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It is shown that for the stimulated scattering from the surface of a highly conducting medium, the theory that is linear in terms 
of the surface inclinations is not valid, owing to resonance with the surface electromagnetic modes. The linear theory leads 
to divergent results as the conductivity tends to infinity. Correct results can be obtained by solving the essentially nonlinear 
self-consistent problem of diffraction by a periodic surface. The initial surface takes on a periodic structure due to the effect 
of the incident wave and the resultant instability. A threshold minimum occurs at resonance when one of the diffracted spectra 
grazes along the surface. Hence, owing to the resonant character of the interaction, the threshold becomes much lower than 
that for scattering by the boundary of a transparent medium. The nonlinearity of the problem leads to the dependence, derived 
in the paper, of the gain and the threshold on the amplitude of the amplified wave. 

STIMULATED scatterin~: of electromagnetic waves 
from the surface of a highly conducting medium (for ex­
ample, a liquid metal) should possess a number of im­
portant features. Actually, it is known from diffraction 
theory that the amplitudes of grazing waves, scattered 
by an ideally conducting periodic surface, is anomal­
ously large1>. This is connected with the fact that un­
damped H waves are propagated along the boundary of 
an ideally conducting mediumPJ Therefore, resonance 
develops in diffraction by such a surface2 > when one of 
the scattered waves slides along it; the amplitude of 
this wave increases appreciably. 

The occurrence of the resonance increases also the 
reaction of the scattered and incident waves on the mo­
tion of the interface; the threshold of stimulated scat­
tering from surface waves (SSSW) is correspondingly 
decreased and becomes much less than in stimulated 
scattering from the boundary of a transparent med­
ium.[J-?] Close to resonance, the problem is essentially 
nonlinear even for small Inclinations of tne surface. 

1. AMPLITUDES OF THE: SCATTERED WAVES. 
RESONANCE 

The scattered waves a:re determined by the boundary 
conditions at the excited surface z = !;(r, t) 
= a cos (nt- q · r) (the z axis is orthogonal to the uriiiis­
turbed surface): 

'8, == £[n, i€,], (1.1) 

where n = ez- VI; is ~e out~rd normal, ~ the surface 
impedance (I~ I < 1), 8t and J'et are the tangential com­
ponents of the electric and magnetic fields which, be­
cause of the smallness of the inclination IV!; I « 1 we 
shall seek in the form of an expansion in plane waves: 3 > 

'lin the case considered by us, the surface becomes periodic because 
the incident electromagnetic wave induces a flexural wave '=a 
cos(Ot- q · r) as a result of the development of an instability. 

2)L. N. Deryugin was the first to point out the origin of surface reso­
nance in diffraction by a periodic conducting surfaceYl 

J) A similar problem on the dilffraction of a sound wave by a periodic 
surface was considered by Lysanov[8J (normal ihcidence, impedance equal 
to zero), and also by Urusovskii,[9J by whom the general situation was 
analyzed. In what follows, we shall follow the method proposed in[81. 
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(!) = Re [ (:) exp(- iwt + ikr + ik,z) 

Here E and H are the amplitudes of the incident plane 
wave, w and k = (kx, 0, kz) = k(sin 8, 0,- cos 8) are its 
frequency and wave vector; Em, Hm, km, Wm are the 
amplitudes, wave vectors and frequencies of the scat­
tered waves, r = (x, y, 0) is a vector lying in the plane 
of separation. By virtue of the laws of conservation of 
energy and impedance, 

Wm=w+mQ, k~" = k"·" + mq"·", m = 0, ±1, ±2,... (1.3) 

The normal components of the wave vectors are found 
from the dispersion laws w~/ c2 = k~z + k~x + k~Y' 
and since n << w, we have, in the nonrelativistic ap­
proximation, w~/c2 ~ w2/c2 = k2 and, consequently, 

km,=[k'-(k,.,'+k,y')J'i', Imkm,~O, Rekm,~O. (1.4) 

Limiting ourselves for simplicity to the case of plane 
geometry (the wave vector q = (q, 0, 0) of the surface 
wave lies in the plane of incidence (x, z)) and to 
H- polarization of the incident wave H = (0, H, 0), we 
reduce the boundary conditions (1.1), with account of 
(1.2), to the form4 > 

b~mimJm+t(Sm)am,m+l=Atfl, Z=0,±1,±2, ... , (1.5) 

where 
'A,=~'- 6, A,.,= - 1/2aqsine, 'A,= 0 for Jll ~ 2; 

Sm = ak(~m + ~,), ~,,(x, 9)= km, I k, 

( e) =" + "+ mx(sin9+ nx) 
an,m x, pn '=' ' 

~.+ ~' 

(1.6) 

•lit was proved in [SJ that a system of the type (1.5), in the case of a 
vanishing impedance and for normal incidence (0=0), can be solved by 
truncating it. Here, near resonance, the result depends on the relation 
between the small parameters (qa)2<1 and the dimensionless normal com­
ponent of the wave vector 13m of the sliding spectrum. In the case of a small 
but nonzero impedance~ three small parameters (qa)2, 1~1, if3ml appear near 
resonance and the solution of the system (1.5) strongly depends on the 
relations among these, although the possibility of truncation itself is as­
sociated only with the smallness of the inclination qa<e:l; see also[91. 

*[n, Ktl-= n X Xt. 
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K = q/k is the dimensionless wave number of the sur­
face wave; J is the Bessel function. 

As will be shown below, solution of (1.5) with accur­
acy up to the principal terms in the small inclinations 
of the surface (qa)z « 1 has the form 

Hm /II ~ (qa) lml [ (qa) 2 + 'Pm + 6]-' 

and it is impossible to obtain it with the help of ordinary 
perturbation theory, which leads to Hm/H ~ (qa)lml. 
Near resonance, when the no.rmal component of one of the 
the wave vectors of the scattered waves becomes very 
small (IBml = lkmz/kl « l(qa)z +~I), the amplitude of 
the sliding spectrum increases materially. Thus, as 
81-0, 

H,/H ~ qa[(qa)' + 6]-'. 

For very small inclinations (qa)z « I~ I the results of 
ordinary perturbation theory are valid and 

H,/H ~ qa/6. 

for in the case of inclinations that are large compared 
with the impedance, (qa)z » ~,we have 

H,jH ~ 1/qa. 

Inasmuch as we shall need in the following only the 
principal terms of the expansion of the fields in the 
small parameter (qa)z and corrections to them connec­
ted with the small parameter (qa)z/ I~ I in the case of 
small inclinations and with I~ 1/(qa)z in the case of large 
ones, it suffices to limit ourselves to the five central 
equations of the system (1. 5) (l = 0, ± 1, ± 2), leaving in 
them the amplitudes of the scattered spectra Hm up to 
second order inclusively (m = 0, ± 1, ± 2). In this case, 
we obtain the truncated system: 

• 
EXmimlm+r(sm)am,m+l =AI, l = 0, ±1, ±2, {1. 7) 

m=-2 

where Xzn = Hm/H are the dimensionless amplitudes of 
the scattered spectra. Without presenting the straight­
forward but cumbersome calculations, we write out only 
the final result. 

For small inclinations (qa/2)z « BoiB± 1 +~I, we have 

X,= (cos e- s)/(cus e + 6), (1.8) 

X =-i·ak cose [" _ 6 + mx(sinS+mx)] 'm= 1 (1 9) 
m cos9+6 ~''" (3 .. +6 ' ± · · 

The amplitudes of the spectra of second order are 
~(qa)z and in what follows they will not be needed. We 
note that Eqs. (1.8) and (1.9) are applicable both far 
from resonance, B± ~ 1 and also near resonance, for 
inclinations that ar~ small5 > in comparison with the im­
pedance, (qa/2)z « I~ I cos 8. It should be noted that to 
find the principal terms in the amplitudes Xo and x. 
under the condition 80 18±1 + ~I » (qa/2)z, it suffice-s to 
consider in place of (1.7) a set of three equations rela­
tive to these amplitudes. 

5l1f we use a scattering theory that is linear in the inclination qa ~ 1, 
then we get the expressions (1.8) and (1.9), and when the conductivity 
of the medium a--> oo (the impedance~--> 0) we get for the amplitude of 
the grazing specturm an expression that diverges at resonance, which de­
monstrates the inapplicability of the linear theory. The region of its ap­
plicability is determined not by the inequality qa ~ 1, but by the stronger 
inequality (qa/2)2 ~ 1~1 cos() ~ 1. 

For sufficiently large inclinations (qa/2) 2 

»I~ I cos 8, near resonance, when IB1I « I~ I« IB-1I. 
the amplitudes are 

X- p,-(3, 
o- f3o+f3• I 

X - 213' · {1 10) 2-(3.+(32 I o 

(32 ~ i[(1 +sinS) (3 +sin 9)]'1>, q ~ (±1- sin S)k. (1.11) 

Generally, Xm ~ (qa)lml-1 as 81 - 0, m = 0, ± 1, ±2, .... 
As will be shown below, the combination of fields 

H1{H0 +H) - HzH1 enters into the "radiation pressure," 
and, since H0 , Hz ~ H, H1 ~ H /qa for large inclinations, 
it can be expected that H1(Ho +H) - HzH1 ~ IHI 2/qa. 
But, substituting the fields H0 , H1, Hz from (1.10) in 
this expression, we can verify that H1(Ho + H) - HzH1 
= 0 in this approximation, i.e., the principal terms of 
the expansion of the fields make not contribution to the 
radiation pressure. In order to find the first nonvanish­
ing term in the pressure, it is necessary to find the 
subsequent terms in the expansion of the amplitudes of 
the scattered spectra, the ratio of which to the principal 
will be ~o[(qa?] + 0(1{h + W. In the case (qa/2)4 « 1~1 
cos 8 << (qa/2) 2 , account of corrections of the type 
0(1 ~I) for IB1I « I~ I, (qa/2)z and q ~ k(±1- sin 8) 
gives the nonvanishing result 

H(H +H)"-HH·=-Si(1±sin9)(3+sine) 6" IHI' 
' 

0 
' ' (1+sine)' (ka)' · 

(1.12) 
If (qa)4 » I~ I cos 8, then the most important correc­
tions ~ 0 [(qa)z] and consequently, H1{Ho +H) - HzH1 
~ qaiH 12 , i.e., of the same order as in the absence of 
resonance. By virtue of the relative smallness of the 
radiation pressure, this case represents no interest. 

To conclude this section, we note that 

X-.(x, e)= X,(-x, e)= X.(x, -e), 

which follows from the system (1.5) with account of 
a •. m (x, e)= a-n, -m ( -x, 8) =a-•. -m ('X, -e)= a •. m ( -x, -e). 

and 
f3-n(X, e)= (3.(-x, e)= f3n(X, -e). 

This circumstance allows us to limit our consideration 
to only one of the resonances of first order 81- 0, 
since the case 13-1 - 0 is easily obtained by means of 
the corresponding substitution (n-- n, 8 -- 8) in the 
final formulas. We shall not consider resonances of 
order higher than first, since it is not difficult to show 
that they do not lead to an increase in the reaction of the 
incident and scattered spectra on the motion of the 
boundary in comparison with the nonresonant situation. 

2. THE DISPERSION EQUATION FOR WAVES ON THE 
SURFACE IN THE PRESENCE OF AN ELECTRO­
MAGz.;.., riC FIELD 

The mechanical action of a strong electromagnetic 
wave on the motion of the interface is associated with 
the transfer of momentum from the field to the medium. 
The force acting on a unit of surface: 

(2.1) 
where 



266 A. V. KATS and V. V. MASLOV 

is the Maxwell stress tensor.6 > This force, which is 
equal to the momentum flux of the field through the sur­
face of the metal, was taken into account in the boun­
dary conditions for the equations of motion of the med­
ium,C10J and one can assume the force to be a surface 
one if the depth of the skin layer 0 ~ l ~ l/k is small in 
comparison with the penetration depth of the surface 
wave ~1/q ;;:: 1/k. Then the derivation of the dispersion 
equation of surface waves is completely analogous to 
the one given previously for transparent media (see[4J 
for a liquid, and[5 J for an isotropic solid), therefore, 
we give only the final result. 7> 

For capillary-gravitational waves on the surface of 
the liquid metal, 

iq'P lHl' O(q)= ±O,(q)--if(q)+---, (2.2) 
2pO,(q) 8:rt 

where S10(q) = (gq + Qlq3/p) 112 is the dispersion law of 
the surface wave; r(q) ~ q2 in the low-frequency region 
is its damping; 01, p, and g are the surface tension, 
liquid density, and acceleration due to gravity. The 
quantity Pin (2.2) is the dimensionless radiation pres­
sure at the frequency of the surface wave, defined by the 
equality 

(p, ).o = (F.),o = -iq~,oPIHI' IBn, (2.3) 

where Fn is the component of the force (2.1) normal to 
the surface8 >, !; n = a/2 is the Fourier component of 
the depression. ~n the case of a dielectric P ~ 1 ,c4 ' 5J 
while at resonance P ~ 1/ ~ . An explicit expression for 
Pis given below ((2.7), (2.9), (2.10)). The dispersion 
law for Rayleigh waves has the same form as in (2.2), 
except that S1 0(q) = cRq, where cR is the velocity of the 
Rayleigh wave, and there is a factor of the order of 
unity in front of the latter component. 

For a sufficiently high intensity of the incident 
radiation, I= ciHI 2/81T ~ I0 , an instability arises in the 
system, manifesting itself in the growth of the ampli­
tude of the depression with increment 

Q"(q}= q'IRePI I-r(q). (2.4) 
2pcQ,(q) 

The threshold intensity is 

l,(q)= 2pcQ, (q) r(q)l q'l Re Pj. (2.5) 

It is seen from (2.4), (2.5) that the threshold of SSSW 
depends essentially on the value of Re P. 

According to (2.1), (2.3) and (1.2), we get in the case 
of incidence of a plane H-polarized wave H = (0, H, 0): 

I HI' ~ k'- k,kno •n I 

(Pr ).o = ----g;- { .E [ k' ! - J._, (s.)X. 

+ k'- k.k •• ( ·)•+•J ( ')X,] k2 -z n+l Sn n 1 

6>We · note specially that all the calculations are carried out for an 
ideally conducting medium, and the finite conductivity is taken into ac­
count only in the resonance terms, where it leads to a finite (nonzero) 
width of the resonance and consequently to a finite value of the force at 
resonance. See also footnote 9 below. 

7l Although the medium is absorbing, one can show that in a number 
of cases it is legitimate to neglect thermal effects in the derivation of the 
dispersion equation (2.2). 

8lWe note that the force exerted on the surfuce by the electromagnetic 
wave also has tangential components, but they are small in proportion 
with the smallness of the impedance ~. 

For small inclinations (qa/2) 2 «:: I~ I cos(), and also 
far from resonance, in accord with the previous sec­
tion, Xn ~ ( qa) I nl. Consequently, to find the principal 
term in the radiation pressure, it suffices to limit our­
selves to the amplitudes X0 , ~1 , which give a contribu­
tion~ qa in (2.6). Using (1.8), (1.9), (2.3), and (2.6), we 
find P: 

P-21 cose .,'[ •efl·-fl-•' + X X ] (2 7) 
- cos6+5 COS X fl,+5-fl-•'+5'. • 

As is seen from (2.7), far from resonance, P ~ 1 and 
at resonance ( 181 1 .;:;: I~ I) the pressure P increases to a 
value ~ 1/l ~I » 1. 

Close to resonance (81 - 0, q = k(± 1- sin())) for 
large inclinations (qa/2) 2 » I~ I cos() we have Xm 
~ (qa)lml-1 and 

(Pr )qo=( I HI' I 16n) (1 + sin6)[X,(Xo' + 1)- X,X,']. (2.8) 

The calculation of Eqs. (2.8) has already been performed 
(see (1.12)). Thus, for (qa/2) 2 »I~ I cos() » (qa/2)4 , 

P=S(1±sin6)(3+sin6) 6' (2.9) 
(1+sin6)' (ka)'" 

In the case of very large inclinations (qa/2)4 » I~ I 
cos (), the pressure P ~ 1 in correspondence with the 
remark made in Sec. 1.). 

For dimensionless radiation pressure P, it is not 
difficult to find the interpolation formula which qualita­
tively describes the behavior of the function 
P(K, (), (qa) 2 , ~)and which leads to the correct results 
in the limiting cases considered: 

p =X { B(x) (fl, + 5). cos' e +(qa/2)'B, 

'- I fl, +51' cos' e + (qa/2)' 

_ B'(-x) (fl-• + 5) cos'S +(qa/2)'B,• }· (2.10) 
I fl-· +51' cos' e +(qa/2)' ' 

B(x)= 21 cose .,,[ 1+ (fl,'-s')cos'6] lfl,+slcose 
cos e + 6 X I fl, + sl cos e +(qa/2)' 

(qa/2)'fl,'(x+sin6) B ~ 1 (2 ll) 
2x[lfl,+slcos6+(qa/2)']' ' ' · 

It is seen from (2.10) that the SSSW threshold (2.5) 
reaches a minimum as a function of the wave number q 
of the excited surface wave when one of the scattered 
first order spectra grazes the surface, which corre­
sponds to the onset of resonance in the surface electro­
magnetic modesPJ Here the amplitude of the resonantly 
scattered spectrum 

H,, ~ qa[flm + S + (qa I 2)']-'H 

increases significantly. 9 > 

When ordinary perturbation theory ((qa/2) 2 

«:: I~ I cos 8) is valid, it is not difficult to obtain an ex­
pression for the dimensionless radiation pressure P 
for arbitrary linear polarization of the incident wave 
E = E(- sin cp cos (), cos cp,- sin .p sin()) and arbitrary 

9Yrhe width of the resonance is determined both by the original damp­
ing of the surface H mode - ~0 and by its scattering on the rough surfaces, 
which leads to an additional damping ~ (qai. We also note that the 
considered resonance is analogous to scattering from a quasistationary 
level!lll (cf. (1.8) and (1.9) with the Breit-Wigner formula). 
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orientation of the wave vector q = q( cos 1/J, sin 1/!, 0): 

[ B-··- B· ( 1 P = - 2 cos' 8 + x 
x ~-·· + s' (2. 7') 

---1- )(sin<p cos ljl- cos <psin ljl cos 8)']. 
B·+s 

Here10 ) q; = cos-1(Ey/E), 1/! = tan- 1(qy/ qx), 0 s q; s JT/2. 
By comparing Eqs. (2.7) and (2.7'), we can establish the 
fact that consideration of the. general case leads only to 
the appearance in the resonance components of a factor 
of the order unity, which depends on the angles q; and 1/J. 
This factor goes to zero and, consequently, the reson­
ance disappears in this case when waves that are 
H-polarized in the scattering plane are missing from 
the scattered waves. 

We shall not give the expressions for the amplitudes 
of the scattered spectra in the general case of small 
inclinations, since they are easily obtained from the 
corresponding formulas of the work of Gavrikov et alPJ 
by means of the limit transition E- ioo. 

The dimensionless radiation pressure P ~ 1 far 
from resonance (the same as in scattering by a dielec­
tric[4'5J) and at resonance increases to a value P ~ 1/~ 
for (qa/2) 2 « I~ I cos() and P ~ I~ l/(qa)4 for (qa/2)4 
« I~ I cos() « (qa/2) 2 • Consequently, the increment 
decreases with increase in the amplitude of the ampli­
fied surface wave (the threshold increases, see the 
drawing); the minimum of the SSSW threshold Io 
~ 2 pc nor 1 ~ 1 /q2 is reached for small inclinations 
(qa/2) 2 « I~ I cos e .11 ) The expression for the thres­
hold close to resonance is materially simplified. Thus, 
for 18_1 1 » lthl and K/IBt +~I » 8~ li3t- !3~1/K, we need 
keep in (2.7) only the first component and 

I,= pcr(q)Q,(q) I [l,+s -~··~· (~•+sl' .,. (2.12) 
q'lxl ~. Re(B• + s) 

The minimum value of the threshold corresponds to such 
wave numbers q = Kk for which 81(K, 8) =- i Im ~ and 
K = ± 1- sine ± (lm 0 2/2; if Im ~ < 0, and is equal to 

I,= pcr(q)Q:(q) I ~. + s !'Res. (2.13) 
lxl q- Bo 

Formula (2.13) is valid for angles of incidence not very 
close to 0 and JT/2 (normal and grazing incidence): 
e » (Im U2)2 and (JT/2- ()) 2 » (Im 0 2/2. As is seen 
from (2.13), the SSSW threshold depends weakly on the 
angle of incidence for mean values of e ~ 1, while the 
threshold, as a function of the angle of incidence, 
reaches a minimum for grazing incidence in the case 
of scattering on capillary waves and is close to normal 
incidence in the other cases (scattering from Rayleigh 
waves at low T « Tn and high T » Tn (Tn is the 
Debye temperature) and from gravitational waves). It 
must be noted that for normal incidence, the threshold 
goes to infinity because of the vanishing of Re P, as fol­
lows from (2.7) in the case of small inclinations. 12 ) 

10The factors cos 0/(cos II+~), which are of the order of unity far from 
grazing incidence, are omitted in (2. 7'). 

ll We note that for thermal fluctuations, the inequality ( qa/2)2 <I gicos 
0 is virtually always satisfied (cf5l). 

12)Starting out from the expression (2.6) and the relations 
/3,.=/3 • .X.=X-n, we can show that Re P=O in the case of normal 
incidence for arbitrary relation between the inclination qa and the imped­
ance f 

Schematic dependence of SSSW 
threshold I0 and of the growth in­
crement n" + [' on the amplitude 
of the amplified surface wave. 

id' (qa}" 

The previous analysis pertained to the instability 
threshold for SSSW. As was remarked earlier,CSJ, it 
will correspond to the threshold of appearance of SSSW 
in the experiment only for sufficiently large effective 
interaction distances R (for example, R is the dimension 
of the irradiated region) and long times Ti of the incident 
radiation: 

(2.14) 

where N ~ 10, v r = ano/aq. If (2.14) is not satisfied, 
then the threshota of observation of SSSW exceeds the 
instability threshold: 

(2.15) 

Estimates of the SSSW threshold on the surface of a 
highly conducting medium show that in a number of 
cases this effect can evidently be observed experimen­
tally. The situation is seen to be especially favorable 
in the UHF range. Thus, in the case of scattering by 
gravitational waves on surfaces of liquid metals, Re ~ 
~ 10-4 and fork"" 2 cm-1 the threshold of instability is 
10 ~ 1 W/cm2 , while the threshold of observation (2.15) 
for R :<: 10 em, Tr :<: 1 sec is of the order of 100 W/cm2 • 

In scattering on Rayleigh waves at low temperatures 
T << Tn under conditions of the anomalous skin effect, 
the threshold of instability is also small. We note that 
the possibilities of observation of stimulated scattering 
are limited by heating of the medium from absorption. 
Effects associated with local heating of the medium, 
which are especially important at low temperatures, 
can make difficult the observation of SSSW. However, 
estimates which we shall not give because of insufficient 
space show that long duration pulses are necessary to 
assure heat transfer. It should also be taken into ac­
count that the SSSW threshold depends weakly on the 
angle of incidence and that the fraction of absorbed 
power is materially reduced upon increase in the angle 
of incidence, since the reflection coefficient is increased 
in this case. Consequently, in the transition to grazing 
angles of incidence, the heat release decreases without 
increase in the SSSW threshold. 
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