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Phenomena are considered which are related to phase coherence of the electron-hole pair wave function in non-equilibrium 
semiconductors with electron-hole pairing. It is shown that a varying tunnel current with an oscillation frequency w=2V arises 
when voltage is applied to a semiconductor-insulator-semiconductor structure which is optically pumped by an external source. 
This occurs in the quasistationary state and when the conditions required for electron-hole pairing are fulfilled. In the formula 
presented above V = Yr-Vt, Yr = (I /2) Dr+ JJ.r, Yt = (I /2) Dt + JJ.t, Dt and Dr are the forbidden band widths for the left- and 
right-hand side semiconductors respectively andJJ.r and JJ.t are the Fermi degeneracy energies of the respective semiconductors. 

1. A few years ago, Keldysh and one of the authorsC1J 
considered one phenomenon connected with the Coulomb 
interaction of the electrons from different energy bands. 
The gist of the phenomenon consists in the possibility of 
pairing the particles with the holes, as a result of which 
the spectrum becomes redistributed in the bands. The 
situation here is similar to superconductivity, particu
larly, the production of a pair of single-particle excita
tions should be regarded as a braking of a bound elec
tron-hole pair. With changing temperature, the system 
undergoes a second-order phase transition, and the 
transition temperature T c is the condensation point of 
the pairs in the ground state. From the macroscopic 
point of view, the new coherent state into which the 
electron system of the crystal goes over is character
ized by the existence of a certain, generally speaking 
complex, function lf! = lfi(rt), which has the meaning of 
the wave function of the electron-hole pair and which 
differs from zero below the transiti_on point Tc. The 
presence of a single function lf! = fe 1<f' for the entire 
sample, characterizing not only one particle but the en
tire ensemble of electrons, leads to the occurrence of 
phase differences between the lj!- functions at any two 
points of the crystal that are separated by large distan
ces; these phase differences are fixed at a given instant 
of time. Such a phase coherence leads to a number of 
specific quantum effects, the analysis of which is the 
subject of the present communication. 

We analyze phenomena occurring in a semiconductor
insulator-semiconductor tunnel structure, and show that 
when a voltage is applied to the structure, which is also 
optically pumped from an external source, then, in the 
quasistationary state, when the conditions necessary to 
realize electron-hole pairing are produced, an alternat
ing tunnel current begins to flow with a frequency 

ro=2V, 
where (1) 

V= Vr- Vt, Vr= 1/2D,+ J.tr, Vt = 1f2Dt+ 1-11. 

Dr and Dz are the widths of the forbidden bands of 
the right and left semiconductors, respectively, and JJ. r 
and JJ.l are the Fermi-degeneracy energies of the 
respective semiconductors. 

2. Thus, we consider a semiconductor-insulator
semiconductor tunnel structure, in which a stationary 

carrier density is produced with the aid of an external 
field. We confine ourselves for the time being to the 
case of high carrier density in the bands, when a signifi
cant redistribution of the spectrum occurs in a narrow 
energy layer at the Fermi surface. This case is the 
simplest from the mathematical point of view, being 
completely analogous formally to the case of super
conductivity. To investigate the phenomena occurring 
in the tunnel structure, we use an approach based on the 
tunnel-Hamiltonian method[2J. Such approach was de
veloped for the theory of the Josephson effect by 
Anderson[3J and by Ambeguokar and BaratofrC 4J. 

In the tunnel-Hamiltonian method, the tunnel junction 
of two semiconductors is regarded as a weakly- coupled 
system described by a Hamiltonian that consists in the 
zeroth approximately of two parts corresponding to the 
isolated right-hand and left-hand semiconductors 

Ho=Hro+Hao, 

and containing in the next higher approximation the 
term 

(2) 

Hw = J J w,, (rr') (IJlu+(r)IJl,t(r') + ¢zr+(r)IJl2 t{r') )drdr' + h.c., 

(3) 

describing the tunnel transitions of the electrons from 
one semiconductor to the other. Here lf!;r and lfi 2r are 
the electron creation and annihilation operators in the 
electron and hole bands of the right- hand semiconduc
tor, while l/!~z and lf! 2z are the corresponding operators 
of the left-hand semiconductor. 

We assume for the semiconductors in the tunnel 
structure a simple model with isotropic dispersion laws 
in the electron and hole bands. We assume for simplic
ity that the extrema E1 and E2 of the electron and hole 
bands are located at the point p = 0 of momentum space, 
and in addition the masses of the electrons and holes 
are equal. Then, say for the right-hand semiconductor, 
we can write 

Eu(P) = p' /2m+ 1/2Dr = p' /2m- J.tr + ( 1/2Dr + J.tr) =e(p) + Vr, 

E,(p) = -p• /2m- 1/2Dr= -p' /2m+ J.tr- (1/2Dr+ J.tr) 

= -e(p)- V,, 

( 4) 
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where Dr is the width of the forbidden band, ll r is the 
energy of the Fermi degeneracy of the electrons and 
holes of the right-hand semiconductor, and E(p) = p2/2m 
- ll r· 

In the case of high carrier density, n~ ~ 1 (n is the 
density and ao is the Bohr radius of the exciton), the 
Coulomb interaction energy of the electrons and holes 
is much smaller than the Fermi energy. The existence 
of an electron-hole bound state under these conditions 
was already postulated in[:.J , but for a semi- metal with 
overlapping bands. This naturally raises the question 
whether the conclusions ofC 1J are applicable to the sys-· 
tern considered by us. This question can be answered in 
the affirmative. The point is that the lifetime of the non
equilibrium carriers in semiconductors is usually long: 
enough compared with the time required to establish 
thermodynamic equilibrium ·in each band separatelf5 ' 6 ], 

and also with the time duri.ng which the electron-hole 
pairing, accompanied by redistribution of the spectrum, 
takes place. In this case our system becomes completely 
equivalent to that considered in[ 1J, and the appearance 
of terms with V r in the Hamiltonian does not lead to any 
physical effects (we are disregarding tunnel transitions 
for the time being), and their influence reduces to the 
appearance of trivial phase factors in the particle crea
tion and annihilation operators and in the Green's func-· 
tionsC 7J. 

Furthermore, at n~ » 1, the Coulomb interaction 
between the electrons and the holes is strongly screened, 
as a result of which only the carriers in a narrow mo
mentum- space layer near the Fermi surface take part 
in the production of electron- hole pairs. We shall there
fore consider a model analogous to the BCS model in 
superconductivity theory, i.n which the interaction be
tween the electrons and the holes is described by a cer
tain effective interaction Hamiltonian 

where (5) 

g = (2ne' I e0p/) In (2PF I Xn) > 0 

is the interaction constant, and the energy cutoff occurs 
at a frequency wn « wF, PF is the Fermi momentum 

of the crystal, KD is the D1~bye screening radius, Eo is 
the dielectric constant of the crystal, and l/! 1r and l/! 2r 
are the electron operators in the electron and hole 
bands. 

Just as inC1J, we disregard in the Hamiltonian the 
interaction of the carriers within a single band. As a 
result, the Hamiltonian of one of the semiconductors, 
say the right-hand one, is 

Hro = J (e(p)+ V, + U)ljJ,,+(r)ljJ,(r)dr 

- J (e(p)+ V,- U)ljJ2 ,+(r)ljJ,,(r)dr+g J ljJ,,+(r)ljJ,,+(r)ljJ,,(r)ljJ,,(r)dr. 

(H) 

The letter U denotes here the applied potential differ
ence (the contact potential difference between the semi
conductors is assumed equal to zero). The expression 
for Hz 0 is similar. 

3. In the tunnel-Hamiltonian method, the current 
from one semiconductor to the other is determined 

from the rate of change in the number of particles in 
one of the semiconductors: 

J(t)= e(fi(t)); 

N, = J 'i'u+(r)'IJu(r)dr + J ¢,,+(r)'IJ"(r)dr, 
(7) 

where Nr(t) is the operator of the rate of change of the 
particle number in the right-hand semiconductor, writ
ten in the Heisenberg representation. The averaging in 
(7) is carried out over the equilibrium canonical Gibbs 
ensemble with Hamiltonian H0 = Hro + Hz 0 , which con
serves the number of electrons in each semiconductor. 
The procedure of deriving the formula for the tunnel 
current is well known (see, for examplePJ), although it 
is somewhat tiring, since it is necessary to operate with 
cumbersome expressions. We shall therefore not pre
sent all the details of the calculations, and write out 
only the final results. 

The expression for the tunnel current is 

J(t) =11 sin2Vt+I,cos2Vt+I,, (8) 

where I11 I2, and I3 are given by 

+~ 

/ 1 = n-• { J th ;T (Im Ft(ro) ReF, (ro,_) + Re Ft+(Cth+) lmF, (ro) )dro 

Here 

+~ 

I,= R-' { J ( th 2; - th ;~- ) ImFr+(w)ImFt(ro,_)dro 

+~ 

I,= n-• {J ( th 2; -th ~·;) ImGt~"(ro)ImGu"(ro,_)dro 

d~ 
G"(ro) = J G"(w~) -, 

2n 

d~ 
F(ro) = J F(w~) Zn 

(9) 

(10) 

(11) 

are the Green's functions of the system, integrated over 
the energy, with G~ and~ the ordinary Green's func
tions of the electrons in the electron and hole bands, 
respectively, the functions F and F+ are analogous to 
the anomalous Gor'kov functions in superconductivity 
tr2ory and correspond to the electron- hole pairing ex
isting in the system. R = {4e1Wr/(mpF/27T2)2r 1 is the 
resistance of the insulating layer between the normal 
semiconductors, W1± = w ± V- U and W2:! = w ± V + U. 

The derived formulas (9)- (11) are valid for both 
pure semiconductors and for semiconductors with im
purities. We consider first semiconductors without im
purities. In this case 

(t) 

G,"(ro)=G,"(w)=- (t..'-w')'i,' F(w)=-F+(w)= (N-w'\'/,. 

(12) 
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Substituting these expressions in (9)-(11), we can ob
tain the explicit form of the integrals It, l2, and 13. We 
shall not write them out, however, in view of the com
plexity of the resultant expressions. We discuss only 
the final results. 

We consider the case T = 0. Then at IV- Ul < t>z 
+ t.r and IV+ Ul < t>z + t.r the integrals l2 and 13 are 
equal to zero, and the integral It is equal to 

and finally 

at IU-VI > 181-8,1, [U+VI > lrt1z-A,[, 

where K(x) is a complete elliptic integral of the first 
kind, 

x =[(Az-8,)'-(U±V)']'/, x =[(U±V)'-(Az-1'!,)']'12 
•± (8z-8r)'+(U±V)' '2± 48z8, · 

At 

max(IU-VI, IU+V[)=Az+8r 

a normal current appears jumpwise 

and the integral l1 has a singularity. The singular part 
of the integral It is 

l=R_,)';\z8,ln( 8z+8r ) (15) 
' 4 1~-(8z+8,>1 ' 

where 

~ = max ( I U - V [, I U -:- VI ) · 

In the case U = V, U + V » t>z + t>r, we have 

/, = R-' [ 2818r K ( l8z- 8rl) _ :rt81 1 'l, 
81+8r 81+8r 2U 

1 818r 2U 
1,=-R- U-ln (LII8 r)'!,' 

( 1\1'+8,'). I, = R-' 2U- 4U 

(16) 

(17) 

(18) 

We note that the tunnel current is equal to zero at 
u = o. 

We see thus that when a potential difference is ap
plied to a semiconductor-insulator- semiconductor 
tunnel structure, in which a large concentration of non-

equilibrium carriers is produced by an external field 
source, an oscillating electric current begins to flow 
through the structure. The magnitude of this current is 
described by formulas (8)-(10). At low voltages, only 
the integral It in (8) differs from zero. When the applied 
voltage is increased, a singularity appears in the cur
rent at the point max(IU- VI, IU +VI)= t>z + t.r; this 
singularity is connected with the fact that breaking of the 
electron-hole pair by the field and the penetration of one 
electron or one hole through the barrier become possi
ble. At this point, a normal current appears jumpwise. 
In very strong fields, when U » V, t>z + t. r• the integ
rals 11 and l2 decrease and tend to zero, while the in
tegral his proportional to U, corresponding to the usual 
Ohm's law. An unusual fact in our problem is that at 
U = V and U » t>z + t>r we always have an oscillating 
component of the current through the junction. Thus, by 
appropriate choice of the semiconductors for the tunnel 
structure, we can obtain an oscillating current by apply
ing strong fields to the structure. We note that the ratio 
of the amplitude of the oscillating current to the ampli
tude of the normal current is in this case of the order 
of t./U and not (t>/U) 2 as in the Josephson effect. 

We note finally that the derived formulas {8)-(11) 
can be used also for semiconductors with charged im
purities. Let us call attention to the singularity encoun
tered when the voltage for the tunnel current {8) is aver
aged over the positions of the impurities. Usually in 
the calculation of the current in homogeneous crystals[sJ 
one takes into account diagrams of the type 

-
a 

...... )(_)(_.,.,.., 
I o ,_, 

b 

The solid lines correspond here to Green's functions, 
the crosses to impurity potentials, and the dashed lines 
joining two crosses mean that scattering occurs twice 
on the same impurity. An examination of formulas 
(8)-(11) for the tunnel current shows that the Green's 
functions in the integrands belong to different semi
conductors, and therefore the diagrams of type (c) are 
of higher order of smallness with respect to the tunnel 
matrix element. Thus, in the calculation of the tunnel 
current we need not take into account the ladder dia
grams of the type (c), which make an appreciable con
tribution in a homogeneous crystal. On the other hand, 
the result of taking the diagrams of type (a) and (b) into 
account is that the functions (12) are more complicated 
and can be written in parametric form 

R U 

G (ro)=- (1- u')'l•' 
1 

F(ro) = (1- u')'!.' 

ro/!J. = u[1-1/-r8(1- u')'I•J, (19) 

where r is the free-path time. 
Substitution of the expressions for the Green's func

tions (19) in the integrals It, l2, and 13, we can show that 
the results do not differ qualitatively from the impurity
free case at an impurity density not close to the critical 
value at which the gap in the spectrum vanishes. 
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4. We emphasize that the effect considered by us . 
consists in the flow of an oscillating electric current 
through a tunnel structure and differs, generally speak
ing, from the Josephson effect, which in the case of 
electron- hole pairing should be represented as coherent 
tunneling of electron- hole pairs which transfer energy 
in the non-equilibrium system under consideration. The 
electric current should naturally be equal to zero in 
this case, since the charge of the pair is zero. The 
derivation of the formulas describing the coherent tun
neling of electron-hole pairs entails difficulty. As are
sult, we obtain for the quantity J'(t), which we define as 
the rate of change of the number of electrons in the 
upper band and of the holes in the lower band as a re
sult of tunneling from semiconductor to semiconductor, 
the formula 

I' (t) =It' sin 2l't +I.' cos 2Vt +I,', (20) 

+• 
I,'= R-' tith 2; (ImF,+(ro)ReF,(ro,_) 

+• 
+ ImF,(ro)ReF1+(roZ+))d(J] + Lth 2;(ImFt(ro)ReF,+(rot+) 

+• 
I,'= n-· { s I th~- th OOz- ) lmF,+(ro)ImF,(roz-)dro 

-~ 2T 2T 

+J•(th~- th~:::.) lm F r (ro) Im Ft+ (roZ+) dro}, 
-"'. 2T 22' . 

I,'= n-· { s"'"·( th~- th· OOt-) Im G,l"(ro)ImG,/(ro,-)dro 
• 2T 2T 

(21) 

(22) 

+• -- (23) 
- J (th~-th rot+\ ImG,,"(ro)ImG.,"(ro, ... )dro}. 

__ 2T 2T} 

Substituting further in (21)-(23) the expressions for the 
Green's function from (12), we can easily obtain explicit 
expressions for the integrals I~, I~, and I~, which are 
similar in form to the formulas for I1, I2 and I3, and dif
fer only in the plus and minus signs in the corresponding 
places. We therefore do not write out the formulas for 
I~, I~, and I~, and discuss only the results of the calcula
tions. 

At T = 0 and IU- VI, IU +VI< 1~ 1 - ~rl, the inte
grals I~ and I~ are equal to zero. The only nonzero 
integral is 

, _ _, ( K(z,_) 
I, -R 26.,6., [(.'\I+Il,)'-(V-U)']''• 

. K(z .... ) } (24) 

We note that, unlike (13), the integral I~ differs from 
zero at U = 0 (we recall that U is the external field ap
plied to the structure). Further, as seen from (24), I~ is 
not equal to zero in the case when U = 0 and V = 0, i.e., 
we arrive at the conclusion that the static Josephson 
effect for electron-hole pajlrs exists in the system 
under consideration. Indeed, an accurate allowance 
for the initial phases of thE! anomalous Green's function 

yields the following result: 

A,ll, (jll,-Arl) l'(t)=2R-' K . • sin(<pr-<pl)· 
Llt + Llr Ll/ + Ar 

(25) 

When the parameters U and V increase a normal 
"current" of electrons and holes from semiconductor 
to semiconductor appears jumpwise at the points 
max(IU- VI, IU +VI) = ~l + ~r· In the limiting case 
when (IU- VI, IU +VI) » ~l + ~r we obtain 

_1_1n jU- VI ) 
u-v (Lllllr)"'. 

; (27) 

{ ( Al'+llr') ( Lli'+Ar')} 
I,'=R-' (U+V) 1- 2(U+V)' -(U-V) 1- 2(U-V)' · 

(28) 

The obtained formulas (20)-(23) are valid also for 
semiconductors with charged impurities. In this case, 
everything said above in the preceding section concern
ing averaging over impurities in the expressions for 
J(t) remains in force. As a result, at an impurity con
centration not close to the critical value at which the 
gap in the spectrum disappears, the results do not dif
fer qualitatively from the impurity-free case. 

5. Thus, when considering quantum phenomena con
nected with the coherence of the phase of the wave func
tion in semiconductors with electron-hole pairing, we 
encounter a unique situation wherein the tunnel current 
from semiconductor to semiconductor depends on two 
parameters, namely V, determined by the rate of car
rier generation and by the difference between their life
times in the semiconductors making up the tunnel struc
ture, and U, which is the external voltage applied to the 
structure. At different ratios of U and V, oscillating 
electric current with frequency w = 2V can flow through 
a tunnel junction of two semiconductors with electron
hole pairing. 

The result can be interpreted as follows. First, the 
absence of a de component of the current at small biases 
is a symptom of dielectric pairing. As to the oscillating 
component, it is useful to recall here the situation that 
arises in the Josephson effect. As is well known, the 
cause of the Josephson current is the nonconservation 
of the number of particles in the superconducting state 
(the deviation from zero of the anomalous mean values 
( 1/J t 1/J i), the phase diffe renee of which on the left and on 
the right determines the oscillating frequency). In our 
case of electron-hole pairing from different bands, the 
total number of particles on the left and on the right is 
conserved individually (without allowance for tunneling), 
but the number of particles in each individual band is not 
conserved, since the anomalous mean values (1/Jtl/12) 
differ from zero. A tunnel structure with a constant 
bias is asymmetrical for electrons and holes, and is 
therefore sensitive to nonconservation of the number of 
particles in each band. On the other hand, the oscilla
tion frequency is determined by the phase difference be
tween the anomalous mean values (1/Jtl/12) on the left and 
on the right this quantity is V and not U as in the case of 
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superconducting pairing. The value of U, on the other 
hand, determines the magnitude of the oscillating cur
rent, since the degree of asymmetry of the tunnel junc
tion for electrons and holes depends on U. 

The result is a nonzero oscillating current described 
by formulas (8)-(18). In the presence of interaction 
with a radiation field, the oscillations of the electric 
current can be accompanied by emission of real photons 
with frequency w = 2V, which can be lower by several 
orders of magnitude than the frequency of the interband 
recombination radiation. We note that registration of 
such a radiation from a tunnel structure may turn out 
to be the most convenient method of observing the dis
cussed effect experimentally. The radiation line width 
will be determined by the reciprocal lifetime of the 
non-equilibrium carriers and at the lifetimes 
10-3-10-6 sec which are typical for certain semiconduc
tors it can be very small compared with the radiation 
frequency, which can be of the order of 1012-1014 sec-1 • 

Although the final expressions for the current were 
obtained for the case n~ » 1, these results remain in 
force qualitatively also for an arbitrary carrier density, 
provided the conditions for the condensation of the 
electron- hole pairs are satisfied. 

Thus, the effects connected with the coherence of the 

phase of the wave function in semiconductors with 
electron-hole pairing have a number of interesting 
properties, the investigation of which may prove useful 
in the study of the nature of the exciton phase in non
equilibrium semiconductors. 
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