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Singularities of thermodynamic quantities in finite quantum spin chains are considered; they occur at points of reorganization 
of the ground state at T-+ 0. Transition points with respect to the field correspond to limiting values of the zeros of the partition 
function on the real axis in the complex H-plane. The variation of the character of a singularity as N -+oo is investigated. 

As is well known, at a temperature other than zero, 
thermodynamic quantities can have a singularity only in 
the limit N- oo (where N is the number of particles 
in the system). Yang and Lee[ll related the occurrence 
of a singularity at N - oo to the behavior of the zeros 
of the partition function as functions of the activity y, 
considered as a complex variable; this makes the oc­
currence of a singularity extremely graphic. (In the 
spin systems considered below, the number of particles 
N plays the role of the volume, the partition function 
plays the role of the grand partition function, and the 
number of excitations plays the role of the number of 
particles.) For arbitrary finite N, the partition func­
tion is proportional to a polynomial in y and has no 
zeros on the positive real semiaxis in the y-plane. Ac·­
cording to Yang and Lee, c 1- 41 the occurrence of a non·­
analytic partition function at y > 0 and N- oo is due 
to the approach of at least one of the zeros indefinitely 
close to the semiaxis y > 0. 

Singularities can arise also at finite N, if the tem­
perature approaches zero. This possibility follows 
from the fact that T = 0 is a singular point of the func·­
tion exp ( -E/ T). On the other hand, the occurrence of 
a singularity at zero temperature means simply a non-· 
analyticity of the energy of the ground state as a func­
tion of the external parameters. In this case it is con­
venient to speak of a phase transition at zero tempera-· 
ture. Such phase transitions are possible also in one­
dimensional systems, where they can be followed in de­
tail. 

The present paper considers the thermodynamic 
properties of one-dimensional spin systems with a finite 
number of particles-the Ising model and the quantum 
xy-model, in which there i.s a singularity with respect 
to the external magnetic fi.eld at T - 0. Here it is con­
venient to follow the behavior of the zeros in the com­
plex H-plane. The character of the singularity in the 
limiting case N - oo can differ significantly from the 
case of a finite number of spins.11 

1. ISING CHAIN WITH ANTIFERROMAGNETIC 
INTERACTION 

Before considering a quantum system, we shall dis·­
cuss the Ising model. In contrast to the ferromagnetic 
Ising model, where the zeros of the partition function in 
the complex plane of the activity y = exp (- 2H/T) are 

I)The research was reported at the Tenth Ural Winter School of 
Theoretical Physics['l. 
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located on the unit circle, l 11 for the antiferromagnetic 
Ising chain the zeros lie on the negative real semiaxis 
y < 0. In fact, the zeros of the partition function 

N 

Z = ~ e-'f'.:JC, :Je =- J ~ a,a,+l- H ~a, (1) 
{d} i=l 

can be calculated in closed form t 1• 21 and can be ex­
pressed in the form 

Ym± = -1- 2xm'(f. -1) ± [[2Xm 2 (f. -1) + 1] 2 -1]'1>, 

A= e-'~', Xm =cos~ Zm; 1 , m = 0, 1, ... [ N; 1 ] . (2) 

In the antiferromagnetic case (J < 0), A.> 1 and, as is 
clear from (2), all the zeros are real and negative. For 
odd N there is a value m0 for which Xm = 0; this cor-

o 
responds to Yffio = -1 independently of temperature. 
The other zeros for T = oo (A. = 1) are located at the 
point y = -1 and for low temperature (A. >> 1) are 
asymptotically equal to 

(3) 

For T- 0, as is clear from (3), the zeros approach 
indefinitely close to the positive real semiaxis; this im­
plies the possibility of occurrence of a singularity at 
zero temperature for certain values of the magnetic 
field. These values coincide with those points on the 
real axis of the complex H-plane to which the zeros of 
the partition function tend for T- 0. From the expres­
sion (3) we get (see Fig. 1) 

Hm± ';:::; ( ~i ± ln2lxm I) T ± 2111 (Xm * 0), 

:rt 
Hm, = iz-T (for odd N). (4) 

Here a single branch of the logarithm is chosen. Thus 
for T - 0 the zeros Hfu tend to the points ± 21 J I , 
whereas the root Hmo (for odd N) tends to zero.2 > These 
singular points are independent of N. Therefore the 
character of the singularity (a transition of the first 
kind with respect to the field) is retained even for 
N- oo. 

Since the parameter f3(H + 2J) can be arbitrary, the 
axymptotic form Z0 of the partition function near the 
singular point T = 0, H = 21 J I differs from the exact 
expression 12 1 only by replacement of hyperbolic func­
tions of H/ T by exponential. The relatively compli-

2)The singularity at H=O for odd N means that the "excess" spin 
orients itself along an arbitrarily weak field. In the case of the ferromag­
netic Ising model, all the zeros in the H-plane tend to zero forT-+ 0. 
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cated form of the asymptotic form near a singular point 
corresponds to the fact that at T-O, [N/2] of the 
zeros of the partition function approach indefinitely 
close to this point. s> 

2. PHASE TRANSITION IN ONE -DIMENSIONAL 
QUANTUM SYSTEMS 

We consider the simplest exactly solvable spin­
modelC7-9l (the xy-model) with the Hamiltonian 

N 

~=-I I: (sn"s:+l + sn•s:+.)- HE Sn' (5) 

where sn is the spin operator at the n-th site (s = %); 
the sum over n in the first term is carried out over the 
range 1 to N - 1 in the case of an open chain and from 
1 to N in the case of a closed chain, for which SN +1 

= s 1 • The properties of the open and closed chains are 
significantly different for finite N. 

a) The Hamiltonian (5) for an open chain reduces to 
a quadratic form in the Fermi creation and annihilation 
operators: 

NH I N-1 + N 

~ = -2-'2 ~ (an+an+t + an+tan)+ H .Ean+an. (6) 
n=i 

The connection of the Fermi with the spin operators is 
given by the equations r 10 l 

an=ITamsn+, Om=1-2.sn-sn+, 
m<n 

which are invertible. 
Diagonalization of the Hamiltonian (6) is accomplished 

by means of a Fourier sine transformation. As a result, 
the system reduces to an ideal gas of fermions: 

N NH 
~ = ~eqaq+aq-2 , 

nq 
Bq = H - I cos kq, kq = N + 1 ' (7) 

q=1 

for which the partition function factors: 
N 

Z = e~NHJz II {1 + exp[~(l cos kq- H)]}. (8) 
q=l 

As is clear from (8), Ze exp ( -{3NH/2) is a polynomial 
of the N-th degree in the variable exp (-{3H). This 
property is due, first, to the Fermi character of the 
spectrum of the system, when the number of states for 
finite N is finite, and, second, to the fact that the Zee­
man energy commutes with the Hamiltonian. The zeros 

3JThis is due to a peculiar degeneracy, which is easy to perceive directly 
in (I). In fact, if we write (I) in the form 

N 

Z = ~ e~JH+2J)n ~ exp [ ~/ ( .E "'"'+' - 2n)] , 
n=-N ::Eat•n i 

then in the inside sum at T ~ 0 it is sufficient to retain only those terms 
that correspond to the "ground" state of the Hamiltonian, in the argument 
of the exponential. For these states (in which all the spins oriented opposite 
to the field are separated by oppositely directed spins), all terms with 
n~O must be taken into account simultaneously, since (L<T1<T1+1-2n) is 
equal to (- N) for n ~ 0 or - N-4n for n < 0. On omitting the small terms 
with n < 0 (a majority of the spins oriented opposite to the field) and on 
taking into account that the statistical weight of a "ground" state with 
given n can be directly calculated from combinatorial considerations161 and 
is equal to N(N -k)- 1C~-k (n=N -2k, where k is the number of spins 
directed opposite to the field), we arrive at the asymptotic form Z0 of the 
partition function. 
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FIG. I . Location of the zeros of the partition function of an anti­
ferromagnetic Ising chain in the complex plane of the activity y and in 
the complex plane of the field H, at finite N and at T-+ 0. 

of the partition function in the H-plane have, according 
to (8), the form (see Fig. 2) 

H, =I cos kq + inT, q = 1, 2, ... , N. (9) 

For T - 0, the zeros {9) fall on the real axis, at the 
points Ifq = J cos kq. In contrast to the antiferromag­
netic Ising model considered above, where there was a 
single limiting value for all the roots when H > 0, here 
all the limiting values are different and independent of 
the sign of J. 

On the other hand, at the points Ifq there occurs a 
reorganization of the ground state of the system. In 
fact, since the energy levels of the system are accord­
ing to (7) determined by the equation 

the energy of the ground state is equal to 

E, = .E (H-I cos kq)- NH/2. 
H<J cos k 

q 

(10) 

Hence it is clear that with increase of the field, a reor­
ganization of the ground state occurs at points where Eq 
vanishes. The corresponding term in the sum (10) dis­
appears, and the magnetization increases discontinuously 
by unity. 

Thus for finite N, we are dealing with a system of 
"phase transitions" of the first kind with respect to the 
field at T = 0. Near each of the transition points, it is 
possible to separate out a singular part of the thermody­
namic quantities, for which only one of the zeros (9) 
makes a significant contribution. Thus for the singular 
part of the susceptibility near H = Ifq at {3 - oo we 
have 

iJ'Fsmg exp [- ~(H.' - H)] 
Xsmg=- iJH' =~{1+exp[-~(Hq'-H)]}'' (11) 

Hence4 > x sing- 0 for {3 - oo, if H * Ifq, and x sing 
~ {3 for HQ; finally, X sing = o(H - Hq) in the limit T = 0. 

For ~ero temperature and finite N, the susceptibility 

x(H) = .6 o(H- Hq0 ). If we compare H to energy and Jeq 
q =1 

to the energy levels of the system, then x(H) corre­
sponds to the density of states. For N- oo, the rela­
tive size of the jump of magnetization at each transition 
point approaches zero, and the singularity at this point 

•lwe note that the points H=Hg, where x has singularities, are points 
of degeneracy of the ground state. This fact is of very general character 
and is not related to the model. 
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FIG. 2. Zeros of the partition :function of a quantum xy-chain in 
the complex H-plane at T-. 0. 

disappears. At the band edges for H = ± J there occurs 
a square-root singularity in the density of states [9 ' 11 J 

(transition of the second kind with respect to the field): 

x= ~c'(J' -H')-", IHI <I, T=O, 

The singularity of the susceptibility x with respect 
to temperature is retained. at N - ao only if H = ± J; in 
this case it changes from linear ( x ~ {3) to square-root 
( x ~ {31 ' 2). This result is obtained as a consequence of 
the fact that inside a band, the fundamental contribution 
to x gives a part of the spectrum that is linear with re­
spect to q - q0 in the expansion of HQ. - H, whereas at 
the edge it is quadratic. 

b) For the closed chain., we shall restrict ourselves 
to the case of odd N. We transform (5) by introducing 
the Fermi operators an and a~, related to the spin 
operators as follows:C 12 l 

Since the Hamiltonian (5) <:ontains products of spin op­
erators s+ and s- at neighboring sites, we have with 
the aid of (12) 

N 

Sn -sn~S = - (II 0'1&) 4n +an+t• 

•=• 

where, except for the common multiplier 

the term with the interaction is quadratic in the Fermi 
operators.5l On going oveJr to the Fourier form of the 
operators an, 

1 N 
a =-~a e-t"n 
·" NIJJ~ n ' 

2nm 
!L """!Lm ==N' 

N-1 
ln=0,±1, ... ,±-. -2-, 

•=• 
(14) 

we reduce the Hamiltonian (13) to diagonal form: 

~ !!! NH 
~= "'-"[H+(-1) lcos~.t]a,.+a,.--2- (15) 

• 
Because of the presence of the sign-changing factor 
( -1)11 , where !ll = ~ a;aA is the number-of-excitations 

A 
operator, the spectrum of the closed chain, as is clear 
from (15), is of Fermi-liquid character. The energy of 

S)ln the closed chain, application of the transformation[IOJ would not 
lead to an expression quadratic in a+ and a, because of the product 
S~St· 

an elementary excitation depends on the parity of the 
number of excitations. The latter, obviously, is an in­
tegral of the motion of the system. 

As follows from (15), the energy of the ground state 
coincides with the smaller of two energies, each of 
which is the smallest within the class of states with a 
given parity of the number of excitations 9l : 

~ NH 
E,= "'-" (H+Icos~.t)--2-, !!!-even, 

B+J coap.<O 
(16) 

~ NH 
E,= "'-" (H-Icos~.t)--2-, !J!-odd. 

H-Jco1 P.<O 

Each of these states is reorganized with change of field 
just as in the case considered above of the open chain; 
at points where t.'IJ.e energy of the corresponding elemen­
tary excitation vanishes. But, as is clear from (16) and 
(15), in consequence of the symmetry of the spectrum 
with respect to replacement of IJ. by -JJ., in contrast to 
the open chain, in each such reorganization the number 
of excitations changes by two. But as can be seen from 
(16), the reorganization of the ground state occurs not 
at these points, but at points that alternate with them, 
where the energies with an even and an odd number of. 
excitations become equal and, accordingly, the total 
spin changes by unity. The values of the field at which 
reorganization of the ground state occurs are deter­
mined by the equation 

H • 1 nk/ n • = ± sin- cos-N 2N' 
N-1 

k=1, ... ,-2- (17) 

We now consider the partition function of the closed 
chain. After removal of a multiplier exp (NH/2T), it 
becomes a polynomial of degree N in y: 

N N 

z<N) =Ze-~NB/1= ~ y!!!Z111 , Z!J!= ~ exp[~J(-1)!!!(cosl+ ... 
1/!=0 ...... ... 

. . . +cosv)]. 

By introduction of the quantity x!J. = exp ({3J cos !J.), 
this polynomial can be reduced to the form 

(18) 

2Z<NJ =II (1 + yz.-')+ 11<1- yz.-')+ Il<t + yz.)- II (1- yz.). 
p.. p. p. " 

(19) 

The quantities x!J. possess the properties 

II X.= liz.-• = 1. 
• • 

Hence it is clear that z<Nl (y) is an inverted polynomial: 

ztNl(y-') = y-NZ(Nl(y). (20) 

One of its zeros is y = -1: 

.z<NJ(-1} = -Z<">(-1) ==0 

(compare the antiferromagnetic Ising chain for 
odd N). Because of (20), z<Nl (after division by y + 1) 
is a polynomial of degree (N- 1)/2 in y + y-1 • Its 
zeros for N = 3, 5 are easy to find. The corresponding 
values of the complex magnetic field are 
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H. = niT ±I+ niT (N = 3), 

n 
H, = niT, ± 2/ sin 10 + niT, 

±l+niT (N=5). (21) 

For T -- 0 they coincide with those values of the field 
Hk (see (17)) at which occurs the reorganization of the 
ground state of the system discussed above, accompa­
nied by a spin inversion. In contrast to the open chain, 
at these singular points there occurs no vanishing of the 
energy of an elementary excitation; that is, there are 
no "critical modes." 

The authors are grateful to L.A. Pastur for useful 
discussion. 
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