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The hypothesis is advanced that the observable time-irreversibility (and the violation of CP-invariance) is also related to 
noninvariance with respect to time-translations, leading to energy nonconservation effects. This assumption is realized in a 
scheme with geometrized electromagnetic field which was proposed previously for the interpretation of CP-noninvariance. 
Several consequences are discussed, and it is shown that for values of the fundamental parameter equal to I:::::: 10- 17 em the 
scheme does not lead to any contradictions. 

1. INTRODUCTION 

THE problem of CP-nonconservation which appeared 
in 1964 together with the discovery of the two-pion decay 
of the long-lived neutral K meson[lJ, has remained un
solved up to this time, and raised a series of fundamen
tal questions for physics. The most important of these 
is related to the properties of space-time. Indeed, the 
hypothesis of CP-invariance[2J was introduced, essen
tially, on the basis of geometric considerations. The 
most consistent motivation was given by WignerC 3J, 
which, in brief, boils down to the following. From the 
properties of space-time (the pseudoeuclidean 
Minkowski space) it follows that the operation P of re
flection of the space coordinates commutes with the 
time- translation .&r 

[1,, P] =0. 

To the operation At corresponds the total Hamiltonian 
of the system, consequently, the equation means that 
there must exist a conserved operator, corresponding 
to the spatial reflection :P. After the discovery of parity 
nonconservation it became clear that the parity operator 
P is not suitable for this purpose, and it was proposed 
to consider that to the reflection of space corresponds 
the product of the operators P and the operator C, des
cribing charge conjugation, i.e., the operator CP. At 
present there are no other possibilities1 >. The noncon
servation of CP shows that there must be some flaw in 
the reasoning or in the assumptions. These arguments 
have led to a search for the explanation of violation of 
CP-invariance within the framework of a geometry 
differing from the usual one. In particular a geometric 
interpretation of CP-violation was proposecP•6J, based 
on the introduction of a torsion of space in the presence 
of an electromagnetic field. A modification of the geom
etry leads to the appearance of new forces and interac
tions which violate CP invariance, as well as the in var
iance with respect to time- reversal T. 

Obviously, a modification of the geometry is a suffi
ciently radical step, and its consequences are not limi
ted to the violation of CP- and T-invariance. In particu
lar, for particles moving in an electromagnetic field, 
there will appear, in general, a nonconservation of 

!)We do not discuss here the hypothesis of existence of a "mirror" 
world, which has been discussed critically, e.g., in the paper by Kobzarev, 
Okun', and Pomeranchuk[4l. 

237 

energy. This is at a first glance a rather unpleasant 
feature, but in a geometric scheme is not at all unex
pected. Indeed, from a theoretical point of view, the 
conservation of energy is a consequence of the temporal 
homogeneity of Minkowski space. On the other hand, as 
already mentioned, the conservation of CP-invariance 
also follows from the properties of Minkowski space, 
moreover, with the same degree of certainty (i.e., with 
complete rigor) as the conservation of energy. Such 
considerations allow us to express the hypothesis that 
at the same level as CP-violation manifests itself, one 
can expect a violation of energy conservation. As an 
analogy one should remember that the time- irreversi
bility of a statistical nature is always accompanied by a 
dissipation of energy. 

The problem of finding conserved quantities in geom
etric theories, e.g., in general relativity, always pre
sents certain difficulties. It is possible that in the 
model under discussion, although the usual energy is 
not conserved, there is another conserved quantity, 
which generalizes the energy concept, but that so far 
we have been unable to construct this quantity. In the 
present paper we discuss possible effects of energy non
conservation2> in strong electromagnetic fields. It turns 
out that such effects are small and therefore the model 
we discuss does not contradict the accumulated evidence 
on the high degree of energy conservation observed 
under laboratory conditions, as well as in astrophysical 
observations. We give some estimates below, but start 
with the fundamental assumptions. 

2. ENERGY NONCONSERVATION IN A SCHEME WITH 
GEOMETRIZED ELECTROMAGNETIC FIELD 

We first list the necessary expressions from[ 6J 
and show that the nonconservation of energy in electro
magnetic fields indeed occurs in the case under con
side ration. 

A scheme with geometrization of the electromagnetic 
field was proposedC5 ' 6J in order to explain the violation 
of CP- invariance and its basic idea consisted in the fol
lowing: the affine connection coefficients Lfk 

(Christoffel symbols) are determined not only by the 
gravitational field (i.e., by the metric tensor gij), but 

2>The problem of nonconservation of energy has been posed before. 
From different points of view this problem was considered by various 
authors f::f., e.g.,r7•81). 
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also by the electromagneticc field Eij· The expression 
for these coefficients is uniquely determined, and for 
the case of the absence of a gravitational field (gij = oij) 
has the form (in Cartesian coordinates) 

where 

and F ml is a tensor satisfying the condition 

(B: + F~;) (II; +F;:) = Bt, 

(1) 

(2) 

and thus having six independent components. The tensor 
F mn can be related to the electromagnetic field in the 
following manner 

(3) 

Condition (2) allows us to eonstruct the tensor com
pletely in terms of its anti symmetric part (3) ( cf.cs,sJ ). 
The definition (3) contains a new constant lo of dimension 
length, which determines the degree to which the geom
etry is modified in the presence of an electromagnetic 
field (in Eq. (3) e is the absolute value of the electronic 
charge). 

It is clear that the value of lo and the sign in Eq. (3) 
can only be determined experimentally, however, one 
can draw some conclusions on the possible magnitude 
of Zo by correspondence with the existing models for 
CP-violation. As was shown in the previous papers[s,sJ, 
the geometrization (1) of the electromagnetic field leads 
to the appearance of CP- noninvariant interactions of 
particles with the electromagnetic field, with the coeffi
cient l~/e playing the role of coupling constant. As is 
well known, in order to explain the fundamental effect
the decay KL- 27T-two models have been proposed 
which are closely related to the electromagnetic field: 
the electromagnetic CP-violationC 9J and the weak-elec
tromagnetic version of CP-violation[lO,uJ. In the first 
case the order of magnitude of l 0 is estimated from the 
correspondence (in units of ti = c = 1) 

e/m' ~ l,'/e, l, ~ efm ~ 10-"-10-"cm, (4) 
where m is some characteristic mass. For the case of 
the weak-electromagnetic violation 

eG ~ l,' I e, l, ~ eGV• ~ 10-"- 10-10 em, ( 5) 
where G is the weak interaction constant. 

It is to be understood that the expressions (4) and (5) 
give only possible values of the order of magnitude of lo 
for the corresponding cases. As regards the electro
magnetic CP-violation, thEl extremely low experimental 
value of the neutron electric dipole moment 
(dn :S 10-23 e-cm) leads to serious contradictions, so 
that with good likelihood this version is ruled out ex
perimentally. The weak-electromagnetic version does 
not contradict any experimental facts. In the sequel we 
shall return to the problem of possible values of lo from 
another point of view, and now we turn directly to the 
problem of energy nonconservation. 

It is natural to assume[sJ, and one usually does, that 
in the modified geometry the motion of a test body not 
acted upon by external forces, including the usual elec
tromagnetic Lorentz forcE•, occurs along a geodesic line 
of the space, i.e., the equa~tions of motion have the form 

d'x , dx; dx• 
-=L;>---0· 
ds' dsds-' 

(6) 

where sis the proper time. (In the presence of external 
forces, the appropriate expressions have to be substitu
ted into the right-hand side in place of zero.) Using the 
explicit expression of the affine connection (Christoffel 
symbols) in terms of the electromagnetic field, given by 
(1) and (3), and retaining only the first order terms in 
l~/e, we obtain 

d'x' l/ BE;~ dxl ax• 
-±----=0 

ds' e 8x' ds ds · 
(7) 

In this paper we shall consider only the nontelativistic 
case, and therefore we write the nonrelativistic expres
sion for the additional force appearing due to the affine 
connection 

F = + m:lo' Co~ +(vV)E+ [: 88~] + [: , (vV)H ]}. (8}* 

The equation (7) differs from those usual in mechan
ics, by being non-lagrangian, i.e. it cannot be obtained 
by varying a Lagrangian. This already implies that, at 
least in the usual acceptance, there are no conservation 
laws in this model. One can convince oneself explicitly 
of the nonconservation of energy. Indeed, the work of the 
force (8) is 

dT mel,' { BE } A=-=+-- v-+(vV)(Ev) 
dt e 8t ' 

(9) 

where Tis the kinetic energy of the body. For the non
conservation of energy the important term is the second 
term in Eq. (9). The first term in (8) or in (9) has ac
tually a potential character, and can therefore not lead 
to energy nonconservation. Even simpler: the first term 
in (8) can be obtained from the Lagrangian ± mclovE /e. 
It is impossible to find an appropriate Lagrangian for 
the second term, it has an explicitly non-potential form, 
and leads to energy nonconservation, as we shall show 
below in simple examples. 

Thus, the term which is most important for us has 
~fu~ . 

mclo' BE, 
A r = +~e-. - v,vl Bx; , t, j = 1, 2, 3. (10) 

For the purpose of illustration, let us first consider the 
simplest example. Assume that a body of mass M ro
tates with angular velocity w at a distance R around the 
charge Q. Then the rate of change of the energy, d 0 /dt 
is 

d$ _ M clo'Qro' 
-=+ (11) 

dt eR 

A second example which we consider here is a classical 
ideal gas of equally charged particles (the charge is ~e, 
where ~ = ± 1). In this case the change of energy of each 
individual particle is given by Eq. (10), which leads to 
the following value for the unit volume of the gas: 

d$ mclo' J BE, , , -· -=+~- v,v;-.p(v)dv, 
dt e 8x' 

(12) 

where p(v2) is the Maxwell velocity distribution 

p(v') = n(m/2nkT)'1•exp(-mv'/2kT), (13) 

(n, T are respectively the density and temperature of the 
gas). Integrating in (12), we obtain 

S BE, ( ')d' kT v,vra:;;;- p v v =--;;;- n divE. (14) 
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Substituting (14) into (12) and remembering that divE 
= 41Tp = 41T~en we obtain 

d8 - = + 1;/mcl,'"!'kT. 
dt 

(15) 

We thus find that a gas consisting of equally charged 
particles either heats up or cools down by itself. Thus, 
if the upper sign holds in (10) the gas will heat up. In 
nature one does not find a gas made up of particles of 
one sign of charge only, since it is explicitly unstable. 
If we consider a gas containing an equal number of posi
tive and negative particles, i.e., a neutral plasma, the 
effect (15) disappears, at least to first order in l~, since 
the mean charge density vanishes. We consider this 
effect in more detail in the next section, and show that 
in the next order in l~ an effect appears nevertheless. 

3. ENERGY PRODUCTION IN A HOT NEUTRAL 
PLASMA 

Consider a fully ionized plasma consisting of elec
trons and protons with equal average density n, at a 
temperature T. As an example, take the Sun where 
n ~ 1024 cm-3 , the average temperature is 107°K. It is 
easy to see that under such conditions the plasma is 
fully ionized, and let us furthermore assume that a 
classical description is acceptable. Consider first the 
change in energy of the electronic and ionic components 
separately. For the electrons, we obtain as in the pre
ceding section 

~' =+4ncl,'kT,n,(np-n,+ ;\1V)' (16) 

where Te is the electron temperature. The last factor 
in (16) requires some explanations. It determines the 
charge density p = e(n - ne + 1/L:> V). Here we have 
chosen a volume L:> V where the electron and proton den
sities can differ from the mean density, and the last 
term appears due to the fact that each electron is in the 
field of all the protons inside that volume, as well as in 
the field of all the electrons except itself. 

It is necessary to perform an averaging in the ex
pression (16), namely, 

rt:J!; V = n /!; V; n,(np- n,) = l!n,(:/lnp- lln,) = -£,. 

Thus, in place of (16) we obtain 

a;gd ' = + 4ncl,'kT,n (-1--~) . ( 1 7) 
t l!V n 

We shall return below to the choice of the volume L:> V, 
and now we write the expression for the corresponding 
rate of change of the energy of the protons (Tp is the 
protonic temperature) 

dBP =±4ncl,'kTvn(-1--_k). (18) 
dt 1'1 V n 

If the electron and proton temperatures are identical, 
the corresponding fluctuations are also equal, ~ e = ~ P' 

and consequently the urn of (17) and (18) yields zero, 
i.e., the total energy remains unchanged. At a first 
glance the equality of the temperatures seems compul
sory, since we assume thermal equilibrium in the sys
tem. However, if we turn again to a comparison of Eqs. 
(17) and (18) we see that owing to the different signs in 
these expressions the temperature of one of the com
ponents increases, and that of the other, decreases. Of 

course, the electron-proton collisions will tend to 
equalize the temperatures, and as a result of this an 
equilibrium temperature difference will establish itself, 
difference which can be determined from a known ex
pression from plasma kinetic theory (cf., e.g., the book 
by Shkarofsky et al.,c 12J, p. 239) 

aT, = _ 32n'hne'(T,- T v)lnA (19) 
at 3mlff(2kT,,fM + 2kTcfm)'l, ' 

where A = m 112kT/(67Tn) 112en and m and Mare respec
tively the electron and proton masses. It follows from 
(17) 

T,-Tv=+ cl,'TM(2nkT)'h (-1 __ j_) 
4nne'm'!, InA !; V n · 

In this formula the temperature difference has been 
neglected in the right-hand side, since this leads to 
higher-order corrections. 

(20) 

We can now use the expression (20) to estimate the 
changes in energy. In order to simplify the expressions 
we assume that the fluctuations of the electron and pro
ton densities are equal3 >: ~e = ~p· Thus we obtain from 
(17), (18) and (20) 

a;g d . ( 1 s) 
dt=dt(0,+0v)=+4ncl,'kn nV --;;: (T,-Tp) 

= (2n)'l•(clo')'M(kT)'h (-1 __ __l)'. 
e'm'hlnA i'lV n 

(21) 

Thus, independently of the sign in the fundamental 
equation, there will be energy production in a neutral 
plasma. The energy increase per unit time and unit vol
ume is given by Eq. (21). However, there is still an in
determinacy in this formula, related to the choice of the 
volume element L:> V. The simplest considerations lead 
to the following determination of this volume element in 
terms of the Debye radius4 > 

rD = (kT /4nne') '''· 

Indeed, if one considers a small spherical volume of 
radius r, it is known that as long as r << rn the fluctua
tions are determined by the usual statistical expression 
~ = n/L:> V. For r > rD the screening suppresses the 
fluctuations by a factor of (rn/r) 2 • Based on these con
siderations, we select the following expression for the 
density fluctuations: 

{ n/!; V, 
£-

- (n/l!V)(rD/r)', 
r<rD, 

r >rD. 

Then the expression entering (21) has the form 

1 s { O, 
----= 3 rD ' 

l!V n w-(1-(-;:) ), 
r < rn, 

(22) 

(23) 

The function (23) has a maximum at r = (5/3)rn and it 
is natural to select just this value, since it yields the 
largest energy production. Then (21) gets replaced by 

d8 243l'2(cl,')'M(kT)''' -'[ m'l•kT ] (24) 
dt = 6250n'he'rD'm'f, In (6nn) '/,eli · 

It should be remarked that the numerical coefficient 

3lln view of the temperature difference, this is not exactly so, however, 
taking into account the inequality of the fluctuations does not change the 
result significantly. 

•>This is valid as long as r0 does not become smaller than the Bohr 
radius. 
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in Eq. (24) is not exact. Thus, smoothing the approxi
mation (22) for the fluctuations leads to a change of this 
coefficient. We have already remarked that taking into 
account the difference in fluctuations of the proton and 
electron densities will also affect the magnitude of the 
coefficient. Therefore the expression (24) should be 
considered as an estimate of the order of magnitude of 
the effect. 

The expression (24) contains a relatively strong de
pendence on the density -n2 • However; for very large 
densities, when l"J) becomes smaller than the Bohr 
radius rB, the density-dependence disappears, and rB 
enters the formula effectively in place of rD. There
fore for stars, i.e. for plasma formations with a mass 
of the order of a solar mass and temperature 
107-109 o K, a maximal effect is obtained for 
n ~ 1025-1026• Choosing the Sun as an example, we 
obtain the following limitation on the length Zo 

l, ~ 0.1i ·10-" em (25) 

This estimate does not contradict the value (5), which is 
necessary in order to explain CP-violation in the weak
electromagnetic model, but is so close to it that energy 
nonconservation effects in the Sun could manifest them
selves. It is the place here to call attention to the indi
cations that there seems to be a contradiction in the 
energy balance of the Sun related to the rather low neu
trino luminosity of this stari:13J. The mechanism under 
consideration can also be used in order to explain the 
anomalously large luminosities of JuP.iter and Saturn, 
which according to the me·asurementsr14J emit 2.5 times 
more energy than they reeeive from the Sun. It does not 
seem particularly meaningful to apply the expression 
(24) to quasars and galactic nuclei, where there are 
also difficulties with the e'xplanation of the energy bal
ance (cf. e.g.,(i5 •16J) (moreover (24) yields a small 
effect in this case), since nonstationary processes play, 
possibly, an important role in these objects, and we 
have not taken into account such processes. In one way 
or another, the astrophys!Lcal data so far do not contra
dict the model under discussion for a length Zo of the 
order (5), (25). 

4. SOME POSSIBILITIES FOR EXPERIMENTAL 
VERIFICATION 

The effects in a neutral plasma which we discussed 
in the preceding section are probably unobservable 
under laboratory conditions, in view of their smallness. 
Here we list some examples which are possibly more 
convenient for verification. Let us consider an electron 
gas without an admixture of positively charged particles. 
Assume that by means of a method unknown to the au
thor it was possible to loealize in a volume the electron 
gas at equilibrium at a temperature T and density n. 
Making use of the expression (10) for the increase (or 
decrease) of the energy of one particle per unit time 
and of the known equations of the theory of Fermi gases, 
we find that the change of the energy per unit volume and 
unit time is given by the !tollowing integral 

dE _ 2mcl,' s aE, d' F{1 F} dt- =F ---;;;-;-· v,VJ iJx; p - ' 

[ ( p• t) ]-' F= exp ---- +1 , 
2rnkT kT 

(26) 

where l: is the Fermi limit of the energy. The last 
bracket requires some explanations. It gives the rela
tive number of unoccupied levels for the appropriate 
energy. Since, in view of the identity of the electrons 
and the Pauli principle, transitions are only possible 
onto unoccupied levels, the presence of this factor is 
absolutely necessary. Effecting the integration over the 
angles and an obvious change of variables, we obtain 

a ==F Bncl,' divE j e"(x+\JkT)'I•dx (2mkT)'I•kT. (27) 
dt 3h'e -t/<r ( e• + 1)' · 

Noting that div E =- 47Ten, and the relation between the 
integral and the total particle number 

(2mkT)''•38:. J e'(x+\JkT)'I•dx =n, 
-t,i>T (e" + 1)' 

we obtain, finally 
a 
-;It = ± 4ncl,'n'kT. (28) 

We see that the result coincides exactly with the 
classical case (15). In our view this result is not devoid 
of interest, and shows that in the estimation of the en
ergy nonconservation one may neglect the quantum cor
rections, at least in lowest order in Z~. s> 

It is also interesting to follow the change of tem
perature with time, neglecting the energy losses due to 
radiation, heat conduction, etc. Making use of known 
formulas we obtain, for kT « i; 

d$ 1 , k'T dT _ h' ( 3n )"' 2 
dt = 2n n-t-dt t- 2m 8n'" · ( 9) 

It follows from (29) and (28) that 

T = T, ± 8cl,'ntt Ink. (30) 

Thus, the characteristic time, over which there occurs 
a significant change in temperature, is 

"t = nkT, I Bcl,'n~. (31) 

In order to estimate the magnitude of this time we 
select a large density, n = 1023 em-\ of the order of the 
electron density in a metal, and the temperature T0 

= 103 °K; for Zo we pick the value (25). Then 

"'= 5.6·10-' sec. 

For smaller densities this time is, of course, larger. 
In one way or another, if one succeeds experimentally 
to create a sufficiently dense electron gas, the effects 
predicted here are susceptible to verification. 

One can consider yet another example. Imagine a 
body, e.g., a hollow metallic sphere of radius R, in 
equilibrium with black- body radiation at temperature 
T0 • s> Placing a charge Q on the sphere will produce a 
nonzero charge distribution, and owing to energy non
conservation the temperature of the body will change 
according to the equation 

dT Q n'k'R' 
4nR'.Mnk- = =F 4ncl,'-2nkT +--(To'- T'} 

dt e 151i'c' · 
(32) 

After some time the system attains an equilibrium state 
(dT /dt = 0), with the temperature differing from To. For 
t:. T = T- To, assuming t:. T << To, we obtain 

5>This circumstance was considered in the astrophysical estimates. 
6>E.g., the sphere is placed in a thermostat, and one may neglect heat 

conduction and other losses. 
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~= + 30l,'n (~)'_Q_= +0,6·10-'-Q-. (33) 
T, ne k R'T,' R'T," 

Here we have assumed n = 1023 • Noting that Q/R2 is the 
field strength E of the electric field at the surface of 
the sphere, and choosing for example E = 103 e.s.u. 
(i.e., 3 x 105 V/cm), we obtain that for a temperature of 
several degrees, the temperature difference may be 
significant. One should note the time over which equili
brium establishes itself. It follows from (33) that the 
characteristic time is 

• = 3eR':'1 I 2cl,'Q. (34) 

Thus, the experimental verification of the proposed 
scheme seems possible, although the corresponding ex
periments are relatively difficult and delicate. 

5. CONCLUSION 

The meaning of the reasonings which have led us to 
the hypothesis of energy nonconservation consists in a 
connection between time-irreversibility (violation of 
T-invariance) and noninvariance with respect to time
translations (nonconservation of energy). To clarify 
whether this is indeed so seems a very important prob
lem, and therefore the corresponding experiments, 
including the astrophysical ones, are rather desirable. 

One should remark that an application of this scheme 
to essentially quantum systems (nuclei, atoms) is so far 
impossible, since we do not know how to quantize non
lagrangian equations. 

Finally, as a last remark, we also note that this 
model leads to momentum nonconservation. We will, 

perhaps, discuss some effects related to this in the fu
ture. 
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