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The radiation emitted by an ultrarelativistic particle moving in matter along or across a magnetic field is investigated. The 
spectral distribution of the radiation intensity is determined for frequencies that can be treated classically. It is shown that in 
the case of motion along a strong magnetic field the spectral distribution of the radiation intensity depends nonlinearly on the 
time of motion of the particle in the matter. For particles moving perpendicular to a weak magnetic field the spectrum has 
a plateau that depends on the properties of the medium. 

RADIATION PRODUCED WHEN AN ELECTRON 
MOVES ALONG A MAGNETIC FIELD 

1. The question of the radiation of relativistic electrons 
in a magnetic field in vacuum has been considered by a 
number of workers[l-sJ. It is of interest to determine 
the character of the radiation when the charged particle 
moving in the magnetic field is simultaneously scat­
tered by the atoms of the medium. In this case one 
should assume, in general, that the particle enters the 
medium at an arbitrary angle to the magnetic-field 
direction. However, such an analysis and the resultant 
formulas are too complicated in the case of an arbi­
trary entrance angle, so that it is advisable to consider 
two limiting cases: (a) the particle enters the medium 
parallel the magnetic field, and (b) the particle moves 
perpendicular to the magnetic field. We start the 
analysis with the case when the particle moves along 
the magnetic field prior to entering the medium. 

Since the particle velocity was parallel to the mag­
netic field prior to entering the medium, the synchron­
tron radiation connected with the rotation of the mag­
netic field can appear only as a result of scattering of 
the particle by the atoms of the medium, and conse­
quently will be due to multiple scattering in the sub­
stance. The solution of the problem, for frequencies 
that are low compared with the particle energy 
( w « E), can be obtained in pure classical manner. In 
the limiting case of high energies of the emitted quanta 
and not too long times of particle motion in the medium, 
the spectral distribution of the irradiation intensity 
obeys the usual formula for the bremsstrahlung energy 
spectrumf4l. 

Multiple scattering in a medium is considered under 
the usual assumption that the mean-square angle of 
multiple scattering during the entire time of flight T 
of the particle through the medium is much smaller 
than unity r sJ : 

(6.') = E,'T I E'L ~ 1, (1.1) 

where E~ = 1700m2 , L = [4Z2noe 6 ln (191Z-113 )/m2r 1 is 
the cascade length unit[ eJ, n0 is the density of the atoms 
of the medium, and Z is the atomic number of the 
medium. The magnetic field is assumed sufficiently 
strong: 

(1.2) 
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Here T = (n0 at 1 is the time traversed by the particle 
in the medium between two collisions, and WH = eH/ E 
is the Larmor frequency. The physical meaning of the 
latter condition is obvious: during the time between 
two successive collisions the particles should execute 
many revolutions in the medium. Using the cross sec­
tion given in[7J for the scattering of relativistic parti­
cles in an external field, and choosing the screened 
Coulomb potential for the scattering center, we can 
rewrite the estimate (1.2) in the form 

(1.3) 

where a 0 is the Bohr radius. For electrons with en­
ergy E =lOrn = 5 MeV and for a medium density n0 

= 1018 cm-3 , the magnetic field should satisfy the con­
dition H » 300 Z4/ 3 Oe. 

Let us determine now the physical picture of the 
motion of the particle in a medium in a longitudinal 
magnetic field. Prior to the scattering, since H 11 v0 , 

the magnetic field does not affect the motion of the 
particle. As a result of a collision with the atoms of 
the medium, the particle acquires velocity components 
perpendicular to H, and moves in a magnetic field 
along a helix between collisions. Were there no mag­
netic field, the particle, after colliding with the scatter­
ing center and acquiring a velocity component v1 1 Vo, 
would move freely between the collisions and would 
traverse after a time t a distance r 1 ~ v1t relative to 
the trajectory of the initial motion. If we confine our­
selves to the customary assumption in the theory of 
multiple scattering, that the successive collisions are 
statistically independent, then ( vf(t}) ~ t (the mean 
value is taken over the positions of the scattering 
atoms), and the mean-squared perpendicular displace­
ment is 

(r.L'(t)) ~ t'. 

In a magnetic field the particle does not move freely 
between collisions, its trajectory is a helix, and if the 
condition (1.2) is satisfied the particle has no displace­
ment perpendicular to Vo between collisions. Only the 
collisions lead to a displacement in a direction perpen­
dicular to the unperturbed trajectory. Therefore, for 
large travel times, t > wJi, the means-squared per­
pendicular displacement should increase linearly: 

(r.L'(t)) ~ t. 
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In the case or radiation connected with the scatter­
ing in the medium, motion of the particle along a helix 
in the magnetic field between collisions alters the 
spectrum radically, as will be shown below. 

2. To obtain the spectral distribution of the energy 
radiated by a particle moving in a medium in a longi­
tudinal magnetic field, we can use expression (2) of the 
paper of Landau and Pomeranchuk (see, for example, [41): 

dl e'w dw JT Jr d exp[iw(t,- t,)] [ (v,g) (v,g) ] . 
=-- dt, t, I I v,v,- 2 smg. 

n o o r,- r~ g (2.1) 

Here 
v(-r) = v,(1- 1h0,') + v,9,, 

g = w(r,- r,), 

v,e, = 0, 

,, 

(2.2) 
(2.3) 

r,=r(t,), r,=r(t,), r,-r,=J1v(<)d,;, (2.4) 
'• 

er is the angle of multiple scattering in magnetic field 
after a time T. Formula (2.1) was derived under the 
assumption that the effective values of g are large 
compared with unity. In this problem, the essential 
time interval of the emission is determined both by the 
characteristic time of the bremsstrahlung[4J 

t, ~ E' I wm 2 , 

and by the characteristic time of the synchrotron 
radiation [7J 

(2.5) 

til~ m/Eitwn. (2.6) 

Consequently, if we consider frequencies such that 

wtH~wm!Eitwil';;!;>i, T.e. w';;!;>Eitwu/m (2.7) 

(J. is the angle between the direction of the magnetic 
field and the velocity), then the use of formula (2.1) is 
legitimate. We shall henceforth assume that the last 
inequality is satisfied. Thus, the region of frequencies 
under consideration is bounded by the inequalities 

(2.8) 

Using the smallness of er and taking (2.2)-(2.4) 
into account we can easily reduce the expression for 
the spectral intensity of the radiation to the form 

2 d T T 1 tt 2 

a1 = ~s at,J at,( [9,, 9,, + ( s 9,a,) 
n (t,- t,) 2 

0 0 t2 

- 9,, + 9,, s'' 9,d,;]) exp[iw(t,- t,)]sin(g). (2.9) 
t, - t, 1 t, - t,l ,, 

Just as in[4J, when averaging all the possible trajectories 
of the particle in the medium, the mean products are 
replaced by products of the means, and the mean of the 
sine function is replaced by the sine of the mean. 

3. For further calculation of the spectral density of 
the radiation intensity, it is necessary to substitute in 
(2.9) the classical trajectory of the motion. To find it, 
we start from the Lagrange equation for the motion of 
the particle in a magnetic field in a medium: 

dp/ dt = -VU[r(t)] + e[vH]. (3 .1) 

Here U( r) is the potential of the atoms of the medium, 
and can be chosen in the form of a sum over the indi-
vidual atoms : 

U(r)= _EU,(Ir-R.I); (3.2) 

Ra is the coordinate of the a-th atom. Assuming the 
particle energy to be sufficiently high, we can replace 
r(t) in U[r(t)] in the right-hand side of (3.1) by r 0(t) 
= vat and make in the left-hand side the substitution 

dp I dt = Edv I dt. (3.3) 

Further, expanding U(r) in a Fourier integral, taking 
into account the smallness of the angle of deviation of 
the particle in the field of the a-th center, i.e., q 11 « q1 , 
we obtain 

U(r) == U[r,(t)] = ,E 2n J d'q1. Uo(qJ.) 
a (3.4) 

X exp(- iqJ.R.J.)6(v0t- z.), 

where U0 ( q) is the Fourier component of the potential 
Uo( r ). The direction of motion of the particle (and of 
the magnetic field) is chosen as the z axis. Substitut­
ing (3.2), (3.3), and (3.4) in (3.1), writing out (3.1) in 
terms of its components, and solving this equation with 
initial conditions vx( 0) = vy ( 0) = 0, we can easily ob­
tain 

' d' 
Vx(t) = - J-zfcos[wH(t- t') J_E J d'ql.U,(qJ.) iq" 

' dt' 
X 2nll(vot'- z.)exp(- iq.LRaJ.) + Jesin[wn(t- t')] 

0 

X .E J d'q1. U, ( qJ.) iq,2n6 ( v0t' - za) exp (- iqJ.RaJ.), 
a 

t dt' 
v,(t)= -~ Ecos[wff(t-t')]LJ d'q1.U,(q1.)iq, 

0 

X 2n6(v0t'- z.)exp(- iqJ.Ra)­

' dt' 
- J 7 sin[wn(t-t')l,EJ d'q1.U,(q1.)iq" 

X 2nll ( v,t' - Za) exp (- iq1.R.1.). (3.5) 

With the aid of expressions (3,5) it is easy to calcu­
late the mean values over the positions of the atoms. 
We assume in the averaging that the medium is homo­
geneous in the mean and occupies the half-space from 
z = 0 to z = co, and is infinite along x and y. In the 
averaging they use the formula 

(,E exp(- iqR.)) = (2n)'ll(qJ.) J d~· (3.6) . 
X exp(- iq 11~)n,, 

and also the assumption that the positions of the atoms 
of the medium are not correlated with one another. 
Using (3.5) and (3.6), we easily obtain 

(9,,9,,) = (E,' I E'L) cos [ wH(t,- t,)] min (t,, t,), 

(9,') =E.',; I E'L, 

< (s' d ) ') 2E.'wn _, ( sin wnt ) 9, 'I" = t---- . 
0 E'L WH 

(3.7) 

At WH = 0, formulas (3. 7) go over, as expected, into 
the usual formulas of the theory of multiple scatter­
ing[4J. It follows from the last formula of (3. 7) that for 
times t > wfi the mean squared perpendicular dis­
placement of the particle increases linearly: 

< (J 9,d,; ) ') = 2E,'t/E'Lwn', 
0 
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which agrees with the qualitative arguments presented 
above. 

4. Substituting (3.7) in the expression (2.9) for the 
spectral density of the radiation intensity, and intro­
ducing new integration variables T = t2 and t 1 - t2 = t, 
we readily obtain 

dl = d!, + dl,; 

dl, = _ e'E.'~dw J dlTJ..'!!_[A (t- sinuJ8 t) 
nE L 0 0 t t Wu Wn 

_ 1- cos Wnt ]sin [ wm't E,'wt (·_!_ _ Wnt- sin wut ') 
twu' 2E' + E'L 4 1 t'wn' 

']; E,'wt (·~ _ 1- COSW 8 t )] . 
+ E'L 2 t'wn' ' 

(4.1) 

e'E.'wdw r r-• dt [ 
dl, =----S ,d, J- cos Wnt 

nE'L o o t 

+ 2(1-coswut) 2sinwut] . [ wm't 
Wn't' -~Sill 2E' 

+ E,'wt (!-.- wut-sinwnt) ,E.'wt (~- 1-cos<ont )] 
E'L 4 Wn't' + E~L 2 Wn 212 

(4.2) 
As is easily seen from (4.1) and (4.2), dl1 and dh de­
pend differently on the time of flight of the particle 
through the medium. In addition, putting WH = 0 (no 
magnetic field) we find that dh vanishes and dl 1 goes 
over into the formula describing bremsstrahlung in a 
medium, with allowance for multiple scatteringf4l. 

Expressions (4.1) and (4.2) cannot be integrated in 
general form, but if the time of motion in the r edium 
is such that ( e~) » m 2/E2, then the synchro1 :m­
radiation times 

(4.3) 

are significant, and the integrands of (4 .1) and (4 .2) 
should be expanded in powers of the small quantity 
wHtH « 1, while the upper limit of the integral with 
respect to t should be replaced by infinity. We then 
arrive at the following expressions for the spectral 
density of the radiation energy: 

dl, = e'E.'wdw s' dtJ~ dtsin[wm't + E.'()Jt2 + (9/)wwn't'] 
6nE'L o o 2E' 12E'L 24 ' 

(4.4) 

E.'wt' (0/)ww,/t'] 
+ 12E'L + 24 . (4.5) 

If we neglect the last term in the square brackets of 
(4.4), then we arrive immediately at the formula ob­
tained by Landau and Pomeranchuk[ 4l for the brems­
strahlung intensity in a medium, with allowance for 
multiple scattering. 

For the calculations that follow, it is convenient to 
change over in (4.4) and (4.5) from t to a new variable 

(4.6) 

It is easy to verify directly that the right-hand side of 
the inequality (2.8), which imposes the lower limit on 
the frequency of the quanta in question, implies satis­
faction of the condition 

(4.7) 

27T( eH) is the square of the multiple-scattering angle 
for one revolution in the magnetic field. The condition 
(4.7) enables us to discard the second terms in the 
argument of the sine function in (4.4) and (4.5). Now 
the expression (4.5) reduces to the derivative of the 
Airy function, and the energy can be written in the 
form 

e'E.'v'dw s' dt s~ . [ v'm'x x'] 
dl, = dxsm +- · (4 8) 

3nE'L o ((8,'))'~> o E'((8/))'h 3 ' · 

dl, = _ e'E.'vwudw s' r dr 
3n'I•E'L o ((8/))'1> 

X<D'('-m~' ~) 
V E'((8.'))'1• ' 

(4.9) 

l = w/ WH. Let us investigate the obtained expressions 
in the regions of high and low frequencies. For high 
frequencies 

w ?>wn(E/m)'((Or'))'h. (4.10) 

Using the asymptotic behavior of the Airy function at 
large values of the argument, we have 

d!, = e'E,'Tdw . 
3nm'L ' 

'E' ' d ' dJ - e ' v- ffiu (j) s 
2 - 3nm'L Td"C 

0 

(4 .11) 

xexp[ -y{ v~,<::)'l. f']. (4.12) 

Expression (4.11) represents the spectral density of the 
bremsstrahlung energyr 4l. It depends linearly on the 
time of flight of the particle in the medium, as it should. 

It is convenient to rewrite (4.12) in the form 

e'H'(Or')E'T 1 ' 
dl, = Jrdt· 

3m'w T' 
0 

X exp -- v' ~ T [ 2 ( . m' )';,] e'H'(8 ')E'T 
3 E'(U,')'I, 6m'w 

(4 .13) 

X exp [- ~ ( v' E'(~:')'~> ) •;,] . 

In this form, it coincides in structure with the spectral 
density of the intensity of synchrotron radiation of an 
ultrarelativistic particle at high frequencies, when the 
particle moves at an angle ( eT) 1/ 2 to the magnetic­
field direction. 

Thus, if the condition (4.10) is satisfied, the spec­
tral distribution of the radiation intensity breaks up 
into a sum of two terms describing the bremsstrahlung 
and the synchrotron radiation of a particle having a 
velocity that fluctuates randomly in the medium. The 
physical explanation of this fact is that these two 
mechanisms are not coherent when the condition (4.10) 
is satisfied, because the times of quantum emission by 
the bremsstrahlung and synchrotron-radiation mecha­
nisms satisfy the inequality te « tH, and therefore 
the intensities add up. The nonlinear dependence of the 
spectral density of the synchrotron-radiation intensity 
on the time is connected with the fact that the latter is 
proportional to the square of the velocity component 
perpendicular to the magnetic field, which in the case 
of multiple scattering is proportional to the time of 
flight of the particle in the medium. 
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We proceed to the low-frequency region. Let the 
frequency w be such that the following relation is 
satisfied 

(4.14) 

In this case we can omit the first terms of the square 
brackets in (4.8) and (4.9). The integration is then 
elementary and the result is 

dl __ r('j,)e'E,'y'dw T 
--''7-'::;:-;-=---:--:r:--:-:-:-.,.- ......., w2'sT'3H-2\ 

1 4..::J'1cE'L (~OT'))'h 
(4.15) 

d! = 3'1•r('/,)e'E;'ywHdw T' ~ w'hT'I•H'~>. 
2 8:rtE'L ( ( U.') )'1• 

(4 .16) 

It follows from (4.15) and (4.16) that the term connected 
with the bremsstrahlung decreases with increasing 
magnetic field intensity. The term describing the syn­
chrotron radiation increases with increasing magnetic 
field. In addition, the last term increases much more 
rapidly with time, in proportion to T413 • Finally, both 
(4.15) and (4.16) increase with increasing frequency. 
We notice also that the dependence of (4.16) on the fre­
quency and on the magnetic field intensity at low fre­
quencies agrees with the general theory. 

From a comparison of (4.12) and (4.16) we see that 
the maximum of the Si)ectrum of the synchrotron radia­
tion in a longitudinal magnetic field occurs at frequen-
cies 

(4 .17) 

In addition, it follows from (4.8) and (4.9) that with 
continuing motion of the particle in the medium the 
quanta emitted by it become harder. 

RADIATION OF AN ELECTRON MOVING PERPEN­
DICULAR TO THE MAGNETIC FIELD IN A MEDIUM 

5. We proceed to consider the spectral density of 
the radiation intensity of an ultrare·lati vis tic electron 
in a magnetic field in a medium, the initial velocity of 
the electron being perpendicular to the magnetic field. 
It is well known r 1- 31 that an ultrarelati vis tic electron 
moving in a constant magnetic field H perpendicular 
to the electron velocity radiates a quasicontinuous 
frequency spectrum with a maximum occurring at 

(5.1) 

A quantum-mechanical study of the radiation in a trans­
verse magnetic field has shownr2- 3l that if the condition 

Wo~E (5.2) 

is satisfied we can neglect both the quantum recoil pro­
duced when the photon is emitted, and the quantization 
of the electron motion, so that the radiation problem 
can be considered classically. We note that for motion 
in a transverse magnetic field in a medium, the colli­
sions of the electrons with the atoms of the medium 
have a twofold influence on the radiation spectrum. · 
First, the collision causes a "jump" of the center of 
the electron orbit, and in addition the electron acquires 
a fluctuating velocity component parallel to the mag­
netic field, leading, by virtue of the elasticity of the 
scattering by each atom, which we shall postulate be­
low, to a decrease of the velocity component in the 
plane of rotation, and consequently to a decrease of 
the radius of the circle along which the electron moves. 

Thus, motion in a magnetic field in the presence of 
scattering is along a fluctuating helix. Second, brems­
strahlung is produced when the electron collides with 
the atoms of the medium. To simplify the final results, 
we disregard this bremsstrahlung, but we note that it 
can be accounted for in elementary fashion. Here, just 
as in the first part of this paper, it is assumed that 
condition (1.1) is satisfied and that, in addition, the 
total time of motion satisfies the inequality 

T > 2n/ wH, 

i.e., the particle has time to execute at least one 
revolution in the magnetic field in the medium. 

(5.3) 

6. To find the spectral density of the synchrotron­
radiation intensity it is again convenient to use formula 
(2) of[4l (see formula (2.1)). Just as in the first part of 
the paper, it is easy to show that in order for the use 
of this formula to be valid, it is necessary to impose a 
lower bound on the considered radiation frequencies: 

(6.1) 

The condition (6.1) excludes from consideration only 
frequencies that are small compared with w0 , and there­
fore, in accordance with the statements made above, 
expression (2.1) allows us to consider the most signifi­
cant part of the synchrotron-radiation spectrum. 

It will be shown below that the influence of the multi­
ple scattering on the frequency spectrum of the syn­
chrotron radiation becomes manifest only in the effec­
tive range of emission angles [71: 

<PeN m/ E, (6.2) 

while the aforementioned "helical" motion of the parti­
cle does not influence the frequency spectrum of the 
radiation. Let us estimate the influence of multiple 
scattering on the quantum radiation in the effective 
region. The characteristic angles (of particle rotation 
along the circle) from which the radiation takes place 
are given by (6.2). Consequently, if the square of the 
multiple-scattering angle accumulated during the time 
of the radiation tH ~ m/wHE is comparable with or 
larger than '{J ~. then the multiple scattering has an 
effect on each individual radiation act: 

(6.3) 

7. For the subsequent calculation of the spectral 
radiation intensity it is necessary to know the classical 
trajectory of particle motion. To find it, we start from 
the classical equations of motion of the particle in a 
magnetic field in a medium, (3.1). If we note that the 
relation 

(7 .1) 
is satisfied for all reasonable values of the magnetic 
field intensity, then the presence of the magnetic field 
can be disregarded in the analysis of each individual 
scattering act, and consequently it can be assumed that 
the collision occurs instantaneously. Then, using (7 .1 ), 
we can write the equations of motion describing the 
scattering of an electron in a magnetic field by an 
individual center in the form* 

dpfdt = e[vHj, t < t", 

*[vH] =v X H. 
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dp / dt = e[v,H], t > t,: 
Vx(to-0) = VoCOS<jlo, Vx(t"+O) = Vo(1- 1f28,.') 

X COS ('l'x- {)"}, 

v,(t"- 0) = -Vo sin <p", v,(t" + 0) 
= -v,(1- 1f28,.,') sin ('I'"- ti")' 

({)a = WHta, Vz = Vo8za, 

Here ta is the instant of time at which the electron 
collides with a-th center, Ja is the angle of scattering 
of the electron in the plane of the orbit, e za is the 
angle of scattering along the magnetic field direction 
H II z, and the factor 1 - e~a/2 is due to the fact that 
the energy conservation law must be satisfied in 
elastic scattering. It is easy to verify that v2 = v~. 

The velocity of the electron at an arbitrary instant 
of time t in the presence of many scattering centers, 
can be written in the form 

Vx(t) =v,(1- 1l,8/(t))cos(wut-ti,,(t)), · 
v,(t) = -v0(1- 1l28,'(t)) sin (wul-tix,(t)), (7.2) 

v,(t) = v 08,(t), 

where Jxy< t) is the component of the multiple-scatter­
ing angle in the x, y plane, acquired by the particle 
within a time t. By virtue of the independence of the 
positions of the centers we have 

tixy(l) = ~ Hoxy, 

with each angle Jaxy taken in a direction perpendicu­
lar to the velocity at the instant of collision with the 
a-th center. Expressions (7 .2) should be expanded 
accurate to terms of second order of smallness in Jxy· 
It is more convenient, however, to carry out the ex­
pansion during a later stage. Integrating (7 .5) with re­
spect to the time, we obtain the formulas for the clas­
sical trajectory of the motion: 

' 
x(t) = Xo + J cos [w,/- flx0 (t')] Vo(1- '1,8/(t') )dt', 

' 
y (t) = Yo- S sin [ Wu!'- 0,0 (t')] Vo (1 - '1,0,' (t')) dt', 

0 

t 

z(t) = V0 f 8,(t')dt'. 

8" Substituting (7.3) in (2.1), carrying out the aver­
aging just as in the first part of the paper, we can 
easily obtain for the spectral density of the radiation 
intensity per unit time 

df e'ywHdW s~ . [ y 2 m 2 X 3 (8H 2 ) 1 
-=--- xdxsm --x+-+v-- . 

T n o 2E' 3 3 
(8.1) 

An interesting case is when 

(fJH')';J!>m/E, (8.2) 

for when the inequality (8 .2) is satisfied the multiple 
scattering has a strong effect on the radiation in the 
effective region (see also (6 .3 )). In the frequency 
region 

(y'm'I2E')'<iii;, 1/sy(S,/)<iii;, 1/s (8.3) 

the first and third terms in the square brackets can be 
emitted and as a result of integration we have 

_.!:!._ = - n-'l'e'ywH dw<D' (0) = 0,52 e''ll' (~) ( ~) 'h dw (8 .4) 
T m' E wH 

where <I>' ( 0) is the derivative of the Airy function. 
Formula (8.4) coincides with the results obtained for 
motion in vacuum cal. 

In the frequency region 

(y'm' I 2E')' <if, 1h <if, 1hy(fJ H') 

(8.1) reduces to the form 

dl I 1' = 3e'wHdw I 2n(OH'), 

(8.5) 

(8.6) 

i.e., the spectral density of the radiation intensity in 
the frequency region (8.5) flattens out into a plateau. 
Finally, in the frequency region 

'/,<if, '/,y(Bn') <if, (y'm'/2E')' (8. 7) 

the emission spectrum is given by the formula 

dl = e''H'(wlwu)'" (~ )'hexp[-2_v'(_!!l_)'] dw. 
T 4n'hm' E 3 E 

(8.8) 

Thus, as seen from (8.3)-(8.8), when the condition (8.2) 
is satisfied, the maximum of the spectral density of 
the radiation intensity in the medium shifts from the 
frequency region w0 ~ WH( E/m)3 into the frequency 
region w1 ~ 27wH/(( e~) )3 « wo. We note that the 
estimate (6.3) for elements with Z ~ 10 and for a 
medium density n0 ~ 1019 cm-3 leads to the inequality 
H;5100e. 

In conclusion, I am grateful to M. I. Ryazanov and 
N. P. Kalashnikov for interest in the work and for dis­
cussions, and to corresponding member of the USSR 
Academy of Sciences I. I. Gurevich for an interesting 
discussion of the results. 
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