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Depolarization of neutrons passing through a ferromagnet in the paramagnetic phase near the Curie point is analyzed theoreti
cally. The depolarization is expressed in terms of the small-angle magnetic scattering cross section. Experimental data on 
depolarization, critical scattering and susceptibility data for nickel are presented. If parameters derived from scattering and 
susceptibility data are empiloyed, the depolarization observed near T, is found to exceed the theoretical value by more than 
an order of magnitude. This means that the scattering in the small-angle region is excessive compared to the ordinary critical 
scattering. It is suggested that this excessive scattering may signify that in reality the transition of nickel to the ferromagnetic 
state is a first-order phase transition but close to that of second order. 

1. INTRODUCTION 

RECENTLY there has been a more diligent study of 
the depolarization of neutrons passing through a ferro
magnet near the Curie temperature (see the papers of 
Drabkin and co-workers [1- 4 1 and also the paper by 
Rauch[ 51 ). It was observed that when the temperature 
is lowered the polarization P (T) of the transmitted 
beam changes rapidly, from a maximum value equal to 
the polarization of the incident neutrons P 0 to zero in 
a narrow temperature interval on the order of one 
degree near Tc. A study of the P(T) curve has made 
it possible to increase by approximately one order of 
magnitude the accuracy with which the Curie tempera
ture is determined, in comparison with other methods 
(the quantity T = ( T - T c)/ T c can be determined from 
the P(T) curve with an error on the order of several 
times 10-5 ). It has turned out here that in the immedi
ate vicinity of the Curie point the depolarization is 
quite large (P(T, Tc)~ (0.6 x 0.7)P0 ), and below 
Tc the sample turns out to be inhomogeneously mag
netized. Finally, it was observed that in the paramag
netic phase ln[P(T)/Po] ~ A. 2 , where A. is the neutron 
wavelength. The present paper is devoted to a theoreti
cal analysis of the question of the depolarization in the 
paramagnetic phase, which is caused by magnetic 
scattering from critical fluctuations and is expressed 
in simple fashion in terms of the cross section of the 
magnetic scattering through angles that do not exceed 
the divergence angle of the incident beam. This was 
followed by an analysis of the extent to which the de
polarization data agree with the present notions con
cerning second-order phase transitions (scaling 
theory). The theory has been compared with experi
ment using as an example nickel, for which there are 
at present many experimental data on the critical 
scattering[2 ' 61, depolarization [1-3 1, and the magnetic 
susceptibility above Tc [7,E:J. 

The main result of this comparison reduces to the 
following: whereas the data on the susceptibility and 
the critical scattering fit well within the framework of 
the concepts of similarity theory, data on the depolari
zation cannot be reconciled with these concepts if one 
uses only the parameters obtained from experiments 
on the susceptibility and critical scattering, for in this 

case the depolarization turns out to be smaller by 
more than one order of magnitude than the observed 
one. Therefore, on the basis of the connection between 
the depolarization and the cross section under the ex
perimental conditions of[ 1- 3 J, we conclude that there 
exists small-angle scattering in excess of the critical 
scattering. This "excess" scattering exists in a very 
narrow temperature interval ( T ~ 10-4 ) and in the 
region of very small momentum transfers ( q < 3 
x 10-3 A_- 1), where no direct experiments on scattering 
have been performed as yet. One of the possible ex
planations of this excess scattering is the existence of 
unique "quasidomains," which are nuclei of a new 
phase, and which indicate that actually the transition 
to the ferromagnetic state is a first-order phase transi
tion. However, further experimental and theoretical 
research is necessary to be able to make more exact 
statements. 

2. CONNECTION BETWEEN DEPOLARIZATION AND 
SCATTERING 

We consider a ferromagnet at temperatures higher 
than the Curie temperature, i.e., in the paramagnetic 
phase. The magnetization in this ferromagnet fluctu
ates. On the basis of the classical equation of motion 
of the polarization vector 

222 

(1)"" 

it is easy to verify that the rotation of the polarization 
vector due to one fluctuation is small if the condition 
IJ.nBR/vti « 1 is satisfied, where R is the radius of 
the fluctuation, B the average fluctuation in it, and v 
the neutron velocity. If we use for R the expression 
R = aT- 2/ 3, which follows from similarity theory (a is 
a quantity on the order of the lattice constant), then 
this condition is in splendid agreement even at T ~ 10-5 

and at any reasonable values of Band v ~ 104-10 5 

em/ sec. Consequently, the interaction of a neutron 
with such a fluctuation can be treated by perturbation 
theory. On the other hand, the interaction of a neutron 
with a fluctuation of radius R, by virtue of the un-

*[BP] =B X P. 
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certainty relation, leads to scattering of the neutron 
through an angle J ~ (pRt\ where ti.p is the neutron 
momentum. Therefore the interaction of the neutron 
with the ferromagnet above T c should be regarded as 
scattering. Consequently the transmitted beam consists 
both of neutrons which have not experienced even a 
single scattering act, and of neutrons experiencing one 
or more such acts of scattering through angles smaller 
than or of the same order as the divergence of the in
cident beam, and the entire depolarization is due to the 
scattered neutrons. 

In the absence of an external magnetic field and 
when it is certain that the energy transfer w is small 
compared with the temperature, the scattering cross 
section is given by (see, for example, the paper of 
Collins et al. [DJ) 

da 2 , , T I G( ) 
d!Jdoo = 3 r, Yo ;;; m q, oo ' 

G(q,oo) = i fate-••• .L/\[S(R,t),S(O,O)]). 
o a 

The function G( q, 0) is proportional to the static 
magnetic susceptibility x ( q) and is connected with 
Im G by the dispersion integral 

(g!L)'N, 
x(q) = --gr-G(q,O), 

1 • c:loo 
G(q, 0) = -s- Im G(q, oo); 

lt (I) 

(2) 

(3) 

(4) 

here No is the density of the magnetic unit cells and g 
is the gyromagnetic ratio. 

It should be noted that formula (2) is customarily 
used in the case of unpolarized neutrons. It is also 
valid, however, when the neutrons are polarized (see 
the paper by one of the authors[ 10l), The magnetic 
scattering of polarized neutrons is accompanied by a 
change in their polarization vector, which in the para
magnetic phase is determined by the equality[ 10l 

P=-e(eP,), (5) 

where e = q/ q is a unit vector in the direction of the 
momentum transfer. 

Let the sample be sufficiently thin, so that the mul
tiple scattering can be neglected. In this case the 
polarization of the transmitted neutrons can be repre
sented in the form 

P= P,[1-(a,+a,)N,L]+Pa,N.L=P +(P-P) N' (6) 
1-N,La, • • a, ...,, 

where L is the thickness of the sample, a 1 is the 
cross section for the scattering of neutrons in a narrow 
cone of angles corresponding to the transmitted beam, 
0'2 is the cross section for scattering outside this cone, 
and P is the average polarization of the neutrons scat
tered within the confines of the transmitted beam. It 
follows from (5) that 

1 ~ da ll~, = - c:lQdoo -- eaep, 
a, d!Jd(JJ 

(7) 

where the integral with respect to the angles is taken 
within the confines of the transmitted beam. 

If the incident beam has a circular cross section, 
then the tensor ila(j can be written in the form 

(8) 

where n is a unit vector in the direction of the incident 
beam. From {7) and {8) we obtain 

1 J c:la A =B+- d!Jdro(en)'-a d , a, Q oo 

3A-B=1. 
(9) 

If the scattering is also elastic, then the vectors e and 
n are perpendicular and A = B = 1'2. It follows from (8) 
that 

P = -AP, + Bn(P,n). (10) 

Let us expand all the polarization vectors into parts 
parallel and perpendicular to the incident beam; we 
then obtain from (6), (9), and (10) 

Pn= P,11 [1- 2(1- A)a,N,L], 

P.L=Po.c£1- (1 +A)a,N,L]. (11) 

These formulas describe the polarization of neutrons 
passing through a thin sample. If the cross section a 1 
does not depend on the maximum divergence angle Jm 
of the incident beam (the entire scattering is through 
angles that are small in comparison with Jm), then the 
polarization of neutrons passing through a thick sample 
is determined by the formulas 

Pn= P, 11 exp [ -2(1- A)a,N,L], 

P.L = P,.Lexp [ -(1 +A)a,N,L]. 
(12) 

For pure elastic scattering A = 1'2 and the factor 
preceding a1N0L in (11) and (12) is transformed into 
unity for P 11 and into % for P 1 • 11 

In concluding this section, we note the following. 
Formulas (11) and (12) are valid not only in the para
magnetic phase, but also below Tc, if the ferromagnet 
is broken up into sufficiently small domains and there 
is no average magnetization. In particular, in this case 
formulas (12) with A = 1'2 (the scattering is obviously 
elastic) are well applicable provided only Jm » 1/pRd, 
where Rd is the dimension of the domain. The standard 
methods yield for the cross section for scattering by 

1Yrhe question of depolarization in the paramagnetic phase on a thin 
sample was considered earlier by the authors1111 on the basis of macro
scopic considerations. It should be noted, however, that the final formula 
given there does not take into account the difference between P11 and 
P 1, and is therefore accurate only to order of magnitude. In addition, the 
connection between the depolarization and the scattering was not fully 
explained inlltl. Our present treatment of this connection refines the con
siderations given in[ttJ concerning broad and narrow beams, and in addi
tion, it follows from them that to calculate the observed depolarization 
it is not necessary to add up the contributions due to the rotation of the 
polarization vector and to scattering, since the two are equivalent. The 

. depolarization by spin waves was therefore actually calculated inllll by two 
different but equivalent methods. The same applies also to Toperverg's 
workll2l. 
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the domains 

da. = r '" 'S' ( M ( T) ) 2 N J dRe'• 8 11> (R) 
dQ 0 ,o M(O) 0 ' 

S'[M(T)/M(O)]'~P(R)= (S(R)S(O)), (13) 

where M( T) is the spontaneous magnetization at the 
temperature T. 

The second of these formulas is a definition of 
<I>(R)-the average shape of the domain. In the case 
under consideration the effective scattering angles 
J ~ 1/pRd are small and the formulas for the depolari
zation contain the total sca.ttering cross section. It 
can be easily calculated by integrating first with re
spect to the scattering angles, and then with respect to 
R: 

_ , 'N (4:rrS)' (M(T))' R _ (21J..B(T))'R 
0'•-rovo o~ M(O) .- 3v'Noli' •• (14) 

where B(T) = 41TM(T) is the induction in the domain, 
!J.n is the magnetic moment of the neutron, and Rp is 
defined by 

2 dR ' 
R. = _P_ J dQdRII> (R) e'<P-P•>R = L J -II> (R) e'PR sin pR 

Bn' 2n R 

= 2~ ~ dll~ dcp<Ii(R, 0, cp). 

(15) 

In this expression the z axis is directed along the 
beam; in the derivation we took into account the fact 
that <I>(R, 0, cp) = <I>(R, 1r, ~7 + 1r), and that sin2 pR can 
be replaced by Y2, since the oscillations are fast. 
Formulas (12) together with (14) and (15) refine the 
results obtained by Halpern and Holstein(13J who, like 
ours e 1 ves [111 , failed to note that P 11 and P 1 are de
polarized differently. 

3. CROSS SECTION WITHIN THE FRAMEWORK OF 
SCALING THEORY 

At the present time the universally recognized 
theory of second-order phase transitions is scaling 
theory (see, for example, the papers of Kadanoff et 
al.P41 , A. A. Migdal[ 15l, Polyakov[16• 17l, and Halpern 
and Hohenberg[ 18l). According to tbe general formula 
of dynamic scaling[ 171 

G( w)=~- (qa _w_) q, T . .., cp \1' T " . 
cl. 't' e't 

(16) 

Here y is the critical index of the static susceptibility; 
it is assumed at present that y ~ %, a is a quantity of 
the order of the lattice constant, and 11 is the critical 
index of the correlation radius, for which a value close 
to % is customarily used. Finally, z is the critical 
index of the dynamic theory, which according to(1aJ is 
equal to %. The factor 1/Tc is separated in (16) from 
considerations of dimensionality so that cp is a dimen
sionless function of its ar~:uments. 

The momentum transfer in scattering through a 
fixed angle J is a function of the transferred energy w, 
and if w « E, it can be represented in the form [ 101 

q=p[~'+ (ro/2E)')"'. (17) 

We shall now show that the dependence of q on w can 
be neglected under the conditions of the experiments on 
depolarization, i.e., that the scattering is quasielastic. 
It follows from (16) that the characteristic transferred 
energy is given by 

Q(q) ~ T,(qa)"f(qa·c'). (18) 

It is shown in £181 that f( x) ~ x-112 if x « 1 and f( x) 
= const if x » 1. Since a is of the order of the lattice 
constant, qa « 1 in both cases and therefore U(q) 
« Tc(qa)2 (we recall that z ~ "2). Starting from this 
inequality, we obtain the following quasi-elasticity 
condition: 

~;:;(;E I T,(pa)'. (19) 

Usually E/Tc:?: 10-1 and (pa)2 -;;, 5, so that the depend
ence on w can be neglected in (17), at any rate for 
angles smaller thane. In the experiment of Drabkin's 
group£l-4l, J < 3-10 min, i.e., the condition (19) is 
certainly satisfied. 

Drabkin, et al.£11 estimated the degree of scattering 
inelasticity from the polarization of neutrons scattered 
through an angle on the order of 10 min, and have 
shown experimentally that in this temperature region, 
where there is critical depolarization, the scattering 
is inelastic. Taking this circumstance into account, we 
obtain on the basis of (2) 

(20) 

If PJmar-11 is small, the integral in the last formula 
(2) can be easily obtained and we get 

(21) 

where the constant cp(O) is directly determined, by 
virtue of (3), from experiments on magnetic suscepti
bility. 

On the other hand, if PJmar- 11 > 1, then to calculate 
<1 1 it is necessary to know more accurately the struc
ture of the function cp. In accordance with present-day 
concepts, .p(x) differs very little from the correspond
ing expression in the Ornstein- Zernike theory: the 
measure of this difference is the so-called Fisher 
parameter 11 = 2 - y /11, and is apparently on the order 
of 10-1-10-2 (see, for example,P91 ). We therefore carry 
out all the estimates on the basis of the Ornstein
Zernike theory, after which we shall indicate briefly 
the consequences ensuing from the fact that 11 is 
finite. 

Thus, we assume that y = 211 and that 

This leads to the following formula for <11: 
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2 - 1 ·[ +(pa{}m)'] 
1

(11 =altr0'y,"S(S+1)(pr)'ln 1 ~ . (23) 

Thus, the cross section a 1 depends on two parameters, 
r and a, which generally speaking should be of the 
order of the lattice constant. 

So far, the critical depolarization has been investi
gated in greatest detail in nickel [1-3 1. The critical 
scatteringr2 • 8l and the magnetic susceptibility£7' 81 of 
nickel were also investigated, so that we can carry out 
a detailed comparison of theory and experiment. Drab
kin et al.fl-31 obtained the following main result con
cerning the depolarization in the paramagnetic phase: 
the quantity P 1 /Pol decreases monotonically with 
decreasing T, and becomes equal to (0.6-0. 7) Po at a 
distance T R$ 10-4 from the Curie point; it can therefore 
be estimated with sufficient accuracy from formula (11) 
for a thin 'sample (formulas (12) are not valid, since 
a 1 depends on Jm). In these experiments the sample 
thickness was 0.5 em, the neutron wavelength A R$ 4 A, 
and -lm ~ (3-10) min. For nickel, No= 9 x 1022 cm-3 

(we define the unit cell in such a way that it contains 
only one atom, and the cross section necessary for the 
depolarization to be experimentally observable is a 1 

= 3.5-4.5 b. 
The parameters in (23) can be determined from the 

data on the magnetic susceptibility and the critical 
scattering£7• 81. It follows from them that the magnetic 
susceptibility can be represented in the form 

x(O) ~ 4,2-to-• ,;-''• (24) 

and therefore, starting from formulas (3), (22), and 
(24), and assuming that S = Y2 and g = 2, we find that 
r/a = 1.4. 

A more complicated and less unambiguous procedure 
must be used to find the second parameter. Minkiewicz 
et al.£ 61 give for critical scattering a value Tv /a at 
T = Tc + 52", which satisfies the inelastic-scattering 
data in best fashion if these data are described by the 
well known Van Hove formula, from which it follows 
that a = 1. 7 A. An independent determination of a from 
the experimental data for x- 1(q), given in[6l, leads to 
a = ( 0.8-0.9) A.. 

The experiments on critical depolarization (1-31 re
vealed a neutron-beam attenuation corresponding to an 
approximate cross section of 2 b for scattering through 
angles than Jm. 21 If we use for this cross section the 
formula 

(25) 

then we arrive at a value a R$ 0.7, which is in surpris
ingly good agreement with the value a obtained from 
the x- 1(q) curves. The values of the parameters 
a = 1.7 and 0.8 at T = 10-4 and X = 4 A. lead to cross 
sections a 1 equal to 0.09 and 0.24 b. Thus, in either 
case the cross section is too small to explain the 
observed depolarization, and a cross section 15 times 
larger is necessary for this purpose in the most 
favorable case. 

Thus, experiments on critical depolarization cannot 

2>We are grateful to G. M. Drabkin and A. I. Okorokov for supplying 
this figure, which was omitted from their brief communicationf3l. 

be explained in natural fashion by starting from data 
on large-angle scattering. In the region of very small 
momentum transfers ( q < 3 x 10-3 K 1) and in a narrow 
temperature interval ( T ~ 10-4 ) the scattering appar
ently exceeds the usual critical scattering. It should 
be noted here that the usual critical scattering is well 
described by the formulas of scaling theory£ 6 •91. Thus, 
the parameter a, calculated from the data of£ 61 at 
T = 2 x 10-2 , is in splendid agreement with the value 
of a estimated from the total cross section 112 at 
T = 10-4 • It should also be noted that according to (22) 
we have cla/dU ~ ,-2 at sufficiently large angles 
(small T ). It is precisely such a dependence of the 
intensity of the critical-scattering peak which was ob
served by Drabkin et al. £2131 

It must be emphasized that the excess scattering 
lies in that region of q and T where direct experi
ments on scattering have not yet been carried out 
(in£ 61, for example, qmin = 0.02A-1), and therefore the 
experiments on depolarization do not contradict other 
experiments. 

The nature of the "excess" scattering is still un
clear. One of the possible explanations is the forma
tion of nuclei of a new phase, namely regions with 
homogeneous magnetization (peculiar "quasi-domains"). 
Such regions can lead, by virtue of (14), to a large de
polarization, owing to the large values of Rp, even at 
very small magnetization. At the same time, in order 
for them not to contribute to the static susceptibility 
(which is proportional to the cross section at J = 0), 
it is necessary by virtue of (13) and (20) to satisfy the 
inequality 

·c'>S'[M(T) I M(O)]'R.'. (26) 

The appearance of such quasi-domains would actually 
mean that the transition to the ferromagnetic state is 
a first-order phase transition close to a second-order 
transition. Such transitions have been intensively dis
cussed in the literature lately (see, for example, the 
paper of Larkin and Pikin r2oJ ). However, it is still too 
early to draw definite conclusions. 

So far we have used formula (22) to describe the 
scattering, i.e., we assumed the Fisher parameter 11 
to be equal to zero. It is easy, by using (20 ), to write 
down the cross section in the general case when 
PJmaT-11/» 1, if we use the asymptotic formula cp(x) 
= cp 1 x-r 11 £15 • 161. Mter simple calculations, recogniz
ing that 11 = 2 - y/v, we obtain 

4 1 { tp, } a,=-3 ltro'va"-(- -[({}mpa)"-,;'"]+T'"C 
pa)' TJ 

I m 

C= J d.x.xq>(x)+ J dxx[ tp(x)- x~:] ~ 1. 
0 I 

Formulas (23) and (27) should coincide at pallm/T v 
» 1 and 11 - 0 from which it follows that cp 1 

R$ (a/ r )2 S( S + 1 ), and consequently allowance for 
finite 17 cannot increase the cross section. 

(27) 

3>Figure 4 otf2l shows the wrong intensity scale for the angles 
{J = 6.8' and {J =10.2'. In both cases the actual intensity must be increased 
threefold. We are grateful to G. M. Drabkin and A. I. Okorokov for 
pointing this out to us. 
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In conclusion, the authors express once more their 
gratitude to G. M. Drabkin and A. R. Okorokov, and 
also to E. I. Zabidarov, Ya. A. Kasman, V.I. Volkov, 
and A. F. Shchebetov for a large number of interesting 
discussions and for the opportunity of becoming ac
quainted with the experimental data prior to their 
publication. 
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