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The problem of interaction between the field of standing wave and a gas is solved. An analytic expression is obtained for 
polarization of the medium when the field strengths are such that -yx/r ~ I where 'Y is the level width, r the line width, and 
x the saturation parameter. Since ordinarily -y/r ~ I, the solution is valid for strong fields. For x ~ I the absorption coeffi­
cient equals that calculated by Lamb's theory with an accuracy to x2 . Polarizability of the medium is represented by three 
terms. The first is identical to the solution obtained from the rate equations [4 ] in which coherence effects are neglected. 
The other two terms yield the contribution of coherence effects and are proportional to the parameter -y/r. 

MANY questions in the theory of gas lasers require frequencies w 11 w2, Wg, ••• , interact with an atom, 
the solution of problems concerning the resonant inter- combination frequencies w 1 - w2, w 1 - w 3 , 2 ( w 1 
action of moving atoms with fields of arbitrary inten- - w 2 ), ••• appear in the polarization. One can expect 
sity, It is well known that an exact analytic solution can allowance for the polarization at these frequencies to 
be obtained only in the case of one traveling wavefll, lead to an additional contribution to the absorption, with 
Even in the case of two waves the problem can be respect to the parameter y /r, in comparison with the 
solved accurately only for the particular case of a absorption obtained from the rate equation. The bulk 
standing wave with a frequency equal to the transition of the present paper is devoted to a determination of 
frequency, and with identical level relaxation con- these corrections. 
stants Pl. For low field intensities, the method of sue- In strong fields, allowance for the coherent effects 
cessive approximations with respect to the saturation requires a determination of all the harmonics, some-
parameter x was developed by Lamb in his well known thing impossible to do in analytic form. In relatively 
paper[3 J. To avoid difficulties connected with the exact weak fields, when rx/r « 1, we can expect the con-
solution of the equations for the density and matrix, tribution of the coherent effects to be determined only 
approximate rate equations were used[ 4 ' 5 l, in which by the first harmonic of the combination frequencies. 
coherent effects occurring when the atom interacts Rautian[ 4J consider the solution of stimulated emission 
with the field and the spatial inhomogeneity of the of atoms moving in a field of a strong standing wave, 
medium were completely neglected. The problem of within the framework of the transition probability and, 
the interaction of the field of a standing wave of arbi- under the conditions Y2/Y1 << 1 and Y2xh1 « 1; the 
trary intensity in a gas was considered by Stenholm coherent effects were disregarded. In this approxima-
and Lamb[ 6J and by Feldmann and Feld(71• An analysis tion, as expected, the solution of the problem is in es-
of their results calls for the use of computers. An sence the solution of the rate equations. The condition 
approximate method of finding the dependence of the Yx /r « 1 can be rewritten in the form ( dE/rf <.<::: 1, 
generation power on the frequency, as applied to the which denotes that there are no oscillations for the 
analysis of the experimental data, was developed byHolt[ 81 • transition probabilities. The contribution of the co-

A comparison of the aforementioned results[4- 7 J herent effects is determined by the line width and turn 
shows that particularly strong differences arise in the out to be small, whereas the saturation effects can be 
velocity distributions of the atoms. On the other hand, appreciable, since they are determined to a greater 
the shape of the Lamb dip does not differ qualitatively degree by the long-lived leveL For the resonant inter-
from the shape obtained when the rate equations are action of two opposing waves of equal frequency with a 
used. In spite of this, allowance for the coherent ef- gas, it is more convenient to consider the spatial har-
fects in problems of generation stability and radiation monies of the polarization of the medium. Obviously, 
fluctuations is necessary. It is desirable to have a taking the first harmonic into account is equivalent to 
solution of the problem in analytic form. taking into account the polarization of the atom at the 

In an earlier paper[9J, in the analysis of the interac- first combination frequency in a coordinate system 
tion of two opposing traveling waves, one of which is connected with the atom. 
weak, we have shown that the relative contribution of In the present paper we illustrate the general ap-
the coherent effects and of the effects of population to proach to the solution of the problem, using as an ex-
the absorption of a weak signal is determined by the ample the interaction of the standing-wave field with 
parameter y/r, where r is the half-width of the line, the gas. We note that the case of a standing wave is 
y = 2Y 1Y2/(y 1 + Y2), and Y2 and y 1 are the widths of special. Unlike two opposing waves of unequal intensity, 
the upper and lower levels 1>. When several fields with in a pure standing wave it is necessary to take into 

OJn the case of waves traveling in the same direction, allowance for 
coherent effects gives qualitative differences even in the case when X ~ I 
[4, 10]. 

287 

account all the spatial harmonics even if rx/r « 1. 
This is due to the contribution of those atoms whose 
velocity projection is of the order of y /k ( k is the 
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wave vector )2'. The additional contribution of these 
atoms turns out to be of the order of y /k and must be 
taken into account in our approximation, even when 
YX /r « 1. However, as shown below, at low velocities 
the problem can be solved exactly, and at rx /r « 1 
the contribution of all the harmonics can be taken into 
account. 

In the optical region, the relaxation constants are as 
a rule noticeably different. Therefore the parameter 
Y/r « 1, and consequently the condition rx/r « 1 
can be satisfied at large x, which suffices for a rigor­
ous analysis of the effects in most cases of known gas 
lasers. The presence of collisions, which lead to a 
loss of phase and do not change the lifetimes of the 
levels, also decreases the ratio y /r. 

1. PERTURBATION METHOD 

To find the polarization of the medium we start from 
the equations for the elements p21 = p22 = n2 and pu 
= n1 of the density matrix averaged over the moments 
of the excitations 

(:t +v :z +v.)n,=idE(z)(Pu'e-'"'-p 21 e'"')+y,N,(v), 

(~+ v~+v•) n, =- idE(z) (p,.• e-'•'- Pu e'"')+ y,N,(v), (1) at i}z 

( :t + iro, + v :z +f) p21 = idE(z)e-••• n. 

Here E( z) = E( eikz + e-ikz) is the standing-wave field 
represented in the form of two opposing traveling waves 
of amplitude 2E; w is the field frequency ( k = w/ c), 
w0 is the transition frequency, y 2 and y 1 are the rates 
of decay of the upper and lower levels, r is the line 
width, d is the dipole matrix element of the transition 
in units of li, and n = n1 - n2. 

The quantities 

N,(v) = (N,ffnv,) exp (-v'fv.'), N,(v) = (N,ffTtv,) exp (-v'fv,') 

are respectively the populations of the upper and lower 
levels in the absence of fields, v is the projection of 
the atom velocity on the z axis, and v0 is the thermal 
velocity. 

If we -,eek the solution of (1) in the form 

-
n - ~ n e""'' 1- £....J l,m , n- ~ n e'•"'' z- ~ 2,m , 

then we readily obtain 

where 

nm = -2idEf-'L .. Um+l + fm-l) + N(y)6m,o, 

Cm/m = -2dE(nm+l + nm_,), 

r(vu+imy) L., = __ .:...:__-'--,__:..:..__ 
(y, + imy) (y, + imy) ' 

g• 
Cm =my-if- , 

my-if 

y = ku, Q = ro- roo, nm = nr.m- nz.m, fm =p-m•- Pm, 
y., = (y, + Yz)l2, N(y) = (NI'f-;v,) exp [-(ylkv,)']. 

2llf the intensities of the opposing waves are unequal, the contribu­
tion of the atoms with low velocities to the higher harmonics decreases, 
and at lx1 -x2 1 < I, apparently, only the first harmonic is important (Xt 
and x2 are the saturation parameters of the first and second waves). 

If we introduce new unknowns 

'I'm= -J .. I2dEN(y), (2) 

then we obtain for l/Jm the following recurrence rela­
tions31: 

where 

a., = Cm + T)bm+l + 'r]bm-t, b,. = -ifL .. , 

T1 = rx/r, Y = YtYdYt2, and X= 4(dE)2/yr is the 
saturation parameter for one of the traveling waves. 

When solving the system (3) we shall assume 
11 = YX /r to be a small parameter. This enables us to 
use a perturbation method to solve (3). It is easy to 
see, however, that this is not always feasible. Indeed, 
in the region y ~ r71 we have 71Lm ~ 1, i.e., the sys­
tem (3) must be solved exactly. We shall return subse­
quently to the region y ~ r71. For the time being we 
assume that y » r71 making it possible to seek the 
solution of (3) in the form 

"'' = '1'~0) + '~'·(!) + ... ' 
1jls='i'!''+¢!''+···• 

with the zeroth approximation independent of 71, lfi< 1' 
~ 11lf!(O ), etc. 

To find the zeroth approximation we have from (3) 
the system 

(c,- txr)'ll!'' + txf¢:<•>= 1, 

txN!'' + ( c,• + txf) ¢;<•> = 1 

(we took into account the fact that l/J-m = -lf!~), whence 

¢,<'' = c,•(y' + f')ID, 

where 

or 

D = [(y- Q)' + f'] [(y + R)' + r'] + f'x[(y- Q)' + f'] 
+ r'x[(y + Q)' + r'] 

D=[y'+ (fa)')[y'+ (fb)'], 

(4) 

a'= 1 + x-6' + [x'-46']"', b' = 1 +x-6'- [x'- 46'1"'. 
6 = Q If (Rea > 0, Re b > 0). 

To find the first approximation we have 

Hence 

(c,- txf)¢:'' + txf¢:<ll =- t]b,,p:'', 

txf,p,<•> +(c,• + txf),p~<•> =- flb?IJl,•<•>. 

1jl,< 0 = -TJc,•'b,(y' + f')'l D' + i1]f(b,c,•- b,•c,) (y' + f') I D'. (5) 

From (4) and (5) we have for the imaginary part of 
lfi 1, which we shall need in what follows 
lmiJl, 

= f(y' + f' + Q') 1 D + 11fD-' Re {L,[ (y + tf)'- Q']'(y- tr)'}­
(6) 

For Y1 = 1'2 we have 

Im¢. = f{y' + rz + Q') I D + 1]f'[(y' + f')'- Q'] I D'. (7) 

If 1 y I « r , then 
f f'(f'- O') 

Im¢,= f'+0'+2xf' +TJ (R'+f')(O'+f'+2xf') 
(8) 

3l A system equivalent to (3) was considered in [6 • 7 ]. 
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2. REGION OF LOW VELOCITIES 

We now consider the region of low velocities, and 
take for simplicity the case y 1 = Y2 = y. 4 > We turn to 
Eqs. {1). When kv « r, the derivatives with respect 
to z in the last equation can be left out. Eliminating 
p21 from the system {1), we have 

(Y :'P +v)n=-2yvncos'<p+yN(y), {9) 

where v = 2xr 2/(r 2 + n2 ), cp.= kz, and f is expressed 
in terms of n with the aid of the relation 

4ifdEn 
f = - Q' + f' cos <jl. 

The harmonic Im lj! 1 of interest to us is equal to 

where 

Iml]i,=Re{ (l"+~')N(y) (no+n,)}, 

1 '" 
no=-J nd<p, 

2n , 

are the harmonics of the population difference. 
In this region we have denoted lj! 1 by ~1 , so as not 

to confuse it with {6). In view of the fact that the 
region of our preceding analysis was limited to veloci­
ties 1 y 1 >.> 1J r ( 1J « 1 ), and Eq. {9) is valid when 
1 y 1 « r, we have a velocity region r11 « ~ y 1 « r in 
which both approximations are valid. Thus, by solving 
{9 ), we obtain a solution of (1) for all y. 

The solution of (9) is 

n = N(y)_!'_ J ~texp {- _!'_[f.lt + v sin t cos(2<p- t)]}, (10) 
y 0 y 

where JJ. = 1 + v. For Im ~11 using (20), we have 

r - r 
m 11>• = r' + Q' + 2xf' 

When y » YX = 7Jr we have 
r 

Im ''' - ::::::--:-::::--7-:::-::::::­
'Y' - r' + Q' + 2xf' 

1 ( no 1 ) 
2xr N(v) --;- · 

r• 11v 
4(f' + Q')' y' 

3. CALCULATION OF POLARIZATIONS 

(11) 

(12) 

The polarization induced in the medium by the field 
E{ z) is the average dipole moment per unit volume 

~ 

p = d J p"dv + c .c. 

It can be written in the form 

where 

CLm=a_!:_J~.Pm(1+ Q ,)exp[--y_' ]ay, 
n_= my-'I (kv,)' 

0! = f7TNd 2/kv0 , and O!m is the polarizability at the 
m-th spatial harmonic in the standing-wave field. 

We are interested in the imaginary part of the 
polarizability for m = 1. We introduce for it the special 
symbol: ~ , 

p = Im ~ = ~J· Im 'ljl, exp [- __!!____,] dy. 
a n_~ (kv,) 

-----

4)We note that the solution in this region can be obtained for 
r 2 >> r 1 as well as for r 1 >> r 2 . 

We shall continue the calculations for the case kv0 

» r( 1 + x)112 • This will enable us to take the exponen­
tial outside the integral at the point y = n in all cases, 
and simply omit the exponential in the case of devia­
tions kvo. 

Let us calculate f3 in the case y 1 = y 2 = y. To this 
end we represent f3 in the form 

f -llo f oo f tlo 

P = -;-J Im IP• dy +n JIm .p, dy + -;-~ Im l]idy, 
-oo llo -Yo 

where Yo is a certain point in the region r7J «Yo 
« r. Obviously, 

1 -Yo 1 Yo fdy 

B = --; J Im IP• dy + n J r' + Q' + 2 rz 
-<Xl -Yo X 

The second integral of (13) can be replaced by 
00 J Imlj! 1dy. According to {8), we neglect here in f3 a 

-oo 

quantity on the order of 1JYolr. (We recall that we 
seek f3 accurate to 1], and Yo/r « 1). The integration 
in the last term will extend from -oo to oo, From (12) 
we can easily estimate the ensuing error. If YJJ. << y 0 , 

then 

This quantity can be neglected if y/y 0 « 1. This means 
in fact that we assume y/r « 1 for all X· There­
quirement YJJ. «Yo in (12) for arbitrary x also pre­
supposed that y /r « 1. 

Taking the foregoing into account, we can rewrite 
{13) in the form 

r-; y'+ r' + Q' 

B = -;;:_= [y' +(fa) '][y' +(I' b)'] dy 

1 ~ (y' + f') 2- Q' 
+"I''Re-J dy 

., n_= [y'+(fa)']'[y'+(I'b)']' 

_!:_s~ (I - - r ) d 
+ n_= m1p, f'+Q'+2xr' y. 

(14) 

The first two integrals in (14) can be calculated with 
the aid of the theory of residues. For the calculations 
connected with the third term see Appendix 2. As a 
result we obtain 

1 1 + 62 ,,, 1 

j3= a+b[ 1 +(1+6'+2J] + 11 2(a'-b')' 

X [ (5a'-b')[(a'-1)'-t'i'] 4(a'-1) 
(a'-b')a' a 

(5b'-a')[(b'-1)-6'] 4(b'-1)] y X A 
+ -'-----(-,-b~' -~-a,.,-)-,-b'-'-----"- _'------,-b----''--- - Zf( 1 + 6' + 2x)' ' 

(15) 

where 

8 ~J { 1 [ ( sin' t) '''] } A = - ~ In z 1 + 1 - p -t-,- dt, 
0 

p = 4x'/ (1 + o' + 2x)'. (16) 

The value of A depends little on x or n. As seen from 
(21) below, it can range from A = 1 to A"" 1.4. At the 
center of the line (o = 0) we have 
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1 '\'X 
~ = (1 + 2x)'1• + 2r(1 + 2x)''• 

'\'X A 
2f(1+2x)' '• 

(17) 

where Ao is the value of A at o = 0. For 
o » (1 + 2x)l/2 we have {3 = (1 + x)112 • For X« 1, 
making straightforward but rather cumbersome calcu­
lations, we obtain from (15), accurate to l: 

(18) 

The expression (18) coincides with the absorption coef­
ficient calculated by Lamb's theory, accurate to l at 
dr « 1r111. 

4. ANALYSIS OF RESULTS AND PHYSICAL INTER­
PRETATION 

Formula (15) describes the dependence of the ab­
sorption coefficient of the standing-wave field on the 
frequency deviation and on the saturation parameter. 
The first term of (15) corresponds to the solution ob­
tained from the rate equations. The second and third 
terms are proportional to y /r. At 0 » r ( 1 + X )1/ 2 , 

the contributions of these effects tends to zero and, as 
expect:?;2 the absorptio_n coefficient becomes equal to 
( 1 + x) , correspondmg to the saturated absorption 
coefficient of each of the traveling waves. This can be 
easily understood physically. At deviations n 
n >> r( 1 + x)112 the opposing traveling waves interact 
with different atoms and their contribution to the ab­
sorption can be taken into account independently. 

At n = 0, the absorption coefficient is given by 
formula (17). Both opposing wave interact with the 
same atoms, and the contribution of the coherent ef­
fects is maximal. The first term of (17) determines the 
main contribution to the absorption coefficient. It dif­
fers from the case of large deviations in that the 
saturation parameter is doubled. Thus, the difference 
( 1 + X) 112 - ( 1 + 2x ) 112 determines the depth of the 
Lamb dip. The last two terms are due to the spatial 
modulation of the medium, i.e., they are connected with 
the appearance of spatial harmonics in the population 
difference and in the polarization. The first term is 
connected with the contribution of the atoms whose 
velocities are kv ~ r ( 1 + x )112 • In this velocity region, 
the amplitudes of the spatial harmonics decrease in 
terms of the parameter YX /r, and to obtain the solu­
tion with the required accuracy it is necessary to take 
into account the zeroth and second spatial harmonics of 
the population difference. From the point of view of 
the action of the field on the atom, we take into account 
the coherence between the states of the atom at the 
levels 2 and 1, due to the field. Physically this corre­
sponds to additional modulation of the dipole moment 
of the atom by frequencies of the order of dE. In view 
of the fact that the time of the coherent interaction of 
the atom with field is 1/r, the indicated modulation is 
significant when dE/r ~ 1. Thus, the additional con­
tribution to the polarization in terms of the parameter 
rx/r = 4(dE/r)2 « 1, corresponds to allowance for 
the coherent corrections to the dipole moment of the 
atom in terms of the same parameter. We note once 
more that the saturation effects can be appreciable, 

since they are determined by the saturation parameter. 
The third term in (17), due to the velocities 

v ~ y/r, makes a negative contribution to the absorp­
tion. Its appearance is due to the specific features of 
the interaction of the standing-wave field with the 
atoms. 

The field vanishes at the nodes, and this leads to a 
sharp increase of the population difference, and conse­
quently to a decrease of the strong-field absorption. 
From (9) we obtain for the distribution of the popula­
tion difference at v = 0 

N 
n = 1 + 2x + 2x cos 2ki . 

At Zn = 1Tk- 1(n + Y2) we have n = N, i.e., the population 
difference is equal to the unsaturated value. The 
values of the spatial harmonics at v = 0 are given in 
Appendix 1. At x « 1, the amplitudes of the harmonics 
decrease like X m/2 ( m = 0, 2, 4, .•. ), i.e., only the 
zeroth harmonic is significant. It is easy to under­
stand why the region of slow atoms is determined by 
the condition v ~ y/r. At v » y/k, any of the excited 
atoms spends the greater part of its time in the region 
of the averaging field. To estimate the additional con­
tribution of this region to the absorption coefficient at 
x ~ 1, we can put an~ 1 and therefore the contribu­
tion of this region to the gain is of the order of o 0 y/r, 
which agrees in order of magnitude with (17) at x ~ 1. 
When x » 1, the contribution from the atoms with low 
velocities can be neglected, since the third term in (17) 
decreases like 1/ x, whereas the second is proportional 
to x-1/2. 

It is interesting to note the property of the expansion 
(18) at x « 1. In each of the regions v ~ y/k and 
v ~ r /k there arise terms that are linear in x. Their 
contributions, however, are equal and opposite, so that 
coherent corrections appear only as a result of the l 
terms. · 

The authors are indebted to the participants of the 
seminar at the Institute of Physics Problems of the 
Siberian Division of the USSR Academy of Sciences 
(July 1970), particularly to V. S. Smirnov and B. L. 
Zhelnov, for a discussion of the region of applicability 
of the obtained solution. The authors thank A. V. Chap­
lik for a discussion of the work. 

APPENDIX I 

From (10), the harmonics of the population differ­
ence at y « r are given by 

n,=N(y).lJ~ dtexp[-~~]~ 
y, y 2n 

X s'"dq> exp [- ikq> - I!_ sin t cos (2<p - t) 1 
11 • ' 

J . -

(k = 0, ±2, ±4 ... ). 
At y = 0 we have 

-( 1)"' N(O) [ 4x ] ''' (19 ) 
n.- - (1 +4x)''• [1 +(1 + 4x)''•]' . 

It should be noted that (19) is valid at y = 0 for arbi­
trary relaxation constants y and r. 

From (9) we can obtain for the harmonics the follow­
ing recurrence relations 

2n, { iky) 2 n>+, = -n·-·-- 1.1+- +-ll •. oN(y). 
v '\' v 
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In particular, for k = 0 we have, recognizing that 
nk = n~k• 

APPENDIX ll 

Let us calculate the integral 

1 ~ 1 
J =-;--IJ lmiji,- f(1 +6'+2x.) ]dy. 

According to (15), it can be written in the form 

J-- YX. A 
- 2f(1+6'+2x.)' • 

A=~ j~ j dtexp (-.!tt)~j [exp (-~sintcos<p) -1] d<p, 
1tp 0 y 0 y 1t 0 y 

where we have put 

1 1 ~ 1 • 
_Y __ J dte-'"'1•-J d<p. 
1 + 6' y 0 1t 0 

We proceed to calculate A. After introducing the 
new variable z = rlx and changing the order of inte­
gration, we get 

A = ~ j dt-1-j" d<p r ~[ e-•<ot+v "•' ••• •> - e-•••]. 
np 0 2n 0 0 z 

Since 

~J r(a+ 1) 
Z4 -•e-Q• dz = __..:.---7,......:-

• aQa 

(see, for example,P2l, p. 331), the integration with re­
spect to z in the expression for A can be carried out 
by making the substitution 1/z- 1/~a+ 1 and letting a 
tend to zero. This yields 

8 w 1 • J.Lt 
A= -Jdt-J d<pln---+,..-=.,,...---

np 0 n 0 J.Lt + v sin t cos <p 

Recognizing that (seer 121, p. 541) 

J• c +(c' q')'t. 
ln(c+qcosx)tk=nln - , 

0 2 

we obtain finally the formula (16) of the text. 
To calculate A it is convenient to expand the inte­

grand in (16) in a series, assuming p to be a small 
quantity; the required integrals can be obtained in r 121, 
pp. 460 and 464. Ultimately we get 

A=i+ ~P+!!P'+ ... 
Since p varies in the range 0 < p < 1, the obtained 
expression can be used in practice for all values of p. 
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