals of the type 
(2.2) was discussed in detail in I5>. As a result of the 
integration we obtain 

z - z 1 + 4x, h ( 'f ) - ~ s' dz 
"- ·~cps '~'T. 1 ' 0 z'[T+y(1-z')T,J'i' 

X { [a,(a, +12)]-'h + .tF.,ch(Acpd) }. 

"~' 
d 

F.,=- 4-d [K.,(X+~)l.,(X-~)], X±= (a,a, + 2aa) 'I• ± (a,a,) 'I•, 
a, - T 

A= T-T.+( ,-T.)y(1-z'), 
T + T,y(1- z') 

a,= [1 + y(1-z'))'T.cpsh(~p'f/T.) + Z~sh ('~'.!..) 
2yz'[T + y(1- z')T,] yz' T. 

+ ch ('~'_!__) -1, a,= ycpT. , (2 3) 
T. 2[T+y(1-z')T,]sh(<pT/T.) . 

where K and I are Bessel functions of imaginary argu­
ment. 

The first term in the curly brackets of (2.3) des­
cribes elastic collisions (D. = 0) between structureless 
particles and oscillator-molecules in the ground and ex-

5>In the expressions given in I for F and <I>, the factor 1/2 for r was 
left out (see formulas (2.4) and (2.5) of I), so that the substitution 
-yz2 -> -yz2 /2 must be made in the corresponding formulas of Sees. 2 and 
3 of I. 
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cited vibrational states. The number of such collisions 
Z~ in the important practical case of an isothermal 

- 2 (Tr = T =Tv) molecular mixture at <p « 1, y « 1, but 
<p2jy ~ 1, is 

1 dz 2'1• 2 'I• Z,'~Z,·2-"'!J =Z,·2-'"flnr-+(1+-)] 
0 (z'+f/2)"' lt /' ' 

( 1 +4.xo )'" /=CfJ--. 
2v 

(2.4) 

For the rate of loss of the vibrational energy we obtain 
in analogy with (2.1)-(2.3) (see (1.2) with u = s) 

dli _ ( 'J')s' dz --=2ZT'sh -
dt 'I CfJ T. 0 z'[1+v(1-z')T,/T)'/' 

x.Lt•~sh(Ay~). 
6.=1 

In particular, in the isothermal limit A- 0 and the 
vibrational- relaxation time 

(2.5) 

1 1 ( dH) ~s2 
'7' = c.~T --;u =2C;T' (2.6) 

is given by (Cv = <p2/sinh2 <p is the specific heat) 

1 ~ 1 1 _ 2 /' , s' dzF. 
~= E~· 7.-2Zo~ -;psh cp z2 [i+v(1 -z')]''•. (2.7) 

A=l 0 

The terms 1/T Ll. in the sum of (2. 7) take into account 
the contribution of the collisions in which the vibra­
tional quantum number changes by Ll.. For a molecular 
mixture with r.p2 « 1, y « 1, and r.p2 /y ~ 1 we have 

arsh(Vs/IJ 

-1-::=:::2 (2Z,/cp2t:.3 \ d.x [X.Kt.+t(X.t:.)lt. (X_t:.) 
't'Li ~ 

+ X_K.,_ (X.~)h+l(X_t:.)], 
X.=/(2y)"•ch2 (.x/2), X_=j(2y)'~>sh2 (.x/2). (2.8) 

In the interval 0.1 ..,;: f ~ 10 of interest to us, the second 
term in (2.8) is smaller than the first by 2-4 orders of 
magnitude, and for Ll. ..,;: 10 we have 

.>.+a arsh (Vi/f) ( 1 ).>.-1 
- 1- ::=::: z, ~ f3<p' ~ ~ d.x sh2 .x z X_ K.,_+t (X.t:.). (2.8) 
T.,_ ~~ 2 J::.. o 

For arbitrary Ll. we can use the asymptotic formulas 
(with respect to the index) for the product of Bessel 
functions (accuracy ~ 5% for f = 8-0.2 and Ll. 2: 1 
(see I)): 

B± = (1 +X±')''•. (2.9) 

From (2.7) and (2.9) we have 

1 arsh<,Y2m 1 B ( ;::,. ) 
-=Z0 (2/cp2!:.2 I d.x +,"•exp-2~, 
Tt. ~ B+ "' 

2 [4(8+ -1) ] -= ln exp(B+ -1) . 
~m v/'sh'.x 

(2.10) 

Summing in (2.10), we obtain finally for the vibrational­
relaxation time 

1 z f • arsh(Vo/1) B + 1 1 1 
0 CfJ ~ .1- + h h-· - = ---:;r=- ""' --.,-.- c --.-- s ~. 

T 2 r 2 0 B. '-"m '-"m 
(2.11) 

If we average over the angles in the initial formula 
(2.4) after Krieger and Nelkin (exp[n(z)]- exp [n(z)] ), 
the main expression (2.8) goes over into 

1/ -r. = Z,t:.'(1 + 2/3/')-'i>(w / T)'(X.K ... I. + X_K.I •• ,) (2.12) 

and, further, 

Z, (~)'B++1 \"1 ~·e (-2..!_) 
2(1 + 2/3/') ''• T B+ k.J xp ~ . 

A=i 

(2.13) 

Since 1/T Ll. ~ Ll. 2 exp (-2LI./LI. m), Ll. m corresponds to the 
maximum of 1/T Ll. as a function of Ll.. At small Ll.m, the 
main contribution to the sums (2.7)-(2.13) is made by 
the term with Ll. = 1, which describes single-quantum 
transitions 

(2.14) 

The values of Toh1 and roh are given in the table for 
the Br2 +He pair (y = 1/41). 

The vibrational relaxation in the molecular mixtures 
Br2 +He, Ne, Ar under nonadiabatic conditions was in­
vestigated eJg>erimentally by Generalov and 
Maksimenk&16J. If we assume a 0 Ro = 1, where 1/ao is 
the radius of action of the collision potential (ao is de­
termined by the Landau- Teller formula from the ex­
perimental data in the adiabatic region; Cl'o is equal to 
4 x 108 , 5 x 108 , and 5.5 x 10H cm-1 for Br2 +He, Ne, Ar, 
respectively (see[16J)), then, say at T = 500oK (f = 6-7), 
it follows from (2.13) and (2.14) that Tis equal to 0.12, 
0.25, and 0.25 1J. sec for the relaxation of Br2 +He, Ne, 
and Ar. The corresponding experimental values[ls] of T 

are 0.07, 0.12, and 0.25 IJ.Sec. At T = 2000°K (f = 2-3) 
the agreement between the theoretical values of T 

(0.12, 0.25, and 0.3 IJ.Sec) and the experimental values 
(0.4, 0.35, and 0.15 IJ.Sec) can also be regarded as satis­
factory6>. The corrections connected with allowance for 
the temperature dependence of the effective radius of 
the hard- sphere molecule with allowance for the contri­
bution made to To by the vibrationally-excited states 
(see (2.4)) are relatively small and cancel out in part, 
so that the discrepancy is apparently due to the an­
harmonic corrections and the inaccuracy of the pseudo­
potential. 

It is seen from the table that the single-quantum 
transitions (2.14) make the main contribution to 1/T, 
starting with f :;?; 2, with (2.14) following directly from 
(2.1)-(2.5) in the limit as y - 0, when7 > 

d' 1 ] 1 --I exp[--vq'z2f(t+u) =-yq'z'f"(t)+O(y), 
du2 o 2 2 

(2.15) 

To Y ( 01 ) 
2 

[ ( 2 8 •)'''] ~=6 1 K, CfJ +-;-x , 

6>we note that a comparison of the experimental data with other 
theories (see[161) results in a difference by 1.5-2 orders of magnitude. 

7>Jn the expansion of (2.15) in powers of "I, the term with "It:. does not 
describe all the a-quantum transitions; substituting (2.15) in (2.1) and 
integrating there with respect to t, we can easily verify that single-quantum 
transitions are contained also in the term 0(-y)-the contribution of these 
transitions can be neglected for the relaxation of heavy molecules in a light 
thermostat. 
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t.m 
(Tfw)"rn/T 
(Tfw)"rofr, 

1
4.25

1
2.22

1
1.53

1
1.091 0,98

1 
0.61 1 0,42 1 0.35 1 0,31 

4,6 1,22 0,54 0,21 0,18 5,1-10-2 9,1-iG-3 3,3·10-3 1,55-10-• 
0,15 0,18 1 0,165 0,12 0,1 3,4·10-' 8,8-1Q-S 3,3·10-3 1,55·10-1 

In the other limiting case f - 0 we have 

X+~X-~(y/3)~'>, 2/!:J.m~y/6~1. (2.17) 

In this high-temperature essentially multiquantum reg­
ion, it is likewise easier to go to the limit in the initial 
expression (2.1)-(2.5). We have 

1 4 Z (1+4xa)(5+2y) 0 
~-+Tsy 0 (1 + 4x, + y)'(1 + y)'1•' Ql-+ · 

(2.18) 

Let us proceed to consider vibrational relaxation of 
central- symmetry molecules colliding with structure­
less particles. The rate of energy loss in the different 
vibrational modes is determined by the generating func­
tion (see (1.6); A, are normal vectors) 

Z,(1+4xo)J 3 Z(u,u, ... , u,N,-e)= d qdt 
8n3'2 

X exp[ -q'(it + t' + Xo)) ( exp [ -Mpq(it + t') ~r 
SN~-6 

- ~ .E lqA,I' r,(t + u,)]); (2.19) 
r=l 

The pseudopotential parameter Xo, which is the same for 
all the surface atoms Y of the molecules XY4 or XYs, 
can be assumed approximately the same as for colli­
sions of diatomic molecules Y2 with the corresponding 
partner. In the case of heavy outer atoms, the inequality 
kT ~ nwmin (wmin corresponds to surface oscillations 
with change of the valence angle YXY) is satisfied 
already at room temperatures. For example, the tem­
perature ®min = 175° for CBr4, 92° for SnBr4, and 
69° for Sn4. Using the expansion of the integrand in 
(2.9) in Bessel functions, we can separate (in analogy 
with the transition (2.2)- (2.3)) the contribution made to 
the total energy loss by the vibrational transitions with 
change D. of the vibrational quantum number, but the 
resultingvvery cumbersome multiple sums do not make 
it possible to obtain simple formulas similar to 
(2.10)-(2.13). We therefore confine ourselves to a cal­
culation of the contribution of the single- quantum tran­
sitions, assuming that f.J./N2m << 1 (see, however, foot­
note 7). In analogy with (2.15) and (2.16), we obtain (for 
an isothermal mixture) 

....!_,= Zof1( 1 + 4x,) Jd'q dt r."(t) exp[-q'(it + t' + x,)] 
'tv 32Jt312Cv 

X (exp[-f!qpq(it + t')] lqA.I')o. (2.20) 

The connection between the normal vectors Av and 
the force constants a, b, d, e of molecules of the XY4 
type were discussed by various authors[17 ' 18J. For 
molecules of this type, the averaging over the angles 
reduces to a calculation of the integral 

( ... )o=__![__ j dz(a, + ~.z')exp[ -yq'(1- z') (it+ t') ], 
4m , 

so that ultimately (y < f.J.I 4m ~ 1) 

(2.21) 

(2.22) 

cpv = wv/2T and Kv = wv/ct 0v. In (2.21) and (2.22) we 
have for the four different frequencies (the vibrations 
with frequency w2 are doubly degenerate; the degener­
acy multiplicity for W3 and W4 is equal to 3) with v = 1, 
2, 3, 4 (se~ 18J) 

a,= 0, a,=,~,=-~,= 1, a,= 1/2 + 1!. cos'~- 1/4}'6 sin 2~, 
a.= 1/2 + 1/4 sin'~+ '!.16sin 2~, ~. ='/,sin'~+ '/,'/6 sin 2~, 

~. = 'f, cos' ll- '/,'/Bsin 21\, ~=arc tg [ 4 eV3 / (6b- 6d- a)]. 

(2.23) 

For example, for CBr4 +He at T = 500°K the rate of 
vibrational relaxation of the mode with v = 2 (c..•2 = ®min) 
amounts to Z 0 T2 = 420 (according to (2.16), ZoT = 600 
for Br2 +He). 

In analogy with (2.13)-(2.15), we can describe the 
vibrational relaxation of other polyatomic molecules. 
The general expansions for the energy loss and for the 
generating function Z take the form of complicated 
multiple sums and are not presented here. For diatomic 
molecules, the impulse approximation v(x) = o(x) was 
also discussed by Ivanov and Sayasovr 19J, but the corre­
lation functions were not used, and only the inelastic 
cross sections and the rate constants of the transitions 
from the ground vibrational level were calculated. 

3. CALCULATION OF THE COEFFICIENT OF SHEAR 
VISCOSITY 

To calculate the shear viscosity with allowance for 
the contribution of the rotational transitions of rigid­
rotator molecules, we use a generating function simpler 
than (1.1): 

Z(a, b, c)= J d'pd'p' f(p) _EN.W."'(p,p') 

X exp [-1-(ap' + 2bpp' + cp") ] . 
2f1T 

(3.1) 

Here f(p) and Net are the equilibrium Maxwell and 
Boltzmann distribution with identical temperature (the 
generalization to the nonisothermal case is obvious); 

~'(p, p') is the inelastic-scattering probability. 
Changing over to dimensionless variables and using 
the integral representation of the probability from I, 
we obtain for the shear viscosity (see (1.3)), 

1/T) =i.Z(a, b, c), 

~ 4a 2 a• 1 a' 1 a• 
L,= 5(2nf1T)'h (3a;;z+3 aa ac -4 ab') ,' 

z 1 J 3 3 ' (a, b, c)= Sn" d pdp dt (<Dr ,<Dro)o,o, 

xexp[ap' + 2bpp' + cp"- p' + it(p'- p") ]. (3.2) 

The normalization in (3.2) is chosen such that for colli­
sions between structureless particles and hard spheres 
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(a is the scattering cross section{, when ( ... ) = 1, we 
obtain from (3.2) the usual result u] 

1 I t]o = 16cr I 5 (2rq.tT) 'b. 

The integration in (3.2), using the approximation 
( 1. 7), yields 

( [1-J.tA 2 (a,+a,)]'l• ) 
Z = 4A,[1- [JA 2 (a 1 + a,)]+[c-a+ 1- J.!A,(a, +a,)]' n,n,' 

A,=(a-1)c-b', A,=a+c+2b-1. (3.3) 

For the shear viscosity we obtain from (3.2) and (3.3) 
an expression of the type (1.18): 

1- 1 ss' dzdz,[1+'f,y,(1-z')+'f,y,(1-z,')]. (3.4) 
~--:;;" [l+y,(1-z'J+y,(1-z,')J'I• 

For example, for a mixture of structureless particles 
and rotators with y « 1 we have 17-1 = 77~ 1 (1 - 1lfgy); in 
the case of a pure gas of homonuclear molecules y 1 = Y2 
and 1/77 ::::< 0.477~ 1 , so that the contribution of the rota­
tional transitions to the shear viscosity is quite apprec­
iable. 

For a mixture of structureless particles and homo­
nuclear molecules, with allowance for the vibrational 
and rotational transitions, we can obtain a general 
multiquantum expansion 

~= ~ ~.' 
analogous to the expansion (2.7)-(2.13) for the recipro­
cal relaxation time. Owing to the cumbersome charac­
ter of the multiquantum expansion, we confine ourselves 
to a consideration of single-quantum transitions in the 
approximation y « 1 for a Gaussian pseudopotential. 
For the generating function we have in place of (3.3) 

( 1 + 4x,)' s (A,') •;, [ , A,A,' cth qJ 
Z = dz -- 1 + 2yz- , · 

1- 4x0 " A,' cpA, 

- yz'A,cpch(a-c,r)K,(<r (A/)'1')]: 
A,' sh cp A( A( _ 

A,'= 4A,'(A,- x,A,)' + (c- a+ A()', A(= 1- y(l- z')A,. 

(3.5) 

The terms in the square brackets in (3.5) describe, 
respectively, elastic (with respect to the vibrations) 
scattering by a rotator molecule, the contribution of the 
thermal vibrations to the elastic scattering (the Debye­
Waller correction), and single-quantum vibrational 
transitions. 

According to (3.2)-(3.5), the contribution of the 
single-quantum vibrational transitions is equal to 

4crycp (1+4x0)' 
-;::::;:-
r,, 15 ( 2nJ.!T) 'I, sh <p 1 - 4xo 

2 fJ' 1 {)' 1 fJ') ch[(a-c)<p] 
X (3~+3 fJafJc -f;fib2 ,a+c-2b-4x,-1 

1 )'/'] XK, [ 2<p ( x, ( 1 - a - c - 2b) + b' - ~ ( c + a - 1)' . (3.6) 

Comparison with (2.16) yields 

1] 1 - 1 : 1] 0 - 1 ~ y<p2K,[f(2y) 'I•] ~ "to /1;, ~ 1. (3. 7) 

For example, for collisions of H, Ne, and Ar with Br2 
we have To/r1 ~ 10-3 at T ~ 103°K. Thus, the contribu­
tion of the vibrational transitions (~ 0.1 %) can be neg­
lected. In analogy with the shear viscosity, we can 
calculate the contribution of the inelastic collisions to 
the thermal conductivity, diffusion, and other kinetic 
coefficients in molecular mixtures. 

The author is grateful to the participants of the 
seminar of the theoretical division of the High Tempera­
ture Institute of the USSR Academy of Sciences. 
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