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The effect of the Landau quantization on the sound intensity excited by electromagnetic fields in semimetals is studied. The 
quantum effects are related to variation of the electron and hole concentration under the action of the field of the wave. The 
character of the oscillations and their magnitude with respect to the sound intensity, which depends monotonically on the 
magnetic field, are determined. A comparison is made with experiment. 

INTRODUCTION 

THE disruption of equilibrium in a system of conduc­
tion electrons leads in particular to the excitation of 
sound waves in the specimen, as a consequence of 
electron-phonon interaction. The excitation may turn 
out to be more effective in this case if the perturba­
tion of the carriers is accompanied by a variation in 
their concentration n; here, according to thermodynamic 
considerations, a volume force, proportional to Vn, acts 
on the medium. In systems with metallic conductivity, 
where the Debye radius is the smallest of the charac­
teristic lengths, one deals with variation of the concen­
tration of the individual electron groups in the presence 
of invariance of the total concentration (by virtue of the 
condition of electrical neutrality). These variations, as 
is shown in [1- 31 , play an important role in the various 
problems of the electrodynamics of metals; they are 
due to the multi-connectedness of the Fermi surfaces 
and to the large separation between the electron and 
hole "valleys" (in rnomenltum space), thanks to which 
the equilibrium between the valleys is established with­
in a time T that is much g:reater than the time of intra­
valley relaxation T. 

In the classical case, the appearance of nonequilib­
ri~m concentrations is brought about by the inhomoge­
neity of the variable electromagnetic field in the sample 
and by the conditions of flux conservation on the sur­
faces. Under conditions of magnetic quantization, the 
inhomogeneity of the magnetic induction JJ is an addi­
tional reason for the variation of the carrier concen­
trations: in semimetals, the equilibrium concentrations 
of electrons depend on JJ; therefore a time-varying 
magnetic induction leads to their variation. [31 

It has been shown in [4-'!1 that the experimental data 
[ 6' 71 on the excitation of sound by electromagnetic waves 
in semimetals located in a comparatively weak mag­
netic field (B0 :S 100 G for bismuth, 200 :S B0 :S 2000 G 
for antimony) at liquid helium temperatures can be ex­
plained only effects connec:ted with variations in the 
electron and hole concentrations. In more intense fields, 
an oscillatory character has been observed experimen­
tally (see [71 ) for the amplitude of the acoustic reso­
nances as Bo increases. 

The present work is devoted to the investigation of 
the electromagnetic excitation of sound in semimetals 
under the conditions of Landau quantization. The losses 
of electromagnetic energy in the creation in the sample 
of standing sound waves a:re computed; for this purpose, 
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we solve the equation of the dynamics of an elastic me­
dium with an exciting electromagnetic layer. As in [sJ, 

we take the damping into account by the introduction of 
the parameter Q-the acoustical quality factor (in accord 
with experimental data, [71 Q is not connected with the 
electron mechanism). In the research of the author and 
Rashba, [31 a quantum theory of the normal skin effect in 
semimetals was constructed, in which, along with the 
quantum oscillations of the magnetic susceptibility and 
the kinetic coefficients, the effects mentioned above, 
which are connected with the dependence of n on !/J, are 
taken into account. The results of this theory are used 
below to find the exciting force in the equation of mo­
tion of the medium; only the force connected with the 
concentration gradients is taken into account (in the 
quasiclassical approximation, to which we limit our­
selves, the role of other forces is insignificant, as it 
is in the classical case[ 51 ). The simplest model of a 
semimetal is considered-one electron valley and one 
hole valley with isotropic dispersion laws. 

ENERGY LOSSES IN SOUND EXCITATION 

We shall consider a slab of semimetal 0 ~ z ~ d, 
irradiated on both sides by electromagnetic waves of 
frequency w. For definiteness, let the conditions of 
radiation be such that the magnetic field of the wave 
H(O) = H(d), and the electric field E(O) = - E(d); H 11 y, 
E 11 x. A constant external field is applied parallel to 
the field of the wave, the total magnetic induction in­
side the sample is )J = Bo + B (z, t). The equation for 
longitudinal sound oscillations u (z)e-iwt is written in 
the form 

u"+k.'u=ll>'(z); k,=: (t+~). (1) 

s is the sound velocity; the damping is introduced phe­
nomenologically through the quality factor Q » 1; the 
prime denotes differentiation with respect to z. As was 
pointed out in the Introduction, we shall use in the ex­
pression for the force <I!' only the "deformation" part, 
which is connected with the concentration gradients, 
i.e., 

II>'= -An'/ ps', (2) 

where A is the difference of the deformation potentials 
of the electrons and holes, p the density of the crystal, 
n (z, t) the total concentration of electrons (which is 
identical with the concentration of holes p ). 
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We separate in n the instantaneously equilibrium 
part which depends on the instantaneous value of the 
induction .Jl (z, t), i.e., we represent n in the form 

dn 
n = n0 (.\f)+n, R: n0 (B,)+ dB B(z,t)+n,(z,t). (3) 

Here n1 is the nonequilibrium concentration, dn/dB the 
total derivative, calculated under conditions of thermo­
dynamic equilibrium. [Sl Solving Eq. {1) with account of 
{2), {3) and the boundary condition 

u'(O, d) =lll(O, d), 

we find that the change in the elastic energy of the slab 
per unit time is 

d • • 

W == ~ Jdz!..,[u'+ s'(u')'J = ~ReJ dz u'lll" 
dt 0 2 2 0 

for resonance corresponding to the establishment of an 
odd number of acoustic half wavelengths over the thick­
ness of the slab d in the case considered, equal to 

w r,,,•Q~ ., J dz sin k,ztll(z) I', 00
2d = ( N + 2

1 ) :n. 
:n(N + '/,) , s 

(4) 

In the intermediate calculations, use was made of the 
property 4>(z) = 4>(d- z) which follows from the symme­
try of the problem assumed above, and only the reso­
nance terms ~[cos {ksd/2W1 have been kept. 

To determine 4> (z) and the energy loss (4), it is nec­
essary to solve the set of Maxwell equations 

E i "' H 4:n . . 0 . . + . (5) rot = --D, rot =-J, ],= , J = Jn J. 
c c 

and the continuity equation for electrons with account of 
recombination; 

an 1 . . n, 
---d!VJ.+-=0. at e T 

(6) 

The currents j in the normal skin-effect approximation 
are given by the relationsr 3l 

(7) 

where '17n and '17p are the Fermi quasilevels of electrons 
and holes. The material equation, which connects H in 
semimetals not only with B but also with n1, has the 
formcsJ 

H=_!!_+(au) n, r.t-'=!!:!!._, 
It an s aB 

( au) dn ( aTJ•) (aTJ•) - =-4:n-b, b=- +- . an B oB an B ap B 

(8) 

The set of equations (5) and {6) was solved in r31 for 
the case of a halfspace. In the problem considered here, 
the finiteness of the dimension of the slab is important; 
as applied to the symmetry assumed above, the expres­
sion for the magnetic field will be the following: 

H -H cosk,(z-d/2) +H cosk,(z-d/2) (9) 
(z)- , , · 

cos k,d/2 cos k,d/2 

Here k 1 and k2 are the roots of the dispersion equa­
tion 

k'+k'(-1 ___ i_) __ i_=O 
L' 6,' L'l:J' ' 

(10) 

in which 

6' = _c_'_ 6,-• = {)-' (1 + a:cr·(1- gG)'}, 
4:nwcrr.t' v 

a•b O'xz2 ... ,. ... 

L'=-, T', a=a=+--, a=a.+a., 
e f1zz 

a• = O'u11 0up a= O:u11 
- Oxl' T' = __ T_ 

O"u: ' O'u11 <1zzp ' 1- iroT t 

B, dn enc 
G=--, g=-. (11) 

n dB aB0a' 

Expressing the induction B and the concentration n1 in 
terms of the amplitude H1 2 from (9), with the help of 
Eqs. (5)-(8), and carrying out the integration in (4), we 
get, after a series of transformations: 

_ QW0a's \ ~ k,' Fl'( Ag)' 
W-(N+'/,):n ~ k,'-k;' ' bn ' 

1=1,2 

F = H;/H(O) [1-i(M,)-'+ L'gG (1-~)]• 
' 1-igG(l:Jk,)-' 6'w1" bo' 

Wo= IH(O) l'/4:n, a'=Bo'/4:nps2, (12) 

H(O) is the given value of the magnetic field on the sur­
faces. 

For the final solution of the problem, we must find 
the amplitudes H1 2 from the boundary conditions. One 
of them is the ordinary electrodynamic condition of con­
tinuity of H on the boundary: 

H,+H,=H(O). (13) 

The second is the condition of surface recombination, 
which we write phenomenologically: 

j.,(O, d) ==t=2eSn,(O, d), (14) 

Sis the rate of surface recombination (according to r1 ' 21 

S ~ vFdnp• dnp is the probability of intervalley scatter­
ing in the collision of an electron with the surface). Ex­
pressing the field E and the concentration n1 in jnz in 
terms of H, we obtain (14) in the form 

H L' ~ ' [1-i(6k,)-'--(1+i(6k,)' 
~ 1- igG(l:Jk,)-' l:J'P, 
i•I,Z 

{)' ) -(1-gG) ( 1-6.' )] =0, 

P, = 2ST'k,ctg(k,d/2). 

(15) 

after a series of transformations. The quantum effects 
in (12) are connected with terms containing G, (11) and 
the oscillating additions to J.l and a. If we do not take 
them into account, then the results of classical theory 
follow from (12) and (15). rsl 

ANALYSIS OF THE RESULTS 

In connection with existing experimental data, [71 we 
limit ourselves further to the case of the quasiclassical 
approximation and a strong magnetic field: 

T]... ~ 1 , eB, ~ 1 
ftron,pc ' Wn,p = Cmn,p ~ 

As was shown in r3l, G here contains only terms that 
oscillate with the de Haas-van Alphen period. Their 
amplitude is 

IGI ~ (hw,/!J.)'kK<{1 (16) 

(<l = '17n + '17p is the magnitude of the overlap of the 
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bands, and temperature and Dingle factors are included 
in K ::5 1 ). The magnetic susceptibility is determined 
by the expression (see c3l) 

!L-' = 1 + qG, q = 4nn6 / B,2 • (17) 

In a strong field, we have in (11) g ~ 1, a» 1, so that 
1i 2 » 1i~ and the roots of (lO) can be written in the form 

k 2 __ 1 - iL2/602 k 2 _ i/62 

I - L2 ' • - 1- iL'/6,' ' 

R'T' L' 2 26 
L' = -"=~mT'qu b =- (18) 

3-t-.(1 + l.fl.)' 6," 3 ,.., 3n ' 

R is the Larmor radius and l the free path length. 
We first consider the very realistic case for the ap­

pearance of quantum oscillations of such values of B0 

in which the parameter q, determined from the expres­
sion (17), is < 1 (for bismuth, this is satisfied for B0 

~ 300 G). Then the oscillations of 11 are unimportant 
and L2/1i~ « 1. Different variants are possible, depend­
ing on the relation of the sound wavelength k'fl and the 
penetration depth I k1, 2 l-1 : 

1) ki »ks, i.e., 

6 L ..:._= d 
' ~ m 2n(N+'f,)' (19) 

the field B0 is not strong enough for the skin layer to 
fill the slab for the first numbers N (we recall that 
1i - B0). Then, for different conditions of surface re­
flection, characterized by the parameters Pi in (15), 
we get for the sums entering into (12) 

\"I k • k '6'L' ( G ) ~ k.' _:._ k,'P, ~ ~ 1- iwT' A,, (20) 
i=l,Z 

{ 
(1 + L6f/j0 titt, 

A1 = 1, 

(1 + L26/2 ftT'S602t\ 

s--> 0, 
2T' S ;p. L, 6, 

L~2T'S~6. 

(20a) 

(20b) 

(20c) 

2) There are very strong fields where k1 » ks » k2 

i.e., 

L~ cl/Z:t(N + '/,) ~6. 
Then 

~ _!:_!__F, ~~ - i.!!._( 1-t~) A, 
~ k.'- k,' 0,' roT' ' 

; 

( 1 + ~~~~~) -·. s~o. 
A,= 1, 2T'S >L, d/2, 

(1+ 4~:~,8) -•, L~2T'S~d. 

(21) 

(22) 

(22a) 

(22b) 

(22c) 

The quantum corrections are determined by the quantity 
GjwT' in (20) and (22). For small values wT « 1, the 
quantum additions to the results of the classical consid­
eration can be significant; with increase in B0, their 
role increases. The quantities A1 (20) and A2 (22) are 
sensitive to the properties of the scattering surfaces. 
This is connected with th•e presence of two waves (9), 
thanks to which even in the considered case of the nor­
mal skin effect the amplitudes of the waves H1 and H2 

depend on the scattering of electrons from the surface. 
The case (22) corresponds to complete penetration of 
the second wave (9) into the sample; however, the effect 
of the first wave, as can be shown, becomes insignificant 

for such values B0 for which Ld/21i: « 1 in (22a) and 
L2d/4li:T'S « 1 in (22c) (the case (22b) is evidently un­
real because of the condition 4T'S »d). When these 
conditions are satisfied, the quantum corrections in 
(22) actually describe homogeneous magnetostriction, 
which is discussed in C"fl. The corresponding critical 
values of Bt, the surpassing of which gives the transi­
tion to homogeneous magnetostriction, are the follow­
ing: 

for (22a): 

cl 'I B: ~ ~.(roTni\) •, o, (23a) 

for (22c): 

( mel )''• ll' B: ~ Sni\ for TS>T. (23c) 

We now consider the case of so-called "strong" dia­
magnetism, when 11 (17) oscillates in order of magnitude. 
This is possible for q » 1, when qG - 1, i.e., in rather 
weak fields (for which, however, WeT >> 1 and tiwc 
» 2'1T2T0 , T0 the temperature). Since this case in semi­
metals can exist in principle only for very low temper­
atures (of the order of fractions of a degree), then we 
shall touch on it only briefly, limiting ourselves to analy­
sis for k1 » ks and S- 0. We shall also assume that 
wTq < 1. Calculations with the use of (18) lead to the 
following result: 

k • 6'L2k ' ( G 2 ) \"I __ • -F,=--' [ 1-i---!AqG 
~ k,'-k.' o,• roT 3 
' 
iGL' 2 ) L ] [ Lll ( iL')] -• 

X ( 1 +B,') + (1-S!LqG lll'i 1 + ll,'fi 1-6,' 

(24) 
On this part of the period of oscillation, where qG 

> 0 in (17), the differences from (20a) are unimportant, 
because, in accord with the condition of low frequencies 
assumed above and (18), L2 /1i~ < 1. But on the other 
part of the period, where G changes sign and 11 increases, 
L2/1i~ and 11qG increase and (24) takes the form 

_ i L'Gk.' [ 1 + 6l't( 1 + iGL' )] . 
roT L ll,' . 

(25) 

At the beginning, while GL2/1i~ < 1, (25) exhibits a decay 
in comparison with (20a), because the factor 1i~G/1i 2wT 
~ G/w~-r2wT, which distinguishes (25) from (20a) in a 
rough estimate is small for G/wT - 1. Upon approach 
to the region of absolute instability, when 11-1 - 0, the 
term GL2 /1i~ increases, (25) tends toward 

-6'L'k.' G'L 
l'i~;;;;n; 

and can increase for G2L/wT1i - G211 1/ 2 > 1. 

DISCUSSION 

Here we shall discuss only the results which refer 
to the case q « 1, which correspond to experimental 
conditions for which quantum oscillations of the ampli­
tude of the effect of sound excitation in bismuth were 
observed. c7 J Oscillations were observed, beginning with 
fields -2 kOe, in a region where the amplitude of the 
excitation, which depends monotonically on B0, is al­
ready greatly diminished in comparison with its value 
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at lower fields, penetrating to a depth ~ l> (the second 
term in (9)). If we assume that in the region of mono­
tonic decay of the effect, the relation G/wT' « 1 be­
cause K « 1 in (16}, then this decay follows from (12} 
upon use of (22}. Upon increase in Bo, the Dingle and 
temperature factors cease to limit the amplitudes of 
oscillation for the de Haas-van Alphen fundamental, 
the amplitude G (16} increases and it can be shown 
that G/wT' « 1, which, in accord with (12} and (22), 
leads to oscillations of the sound excitation that grow 
with the field, and that are of half its period. The char­
acter of the dependence of the maxima on B0 is deter­
mined both by the increase in K with growth of Bo and 
also by the relation between B0 and the critical fields 
(23}. It is difficult to distinguish the effect of these two 
causes; here the analysis of the temperature dependence 
of the generation amplitudes would be useful. If we as­
sume the temperature and B0 are such that K1 R: 1 in 
(16), but these values of B0 < B~, then the oscillations 
of W (12) should increase as B0 in the case (22c) and 
as B~ in the case (22c). In the following, for B0 > Bri, 
the increase changes to a decay ex B~1 • For the param­
eters of bismuth, which correspond to the conditions of 
experiment,l7 l Bri ~ 105 G (22a) and Bri ~ 10 (vF /S)112 G 
(22c ). In l?J a growth of the oscillations was found over 
the entire interval of fields used (:s7kG}, but these data 
are insufficient to draw any conclusion as to the small­
ness of the value of the rate of surface recombination S. 

We also note that the increase and decrease in the 
maxima, which is gradual with respect to the numbers, 
and which was observed in l7l, can be explained by the 
contribution of the de Haas-van Alphen second harmonic 
to the quantity G. If the ratio of amplitudes of the sec­
ond harmonic and the fundamental K2 /K1 = {3 « 1, be­
cause of the temperature and Dingle factors, then it is 
easy to establish the fact (by elementary calculations) 
that, with accuracy to terms ~ B, the amplitudes of 
successive values of m of the quantum oscillations in 
(12}, differ, among other things by the factors 
(1 + {3'1"2 (-1}m). 

Clearly expressed quantum oscillations for the case 
described by Eqs. (20} were not observed in l 7l. In ac­
cord with (20), they should be more effective if lower 
frequencies are used (thicker samples); then the case 
of a thin skin layer, corresponding to (20), can be im­
portant even at high fields, which also increases the 
role of the quantum term G/wT'. Observation of oscil­
lations against the background of the effect of excita­
tion that is monotonic in the field would allow us to de­
termine directly the value of the time T. A comparison 
of the amplitudes of the oscillations in the region de­
scribed by (22), with the value of the monotonic absorp­
tion, corresponding to Eqs. (20} without quantum cor­
rections, can also give information on the parameters 
T, S, and the rest. By virtue of everything set forth 
above, it is demonstrated that the investigation of quan­
tum effects for electromagnetic excitation of sound is 
a convenient method of study of the electronic proper­
ties of semimetals. 
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