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A theory is developed for stimulated Raman scattering (SRS) of radiation experiencing rapid (with respect to the transverse 
relaxation time of the scattered oscillations T2) amplitude and phase modulation. In distinction to previous work, dispersion 
(normal or anomalous) of the medium is taken into account. It is found that qualitatively new effects arise under conditions 
when both molecular relaxation and dispersion are operative. The most important of these are: I) exponential growth of Stokes 
components excited by ultrashort light pulses of duration T P < T 2 in media with normal dispersion; 2) the appearance of 
stationary Stokes pulses in a medium with normal dispersion, the duration of which is independent of the distance traversed 
in the nonlinear medium; 3) the suppression of SRS due to rapid pumping phase modulation; this occurs in media with either 
normal or anomalous dispersion; 4) competition between processes of stationary mode formation and suppression of amplifica
tion due to pumping phase modulation. Numerical estimates show that the effects mentioned above play an important role 
in stimulated Raman scattering of picosecond pulses in liquids and crystals. The suppression of SRS in the pumping phase 
modulation field is apparently the main cause of the low efficiency of stimulated scattering in weakly focused beams. 

1. INTRODUCTION 

PROGRESS in the technique of ultrashort light pulses 
has greatly stimulated interest in the theory of non
stationary stimulated scattering (see, for example,c1-4 J). 
Principal attention has been paid in the cited papers to 
nonstationary effects connected with the inertia of the 
mechanism that effects the energy exchange between the 
interacting waves (the inertia of the nonlinear polariza
tion of the medium). In fields that are not too strong, 
nonstationary phenomena connected with the finite 
transverse- relaxation time T2 are most significant. 
The gain in the field of pump pulses of duration T p < T2 
decreases; instead of a stationary increase of the inten
sity of the stokes wave in accordance with the law 

/ 8(z) = K,exp (f,z), (1a) 

where ro is the static gain, there is a much slower in
crease of Is; the intensity of the stokes wave at a length 
z assumes at the end of the pump pulse the value1> 

/ 8 (z) ~ K, exp [2(2fo-rpT,-'z) ¥•] = K,eGC•>. (1b) 

In such an essentially nonstationary case, the gain is 
accompanied by the effect of the so- called nonstationary 
spectrum broadeningC2-eJ. Another class of nonstation
ary phenomena in stimulated Raman scattering (SRS) 
is connected with the propagation effects. These effects 
are due in fact to linear dispersion of the medium and 
become manifest primarily in the group delay of the 
pump and Stokes-component waves2>. 

1>The values of the pre-exponential factors depend on the scattering 
regime (scattering from intrinsic noise, amplification of external 
signal[21). 

2>In fields of pulses that are quite intense, a definite role can also be 
played by nonlinear distortions of the dispersions curves (in particular, 
distortions due to the real part of the combination susceptibility), but this 
is usually not manifest in the effects considered below. 
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If T » T2, then the analysis of the nonstationary 
p 

wave phenomena in SRS turns out to be particularly 
simple in the given-pump-field approximation (seeC2J). 
The most significant result of the "wave" nonstation
arity is in this case the sharp decrease of the rate of 
gain (saturation) after a characteristic length is reached, 
equal to the length of the group delay of the Stokes-wave 
and pump pulses 

L.=-rpflvl, v=up-'-u,-•, 

where ~and us are the group velocities of the pump 
and Stokes waves. The saturation of the gain is accom
panied by a broadening of the Stokes pulse in accordance 
with the law TS ~ z. We note also that a number of 
rather general results can be obtained in this case also 
by taking into account the reaction of the Stokes wave on 
the pump (seeC 7- 9J). For many cases of practical inter
est, a separate examination of the nonstationarity con
nected with the inertia of the nonlinear polarization and 
of the nonstationarity due to the propagation effects is 
not justified. Thus, for picosecond pulses 
( T p Rj 10-12 sec), the duration of which is close to or 
much less than the reciprocal width of the spontaneous 
Raman- scattering line .6.il~1p = T2 in typical liquids and 
crystals, the group delay length does not exceed 
1-1.5 em. 

Certain effects which are possible when I:'::Jth non
stationarity mechanisms act simultaneously have been 
discussed qualitatively earlierC2' 3J. 1~' purpose of the 
present paper is the development of a consistent non
stationary SRS theory, in which account is taken simul
taneously of the action of the molecular relaxation and 
of the dispersion. The theory is constructed under 
rather general assumptions concerning the modulation 
of the pump (short rectangular and bell-shaped pulses 
without phase modulation, continuous phase- modulated 
pumping, short pulses experiencing rapid phase modula
tion). We consider here different relations between the 
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group31 velocities of the interacting waves (forward 
scattering in the case of normal and anomalous disper
sion, backward scattering). 

The most interesting result of our analysis is the 
fact that under conditions when the inertia of the mole
cular oscillations and the dispersion of the medium ap
pear simultaneously, qualitatively new effects arise. 
We must point out here first the appearance of exponen
tial amplification of the Stokes radiation excited by the 
pulses T > T2 at z < Lv and accompanied by stabiliza
tion of t~e shape and width of the Stokes pulse. Another 
important effect is the appearance of SRS as a result of 
rapid PM pumping (we recall that at v = 0, according 
to(zJ, the PM has practically no effect on the Stokes 
gain). Estimates show that the indicated effects play an 
important role in SRS of picosecond pulses in liquids 
and crystals and in SRS in self-focusing beams. They 
can become manifest also in other types of stimulated 
scattering. 

2. NONSTATIONARY SRS IN A PULSE-PUMP FIELD 

2.1. Fundamental Equations. Role of Sign of the 
Mismatch of the Group Velocities 

We start with a consideration of nonstationary 
phenomena in a pulsed-pumping field. In the given-field 
approximation, in the first approximation of dispersion 
theory, the abbreviated equations describing the Stokes 
scattering by transitions obeying the alternative for
biddenness are of the following form (see [zJ) 

oAs aAs 
--v-=y,Ap(T))a, oz OT) 

aa a 
- = y,Ap' (T))As--+ N(T), z). 
OT) T, 

(2) 

Here As, Ap('17}, and a are the amplitudes of the Stokes 
wave, laser wave, and molecular oscillations, respec
tively; T2 is the transverse relaxation time; .the func
tion N(17, z) is an extraneous random force characteriz
ing the natural oscillations of the medium, and 11 = t 
- zu; is the running time (the proper pump time). 

Before we proceed to analyze the system (2), we note 
that the gist of the effects in which the inertia of the 
molecular oscillations and the group detuning become 
manifest simultaneously can be understood from quali
tative considerations (see alscf2 ' 3J). The plots of Fig. 1 
characterize the spatial variation of the amplitudes of 
the Stokes pumping and of the molecular oscillations. 
Under conditions of normal dispersion (us > ~), the 
Stokes pulse overtakes the pump pulse, and consequently 
the latter is constantly in a region where the molecular 
oscillations are strongly excited. As a result, one should 
expect to obtain an intense Stokes scattering from a 
large volume of the medium, accompanied by the ap
pearance of a stationary Stokes pulse. To the contrary, 
in anomalous dispersion (us<~), the pump pulse at 
z > Lv propagates in a practicafly unexcited medium, 

31 As shown in£21, allowance for dispersion in first approximation, which 
reduces to taking the group delay into account, is quite adequate for 
typical problems in picosecond-pulse optics. 

FIG. 1. Spatial variation of the pump intensity, the Stokes wave, 
and the molecular oscillations when a short (compared with the trans
verse relaxation time) pump pulse passes through the combination-active 
medium with normal (a) and anomalous (b) dispersion. 

so that at a length z R< Lv the gain becomes saturated. 
The foregoing is confirmed by a concrete calculation 
performed in the succeeding subsections of this section. 
Particular interest attaches here to the case of normal 
dispersion; besides the complete solutions describing 
the dynamics of the gain, which are valid for arbitrary 
z, we give also solutions which are valid at z > Lv and 
take the form of steady- state modes having a stationary 
amplitude profile. 

2.2. Forward Scattering. Stationary Stokes Modes 

For the purpose of elucidating the physical features 
of nonstationary forward scattering in media with 
normal dispersion, we propose the existence of an 
amplification regime such that a stationary amplitude 
profile of the wave is formed: 

As(T), z) =As ... (Tl) exp (f,.z). (3) 

Substituting the sought form of the solution in (2} and 
confining ourselves for the time being to the dynamic 
analysis (N = 0), we arrive at an ordinary second-order 
differential equation 

d'Bs + (_!_+~--1- dAp(Tl)) dBs+ y,y,IAp(T)) I' Be= O, 
dT)' T, v Ap(Tl) dT) dT) v 

Bs = As ... exp (-f .. T) /v). (4) 

We determine with the aid of ( 4) the envelope of the 
stationary Stokes pulses for two types of pump modula-
tion. · 

1. Rectangular pulse: Ap('17) = Ap at 1'171 ~ Tp/2 and 
Ap('l1) = 0 at 1'171 > Tp/2. In this case the stationary 
Stokes pulse takes the form (see Fig. 2) 

[ ( r. 1 ) TJ ] ( Tl 1 ) 'l'p exp --- - sin --·- b, ITII<-, 
v T, 2 'l'p 2 2 

As .• ~ [ r .. Tl Tl ] exp ---
2v 2T, ' 

T) <- 'l'p 
2 • 

0 
'l'p 

Tl>z-· (5) 
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The gain of the stationary pulse is 

rM = 2(y,y,Ap'v) .,, I cos bl- '\1 IT,. 

The parameter b, which determines the shape of the 
Stokes-wave pulse and its gain, is given by the trans
cendental equation 

lsinbl = b/n 

and depends on the quantity 

(6) 

(7) 

n = (fctpT,-'L,/2)y;= (y,y,Ap'-rp'/v)'i•, (8) 

which is determined by the pump intensity and by the 
properties of the medium. We note that the quantity n 
is equal, apart from a numerical factor, to the growth 
increment of the Stokes-wave intensity over the group 
length in the nonstationary scattering regime, n ~ G(Lv) 
(compare with (1b)). Under real conditions (scattering 
of powerful picosecond pulses) usually n » 1 and 
b ~ rr. Then the mode increment rM ~ (2r 0v'r;1)112-v/r 
does not depend on the duration of the principal radia
tion. The vertex of the Stokes pulse is located at the 
trailing edge of the pump pulse 1J M = T p /2 (see Fig. 2), 

and the pulse duration C..1J ~ 3v/r M decreases with in
creasing gain. In strongly dispersive media the Stokes 
pulse energy leaves rapidly the pump region and the 
gain of the mode vanishes at n ~ 1. 

2. Let us consider a bell-shaped pump pulse Ap(7J) 
= Ap cosh -1( 11/T p), We obtain the stationary Stokes

radiation pulse localized near the main pulse from Eq. 
(4): 

As .• (11)=exp[ (n-1-~}~]ch-n-2!_, (9) 
T, Tp Tji 

The mode increment is (compare with (6)) 

r. = (2n- 1- Tp/ T,)L,-'. (10) 

The vertex of the Stokes pulse leads the maximum of 
the main pulse 

l1•=~ln 2n-1-Tp/T, 
2 1 +-rp/T, 

(11) 

and its duration is 

~11• ~ Tp[2n(1 + Tp/ T,)-'(2n -1- Tp/ T,)-'] '~•. 

The mode gain vanishes when n = 1/2 + Tp/2T2, and the 

pulse is then strongly broadened (C..1J M- oo) 4 >. With in
creasing pump field, the increment tends to the value 
rM = 2(y 1y2A~v)112 ; the vertex of the Stokes pulse is 

located at the trailing edge of the pump pulse, while the 
duration remains constant att:..17M~ Tp(1 + Tp/2)112 . 

It is seen from the foregoing examples that the wave
form of the amplitude modulation of the pump (the rise 
time of the fronts) influences strongly the stationary 
amplitude profile of the Stokes pulse, and to a lesser 
degree the character of the gain itself. Thus, the calcu
lated growth increments can be used in the discussion 
of the experimental results for pulses which do not co
incide exactly in shape with those considered above 
(including Gaussian pulses). If the Stokes pulse lags the 
pump, v < 0 (forward SRS in the case of anomalous dis
persion and backward SRS), then there are no exponen-

4>This case was discussed inr2l. 

8 si8 smax 

U J D.J 
(t-V"~ Z/rp) 

FIG. 2. Waveform of stationary Stokes pulse at z > Lv in nonstation
ary SRS in a medium with normal dispersion, for a rectangular pump 
pulse at different values of n. We see that the waveform of the stationary 
pulse differs from the pump pulse, and the Stokes energy is localized in 
the case of strong pumping near the trailing edge. 

tially growing modes. The saturation of the gain occurs 
within the quasistatic length z ~ Lv. 

2.3. Dynamics of Formation of Stationary Stokes Pulse 
in Forward Scattering 

Let us consider the forward SRS process under ordin
ary conditions of normal dispersion of the scattering 
medium (us >up, v > 0). We assume that the function 
N( 1J, z) in (2), which describes the natural fluctuations 
of the medium, is delta- correlated in space and in time 

(N{11, z)N(r(, z')) = gli(11-11')1l(z- z') (12) 

(The intensity of the random force g can easily be ex
pressed in terms of the parameters of the spontaneous 
Raman scattering (see[2J). Let the pump pulse have a 
bell-shaped form Ap(7J) = Apcosh-1(7]/Tp). We solve 

Eqs. (2) by the Riemann method. As a result of the cal
culations we obtain the following expression for the 
averaged Stokes-pulse intensity: 

~ 2£ 
Is= gy,'Ap'ch-'_2!_J exp( --} d£ 

Tp, T, 

S' 11 - 6 11 - S + '\IS 
X ch'--ch-' F'(1 + n, 1- n; 1; y)ds. 

0 Tp Tp 

Here F is a hypergeometric function with argument 

h VS h S h-t 11 h-t 11- S + 'liS y=-s-s-c -c 
Tp Tp Tp Tp 

(13) 

We note first that under the conditions of group synch
ronism (v- 0, n- oo) the hypergeometric function goes 
over into a modified Bessel function of zero order, lo, 
and the solution (13) itself goes over into a well known 
previously obtained solution[2J. In the case of integer 
values of n, the function F is expressed by a finite ser
ies, and in particular F = 1 when n = 1. In the latter 
case 

I.s= gy.'Ap'<p clr'2!_sh~ 
'\1 Tp Tp 

X s~ exp (-~ )ch' 11 - s X ch-' 11 - s +'liZ ds. (14) 
0 T, T,p Tp 

In Fig. 3 we traced the dynamics of the amplification of 
the Stokes pulse at n = 1 and T p = T2 /2. We see that a 
stationary pulse that increases exponentially with the 
coordinate is formed at z ?=: 4LZJ. 
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FIG. 3. Dynamics of formation of a stationary Stokes pulse in for
ward SRS as a function of the length of the scattering medium in the 
case n =I and Tp = T2/2. The abscissas represent the time reckoned 
from the center of the pump pulse. The parameter of the curves is the 
normalized distance z/Lv traversed by the pulse in the medium. Plots I, 
2, 3, 4, and 5 correspond to z/Lv = I, 2, 3, 4 and 5, respectively. The 
dashed curve is the pump envelope. The ordinates represent the nor
malized power Is/Is. max· 

An analysis of the general expression (13) shows that 
the stationary mode of the Stokes wave is always formed 
behind the group length z ~ Lv: 

ls=g_!_ f(2n}f _.!_ r 2n-1 y 2-Zn ( T ) ( 

y, 1 + lp/T, T, 

'P) 2 -T; r-'(n)exp(21'.z)As .• (tJ), (15) 

where r(n) is the gamma function, and the mode profile 
As. M and the gain r M are given by the previously der
ived formulas (9) and (10). At large gains (n ~ 1) in a 
field of picosecond pulses (T « T2) we have from (15) 

p 
Vt 22n-Z 2 

Is= g---exp(G.)As .• (tJ), G.= 2f.z (16) 
y, nn 

(see Fig. 4). 

2.4. Dynamics of Backward Raman Scattering 

In backward SRS the Stokes and pump pulses propa
gate in opposite directions with a relative velocity equal 
to double the velocity of light. The group mismatch lvl 
= u-1 + ug R; 2/c greatly exceeds in magnitude the mis
mafch v ~ (up- us)/c2 occurring in forward scattering. 

Accordingly, the group length Lv = Tp/ivl is greatly de
creased, and the effects of the group delay become mani
fest earlier and more sharply than in forward SRS. 

The solution (13) obtained for forward SRS is also 
valid for backward scattering, with due allowance for 
the reversal of the sign of the group mismatch; the 
parameter n becomes imaginary in this case, n = ilnl. 
The intensity of the backward stokes pulse at large 
gains, lnl ~ 1, is given by 

Is :::::: g y,'Ap' .~ d~ exp(- ~-) { ch[ (tJ- 6}/tp] }'/, 
Bnn 0 T, sh(~/tp} 

xJ{ ch[(tJ-vs}/tp] }'/.exp(2narcsiny,~s. (17) 
0 sh(vs/tp} ch'[(tJ- vs)1p] 

[ vs 6 T] - 6 T] - vs ] •;, ~ t] T] - 6 - vs ) _, 
y, = 2 sh-sh-ch--ch--- ch-ch . 

Tp lp Tp Tp "tp tp 

c 

/ 
/ 

// 

/ 
/ 

/ 

FIG. 4. Growth increment G 
of the Stokes-wave amplitude vs. 
the length of the medium z (con
tinuous curve). A stationary ex
ponentially-amplified mode sets 
in at z > L.. The dashed line 
shows the gain in a nondisper
sive and nonrelaxing medium. 
The dash-dot line shows the gain 
of short pulses in nondispersive 
medium. 
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Unlike the forward SRS, gain saturation sets in at lengths 
z ;2; Lv in backward scattering, and the saturation effect 
depends on the ratio of the group length Lv to the quasi
static L7 = T pi T2 r 0• If Lv < L7 the gain saturation oc
curs in a quasistationary regime (G = r 0z); the satura
tion level is G = roLw 

In a field of powerful short pulses (Lv > L 7 ) a non
stationary scattering regime develops over the group 
length; according to (17) we have 

{ [ 2vz 2(TJ- vz) ] 'f, 11 } 
G-.,T = 2n arc sin sh-sh ch-'- . 

Tp "tp tp 
(18) 

The nonstationary gain (G ~ z112) saturates here at the 
level G_ v T = 1T lnl, which is lower, owing to the inertia 
of the mol'ecular oscillations, than in the case of the 
quasistatic gain. 

3. SRS OF PHASE-MODULATED PUMP RADIATION 

:Under conditions of group synchronism (v ':' 0), phase 
modulation (PM) of the pump, Ap(17) = Apo(1J)eHP(1J) has 

practically no influence on the amplification of the 
Stokes component (seeC1 ' 3J). Group-delay effects, do, 
however, change appreciably the picture of SRS of 
phase-modulated pumping. Indeed, in this case the PM 
of the pump extends to the Stokes component 

(19) 

The phase of the molecular oscillations strives to follow 
the phase difference between the pump and the Stokes 
component: 

(20) 

However, owing to the finite relaxation time T2, the 
molecular oscillations cannot follow the rapid beats of 
the driving force, and this leads in final analysis to a 
decrease of the gain, and also to its saturation under 
certain conditions. For the amplitudes As and a defined 
in accordance with (19) and (20), the equations in (2) 
take the form 

aAc ais . 
--v- = - !y,Apo(TJ) i'l, (21a) az a11 

:o +{ ;, + i[Q(t])- Q(t] + vz)] }i'l = iy,Ap,(t]}As + Ne;•(•>-;•(•+•<l. 

t] ~1~ 

In (21) the instantaneous frequency is 

Q(t) =orp/&t. (22) 

We note, first, that certain general conclusions concern
ing the influence of PM of the pump on the gain of the 
Stokes waves can be drawn without solving the equations 
in (21) exactly. We see that in a nondispersive medium 
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(v = 0) the PM of the pump does not influence the SRS 
(in the scattering regime). On the other hand, in a dis
persive medium, the SRS becomes sensitive to changes 
in the pump frequency (the derivative of the phase). 
Neglecting envelope group-delay effects 
(z < Lv = Tp/lvl), it is easy to estimate the characteris
tic spatial scales within which phase modulation can 
exert an influence on the gain of the stokes wave. For 
T p >> Tz this influence comes into play, obviously, if 
tlie frequency deviation exceeds the width of the spon
taneous scattering line, AOmax » 2/Tz. For pulses 
with a linear time variation of the frequency (quadratic 
variation of the phase) 

Q = Oot hp (23) 

the beat frequency in (21) increases in proportion to the 
traversed distance: 

(24) 

PM of the pump greatly limits the growth of the 
Stokes component when lAO I :2: 2/T2, i.e., over distan
ces z :2: lphl' where 

(25) 

We can verify further that when z > lphl the growth in

crement of the stokes waves is practically independent 
of z. For pulses that are short compared with the 
transverse relaxation time (T p < T2), the frequency 

deviation should be compared with the nonstationary 
width of the stokes line (compare withC2J). For a rec
tangular pump pulse 

tl.ros= (foz/2<pT2)'h, 

this gives a characteristic space scale 

(26) 

Usually l h > l h . For a bell- shaped pump pulse p 2 p 1 

AW S ~ AWp and we get lph2 ~ (0 0 vf1 in place of (26). A 

more complicated picture arises when z > Lv; in this 
case competition sets in between the effect of occur
rence of exponentially growing modes and the suppres
sion of the SRS via the PM. This regime will be 
analyzed in Sec. 4; in the remaining subsections of this 
section we shall confine ourselves to the case z < Lv. 

3.1. Dynamics of SRS for a Linear Variation of the 
Pump Frequency 

In accordance with the foregoing, we can put in (21) 
Apo(1J) ~ Ap0 (1J + vz). Introducing a new variable 1) s = 1) 

+ vz and changing over to the normalized amplitude of 
the Stokes pulse 

As= Ap,(tJs)f(z, tJs), 

we obtain from (21) the equation 

___!J_ +{ __!___ + i [Q (tJs- vz)- Q (tJs)]} iJj - y,y2A;,(tJS) f 
iJt]siJz T2 iJz 

(27) 

= Ne'•(•s-n)-i•(•S). (28) 

We seek the solution of (28) by the Riemann method. 
The Riemann function R satisfies the equation 

iJ2R { 1 } iJR ' --+ -+ i[O(tJs-vz)- O(tJs)] -- y,y2Ap,(tJs)R = 0 (29) 
OtJsiiz T2 iJz 

with boundary conditions R = 1 at z = 0 and 1J S = 0. For 
a linear variation of the pump frequency we can obtain 
an exact solution of (29): 

(30) 

(where <I> ls the confluent hypergeometric function). In 
the absence of PM of the pump (0 0 - 0), and also in the 
presence of PM but at v = 0 (lphl - oo), the function <I> 

is expressed in terms of a Bessel function, and conse
quently 

(31) 

i.e., (31). contains as a particular case the previously 
obtained[l-3] solutions of the equations of nonstationary 
SRS. Using (30), we obtain for the average Stokes-wave 
intensity 

z; '11$ . 2. 

2 I'J s ( 2t]t) I ( ifolph• 2iZtt]t) I Is= gy, lAp, dz, dtj,exp -- <D ---, 1; --
0 , r, 4 ~~r. 

(32) 

3.2. Quasistationary Amplification Regime 

We consider first SRS of long (T » T2) PM pump 
pulses. The upper limit in the inteFnal integral of (32) 
can then be allowed to go to infinity (1J 8 - oo). This 
yields 

1 2 2 s' [ r,lph• z, ] Ic = -gy, IAp,j T, exp --arctg-
2 0 2 lph• 

( ifolph 1 if,lph•. 1. 1 ) d XF --- -- z, 
4 4 ' 1 +(lpb./z,) 2 ' 

(33) 

where F is the hypergeometric function. For the calcu
lations that follow we can use the asymptotic represen
tation of the function F ( see[loJ , p. 88). Calculation 
yields 

gy, ( 1 + z'/lph•2) ( z ) Ic,:::; exp folph• arctg- , 
4y,(nf,z) •;, /ph• 

1/fo~z~folpb.'/4. (34) 

From (34) we see that at z « ZplH we have 

Is,:::; gy, exp(f0z) 
.4Y2(nf0z)'h 

(the usual exponential growth corresponding to group 
synchronism). With increasing z, the growth of Is slows 
down and saturation sets in at distances z > lph1 (see 

Fig. 5). The growth increment tends in this case to 
1Trozph/2. At z » lph1 it follows from (34) that 

gy, z ( n ) lc;:::; ----cxp -f,lpht , 
2ny, ipht 2 

(35) 

i.e., at large distances there remains only weak linear 
growth of the Stokes component. 

3.3. Short Phase-modulated Pump Pulses 

For short pump pulses it is necessary to take into 
account the finite limits of the internal integral in (32). 
We confine ourselves to the case of greatest practical 
interest, that of large gain 2r oZ1J sl T2 » 1. This allows 
us to use an asymptotic formula for the confluent hyper
geometric function <I> (see[lo], p. 269): 
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. . 1 __ i_x'_f, _:.+_2...![c.:.(a__:_+_i.:..../2..:..)_-_x....:./--'2]~'1_' _ 
!D(1a,1; -!X)=---=-'.-

4l'rt (a+ i/2)'1'[(a + i/2)x- x'/4]'1• 

{ ix ix'i•+[4(a+i/2)-x]'h} 
X exp -+[(a+ i/2)x- x'/4]'h- 2ialn-_:_~:__~...!__..::.;!__ 

2 2(a+i/2)'1• 
(36) ' 

where X= 2nsz/T2lphl• a= rozph/4, and ax» 1 by 
definition. 

For pulses with duration T p « T2 at distances 

z < lph2, the amplification of the stokes wave is given by 

Is~ gy,a exp{[x(4a-x)]'h+4aarcsin..!yax}. (37) 
2ny, Yx(4a- x)'h 2 

At z « lph2 it follows from (37) that 

Is~ 8 ( 2~'a sfT )'I exp[2(2foZTJsfT2 ) ''•], 
rt-y, oZTJ ' ' 

(38) 

i.e., an expression coinciding with (1b) is obtained. With 
increasing z, the growth of Is slows down and saturation 
of the growth increment sets in at z - lph2 (see Fig. 5). 
At z » lph2 we obtain from (32) 

(39) gy, Z'tp ( rt ) 
Is~ -2--1 T exp -2 folph 1 • 

ny, ph• ' 

Thus, just as for long pulses, the limiting value of the 
growth increment is rrr 0 lph/2. This value is attained, 
however, at large distances, since lph2 » lphl' 

4. GENERAL CASE. PUMP WITH FAST AMPLITUDE 
MODULATION AND PHASE MODULATION IN A 
STRONGLY DISPERSIVE MEDIUM 

Under conditions when effects of envelope group delay 
are significant (z > Lv), the interaction of nonstationary 
phenomena caused by the amplitude and phase modula
tion of the pump has a complicated character. Of grea
test interest, just as in the absence of PM, is the case 
of normal dispersion. Competition sets in here between 
the processes of formation of exponentially growing 
stationary modes and the suppression of the scattering 
by the PM of the pump. It is interesting that in a suffi
ciently powerful pumping field (or in the case of not too 
rapid PM), stationary phase-modulated modes that in
crease exponentially with distance are possible for all 
values of z. The conditions for the occurrence of such 
modes can be determined by using the procedure of Sec. 
2.2. s> For a Gaussian pulse experiencing quadratic PM 

(40) 

( T ph is connected here with the quantity no introduced 
in (23) by the relation no = 2rp/ T~h) we can obtain an 
approximate expression (which is valid near the vertex 
of the pulse) for an exponentially growing stationary PM 
mode 

As(TJ, z) = exp (fMz) exp [(fM-vT,-')TJ/2-v (41) 
- (11>-' + i'tpii2)1J2/2]Hm(Y)e-v'1' 

5>Exact solutions for pulses experiencing simultaneous phase and am
plitude modulation (of the type of the solution obtained in Sec. 2 for a 
bell-shaped pulse) can be obtained only for specially chosen types of 
modulation. One of the examples where such a solution is possible is pump 
modulation in accordance with the law Ap('l1)=Apo[cosh('l11T p)]-I-lid. In 
the present article, however, we confine ourselves to more lucid approxi
mate relations. Some results pertaining to exact nonstationary solutions 
will be reported by us in subsequent papers (see[III). 

trl',/ph,/2 ----

/ph• z 

FIG. 5. Growth increment G of the first Stokes component in a 
phase-modulated pump field (Ap(Tl) = Ap exp(i712 /rph2)) for the cases 
11 = 0 (curve I) and 11 * 0 (2, 3). Curve 2 is constructed for rp/T 2 > I 
and curve 3 for rp/T2 > I. z <~in all cases. 

where Hm(Y) are Hermite polynomials 

y ~ (4n'- Tp''tpii')'i'T]/'tp+ (1 + i'tp2Tpji2 ) (4n'- Tp'Tpii')-'1•, 

and n is determined by formula (8). 
The mode increment is 

rM = L,-'(4n'- 'tp'/Tpb')"'- vjT,. (42) 

It follows from (42) that the mode increment decreases 
with increasing rate of phase modulation ( T ph - 0); at 
the same time, if Tph > Tp/Frl, the exponential growth 

is retained. The permissible rate of phase modulation 
is larger the higher the pump power (n ~ ~). Exact 

expressions for the modes can be obtained in a pump 
field of the form 

A ( )-A exp[-2idlnch(TJ/'tp)] 
p TJ- po • 

ch(TJ/'tp) 
(43) 

Such a bell- shaped pulse with a phase modulation that 
slows down towards the edges of the pulse is apparently 
a good approximation of real PM pulses obtained in 
solid-state generators of picosecond pulses (seeC12J). 
Near the vertex of the pulse, the PM is given by 
({J = -idn 2/T~, and the quantity T~h introduced in (40) is 
connected w1th d by the relation d ~ T~- T~h· In this 
case the Stokes-wave mode takes the form 

As=exp J.-__!'.-1-id- ch- exp- 2}.-1-.:E.. , [( T )TJ]( TJ)-•-•• [z( 't)] 
. T, 'tp -rp L, T, 

(44) 
where.\= (n2- d2)112. 

If n :::o. [(1 + Tp/T2) 2 + 4d2]112/2, the exponential gain 
vanishes (it is seen that the PM increases the threshold 
pump intensity at which the exponential gain is retained 
at z > Lv)· Let us determine the laws of phase and fre
quency modulation of the Stokes wave. Introducing a 
real amplitude and a real phase, we have 

As= 1Aslexp(icp8), 
. dTj TJ 

q>g= ---dlnch-

and for the frequency we get 

oos = dcps = - _!._ (1 + th .2!_); 
dTj 'tp Tp 

Tp Tp 

d T) 
Lloos= --th-. 

Tp Tp 

It is of interest to compare the widths of the pump 
spectra ( 43) and of the phase- modulated stationary 
stokes mode. Calculation yields for the ratio of the 
pump and stokes spectrum widths 

Lloos/!!oop ~ A/d(4rt'n'- (4n; + 1)d']"'. (45) 
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5. CONCLUSION 

The results present a sufficiently complete picture 
of SRS in a pump field with rapid amplitude and phase 
modulation. The most important effect due to the joint 
action of molecular relaxation and normal dispersion of 
the medium is the effect of formation of stationary ex
ponentially growing Stokes modes6 >. This circumstance 
must be taken into account in the interpretation of ex
periments on forward SRS of picosecond pulses in crys
tals and liquids (at T R: 10-12 sec, a typical value for 
condensed media is Ev R~ 1-2 em, and the length of the 
scattering medium is usually noticeably larger). Com
paring (1b) and (10), we can easily verify that the growth 
increment of the intensity of a Stokes wave at z > Lv, 
under conditions favoring the appearance of modes, ex
ceeds the nonstationary growth increment attainable 
over the group length (we are considering the case 
n » 1, which is of greatest practical interest): 

G(v>O) 4[fotp:L,/2T,]''•zL,-' z 
G(v = 0) =' [l'o'tpL,/T,]''• ~ L, . 

The use of this circumstance makes it possible to de
velop effective Raman lasers for picosecond pulses, by 
making the pump and stokes pulses pass many times 
through the scattering medium in a traveling-wave 
resonator that ensures an optical path length z » Lv. 
The possibility of exciting exponentially-growing modes 
in the field of picosecond pulses makes it desirable to 
obtain laser mode locking in all cases when a high effi
ciency of the stimulated scattering is desired. Indeed, 
the ratio rJ of the growth increments of the first Stokes 
component in the field of a nanosecond pulse and a train 
of N picosecond pulses with the same total energy is 

T] ~ (2l',L,NTJTp)'h. 

Here Tis the duration of the nanosecond pulse. Typical 
values of ro Lv do not exceed 10-30; for liquids and 
crystals, on the other hand, NTdr R~ 10-3 and conse
quently ry R~ 10-1. The foregoing is apparently the reason 
for the very high efficiencies of stimulated Raman scat
tering attained in a field of picosecond pulses7 >[ 15J. The 
sharp decrease of the growth increment and its satura
tion in a dispersive medium, due to rapid PM of the 
pump are apparently the main causes of the uneven gain 
of SRS in a train of picosecond pulses (seeC3 ' 15J) and of 
the suppression of SRS in self-focusing beams. 

In estimates, when dealing with pulses with specified 
PM, the value of 0 0 in (23)-(25) can be set approxi
mately equal to the spectral width caused by the phase 
modulation. In a medium with a nonlinear retractive 
index (n = no + n21) the phase of the pump varies like 
cp = 2kll2I(t)z (seeC16J). It can be shown that in this case 

6There is a definite analogy between Stokes modes in SRS and station
ary modes in three-wave parametric amplification (compare with [13•141). 
It is important to emphasize, however, that stationary Stokes modes are 
formed also in SRS by fully-symmetricallocal oscillations (with arbitrary 
wave number), whereas in parametric amplification the modes are formed 
for propagating waves. In a certain sense, molecular oscillations are analo
gous to a wave with a group velocity that differs strongly from the pump 
velocity. 

7>we note that stabilization of the width of the Stokes spectrum, due, 
apparently, to formation of stationary modes, was observed in benzene by 
Nurminskil{171 • 

the characteristic length lph1, at which saturation of the 
gain sets in, is expressed in terms of the experimen
tally-observed width of the pump spectrum at the exit 
from a sample of length l by the formula lph 

= (2Lvl/T2Awz)112. As shown in[1aJ, the values of lph 

calculated from this formula do not exceed several 
tenths of a centimeter for typical experiments with 
strongly-focusing liquids. 

The competition between the effect of formation of 
stationary modes and the suppression of the SRS by the 
phase modulation apparently explains the results of the 
experimentsi:19J on excitation of SRS in calcite by pico
second pulses from a neodymium laser and its second 
harmonic. At double the frequency, the index of the 
phase modulation decreases, and this leads to a more 
effective excitation of the SRS in spite of the decrease 
in the peak power. 

The developed theory can be used to analyze the 
characteristics of higher Stokes and anti- Stokes com
ponents in nonstationary scattering. An interesting ques
tion is that of nonstationary scattering by polaritons. 
Application of the calculation procedure described here 
to this question (see A. A. Golger, Diploma Thesis, 
Physics Department, Moscow State University, 1970) 
has made it possible to establish that the width of the 
spectral line of infrared oscillations in the nonstation
ary regime is of the order of the corresponding width 
of the spontaneous line, independently of the width of the 
pump spectrum. We note, finally, that a natural next 
step in the development of a nonstationary SRS theory 
is its generalization to include the case of randomly
modulated pumping. Some results pertaining to Gaussian 
pumping are given in[2oJ. 
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