SOVIET PHYSICS JETP

VOLUME 35, NUMBER 1

JULY, 1972

Additional Absorption and Parallel Pumping in an Antiferromagnetic Substance with

Anisotropy of the Easy Plane Type
. KoLganov

Moscow Physico-technical Institute
Submitted June 22, 1971
Zh. Eksp. Teor. Fiz. 62, 333-345 (January, 1972)

Nonlinear dynamic phenomena in an antiferromagnetic substance with weak ferromagnetism are studied in the case when the
external variable and stationary magnetic fields are collinear and lie in the basal plane of the crystal. An expression is obtained
for the threshold field strength. The behavior of the high-frequency complex susceptibility beyond the instability threshold is
studied with the aid of the nonstationary state density matrix. The effect of various processes of unstable oscillation interaction

is estimated.

THIS paper deals with phenomena that take place in
antiferromagnets of the easy-plane type, in which the
spin-wave vector consists of two branches when the
alternating magnetic field h is applied parallel to the
constant field H lying in the basal plane of the crystal.
The homogeneous field h of the indicated polarization
excites linearly homogeneous precession” of the anti-
ferromagnetic vector L = M; — M (the HF branch in the
resonant case), which decays into two spin waves of the
LF branch. This can be accompanied by intense thres-
hold absorption of the source energy, which sets in when
the rate of excitation of the spin wave of the LF branch
becomes comparable with the rate of their attenuation.
The resultant appreciable growth of the amplitude of the
spin waves of the LF branch in the stationary state
causes an increase in the rate of relaxation of the homo-
geneous precession L and, as a consequence, a rise in
the level of the absorbed power. In analogy with the
phenomenon investigated by Suh1™] , which differs from
the phenomenon indicated here in that the spin-system
oscillation in a ferromagnet correspond to precession
of the ferromagnetic vector M, this effect can be called
‘‘additional absorption’’ (AA) in the case of nonresonant
excitation of the oscillations of L and ‘‘saturation of the
main resonance’ in the particular case of resonant
excitation.

In the presence of weak ferromagnetism (MnCOs,
CoCO:s), a direct decay of a photon into two spin waves
of the LF branch is also possible. The mechanism of
the threshold growth of the absorbed power is consid-
ered in analogy with the AA, if account is taken of the
fact that the absorbed power is proportional to the num-
ber of excited spin waves in the stationary state. This
effect admits of an interpretation given by Schlomann
for ‘“‘parallel pumping’’ (PP)[ZJ with allowance for the
fact that the necessary elasticity of the precession of the
magnetic moment M is ensured here by the Dzyaloshin-
skil field Hp,.

The phenomena mentioned above were investigated
by Ozhogin[33. The classical equations of motion of
magnetization were used to calculate the threshold am-
plitude of the alternating magnetic field of ‘“indirect

YWe are dealing in fact with an almost homogeneous field and “almost
homogeneous” precession.
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parallel pumping,’”’ but the state beyond the threshold
was not investigated.

Recalling the obvious interest aroused by the study
of the mechanism of spin-wave relaxation, we allow our-
selves to dwell once more on the investigation of the
indicated effects, and primarily the stationary beyond-
threshold regime, on the basis of concrete calculations
and numerical estimates. The undisputed stimulus in
this investigation were the results of the experimental
study of AA in CsMnF; (Hp = 0), performed by Seaveyt*’
and by Prozorova and Borovik- Romanovf®],

The Hamiltonian of an antiferromagnet with aniso-
tropy of the easy-plane type is written in the form

% = RZ; [—7 (8)SrSra + 2D (A) (S2S%.a — SkSaa)]

+ ) éﬂ Q (R —r) 8"w* +§ [P (Sr")* — pag (H + h) Sg],
where h = h,, H = H,, and zy is the basal plane. Chang-
ing over to the proper coordinate axis of each spin and
carrying out in succession the Holstein- Primakoff trans-
formation in analogy with the procedure used inESJ, we
obtain the quadratic part of the spin Hamiltonian and

the interaction Hamiltonian of the spin system with
alternating magnetic field:

o IR ot o -
Hy = Zechzk Ck  Hg = Ha + %{k, 1-k»
ik

where the index 1 is connected with the oscillations of
M, 2 with the oscillations of L, and f with the oscilla-
tions of h.

So as not to clutter the results and to simplify the
analysis, we first study the case when there is no
Dzyaloshinskii interaction, i.e., Hp =0, a situation
realized, for example, in CsMnF;. This makes it possi-
ble to investigate the AA in ‘“‘pure form.”

1. CASE Hp = 0. ADDITIONAL ABSORPTION

1. The Hamiltonian of excitation by an alternating

magnetic field of homogeneous precession L is
9%20’=Wzo,£20+(t)5(t)+h.c., (1.1)

where b(t) is the photon annihilation operator, and the
amplitude of the interaction of the spin system with the
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alternating magnetic field is
zo’ = }ZEMDEEZO / He. (1 . 2)

To describe the stimulated oscillations of L, we the
equation of motion for the operator of these oscillations
czo(t). Changing over to c-numbers and introducing
phenomenologically the attenuation, we arrive at the
following equation:
dea (t)

dt

i

f
=((,m—iAm;,ff)czo(t)—}—-if;Lb(t), b(t) = be~ . (1.3)

Neglecting the proper oscillations, we obtain the
solution in the form
‘Y_éo b(t)e®

ff
, &=arctg _%
BV (00— o + (Rogffy?

@ — Oy

e (t) = (1.4)

2. The decay of the homogeneous precession L into
two magnons of the LF branch is described by the fol-
lowing term in the Hamiltonian:

7 20

%u.x—k = Z q’ﬁ,i-k&ﬁ (t) Extk(t) Ezo(t) + h.c . (1 . 5)
[

The equations of motion for ¢, (t), ¢, (t), and c¥_k(t)
then take the form

dew(t) , Woo! (¥ikax)*
i— —(a)z.,—lA(ozg)c,u(t)+—Fl—b(t)+2¥ (b eni(t),
20
id::(”=(m,.—mm”‘)c,,(t)+2 .w;""“"c.:k(t)c,,(t), (1.6)
~i 220 _ (s it + 28 L e,
(1.7)

In the first equation, the summation is over the set of
wave vectors k, such that the spin waves with these k
are degenerate in energy. We seek the solution c (t),
with allowance for the fact that WKW,k and w = 2w Kk
in the form

¢ (t) = cuexp(— iot /2)D (1),

and obtain from the systern (1.7), under the condition
$(t) = 1, the threshold value of the number of elemen-
tary excitations with k = 0, corresponding to the homo-
geneous precession L:

oM = (hAow/2| Winamk]) > (1.8)

To determine the amplitude of the interaction of the
excited oscillations with the spin system, \I/if( -k which

is a function of the Holstein- Primakoff transformation
coefficients u;; and Vyi» such that the Fourier compon-
ents of the spin—deviaiion operators are represented in
the form

Gau () = Z [BasCurc (8) + VavCurn(8) ],  @yv=1,2, (1.9)
we obtain the connection between €zo(t) and the spin-
deviation operators, i.e., the values of uj, and vy, in the
case of excitation of homogeneous precession L with
arbitrary frequency, whereas Uy and v, have the usual
form in the case w = 2wy, (see[sﬁ). Wrifing down the
Hamiltonian in terms of the spin-deviation operators

H = 2 Z‘Rapgak+(t)&;;k(t)+ ;Saaaak+(t)aﬂk (t)

o o (1.10)
+ /2 Z’R;paak(t)aﬂ—k(t) + Zoaau—l(t) b(t),
ap o

we obtain
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we obtain from the equations of motion for iak(t) and
Euk(t), with allowance for (1.9), an inhomogeneous sys-
tem of equations for u;, and v;,. Solving this equation,
we obtain, knowing Raﬁ’ SCYB’ and Qa’

2
[O2N)

<1+ 20vH: ) V:o_f::

U = U

(1)+(1Jzo

(1.11)

© 0°

~v22=vnzm+ﬁ)20(1_2(l)vHE)V

In the case of resonant excitation of L, the expressions

for u;, and v;, take the usual form'®). Knowing uj, and

Vj,, we obtain for M, < H < HE

Hy
@20

exnllp

2pwayH
2M,V

(@ + w2)

3. To calculate the effective relaxation rate of the
homogeneous precession of the antiferromagnetic mo-
ment, Awfo , we turn to the kinetic equations for nlk(t)
and nzo(t).

The behavior of the system of magnons of the LF
branch in response to a time-dependent perturbation
will be described with the aid of a nonstationary state
density matrix 5;k(t),2’ which is a solution of the equa-
tion

20 .
Wik -k & i

(1.12)

a ~ 1, ~ ~ ~
5700 () =[98, + Hsn (1), o’ (1)] (1.13)

under the conditions

[%., pu] = 0.

Fh’fk(— ®) = 5“’
Solving (1.13) by the iteration method, we obtainl®]
o (1) =pu+ Y A™pu(t),

My

A (8) = (— ih)=m fdn jl dr,... f:;n. (1.14)

X [Hres-x (1) [Hrenoc (), ..., [Bkr(tn), 0] ]- - T

Bk (v) = exp{idB.1/n) Bk exp{— i/}, (1.15)

Averaging the equation of motion for ﬁl (t) with the
aid of 5;k(t) represented by formulas (1.14) and (1.15),
we obtain the answer in the form of a series in powers
of the perturbation. Neglecting in the odd terms of the
series the quantity n,j in comparison with ngo(t), where
n = Tr(Py, N), we represent the right-hand side of the
average equation of motion, with allowance for (1.8), in
the form '

Fen(1)=0, m=1,2...,

j2m—2 m (1.16)
ety =~ o h g (20 _
L) = gy 200 n‘k( nm"“) +om=12...
In the same manner we obtain for nxk(t)
?I? = Mk 1ézm—i) t)y=0, =1,2...,
mak = A mk =0, m (1.17)

(2m) _ iem _ Ry (t)
Rk (t)—(—2m—)~! ”*k(m

) .., m=12...

We express A(M3 | (t) in terms of am=1)5 (),
integrate with respect to 7,, and after summing over m

DThe idea of using the nonstationary density matrix in the analysis
of parametric effects was advanced in!".
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[a@m L), ZA‘""pu‘ t)] (1.18)

¥ At =

m=1

L&Am

We use this relation for the averaging, noting that the
summation over m in the left-hand side of the equation
begins with m = 1, since < = 0, and the right-hand
side it begins with m = 0, since n’ = 0. In the right-
hand side, the upper limit of summation N — 1 can be
replaced by N, for whereas A(N)p lk(t) contributes to
(t), it does not contribute to n, (t). We can use here
also the convergence of the series (1.16) and (1.17).
Taking the limit as N — «, we average the equation of
motion for ﬁxk on the basis of relation (1.18). Introducing
the phenomenological damping, we obtain a kinetic equa-
tion, which we write out here for the case of arbitrary
w and C

dn,k(t)
dt

8| Wik x|
h?

= — 2Aoun (R () — ) +

L Av(mk + A(m-k
(© — o - (Dx—k)z +(A(ﬂ|k + Awi-x)?

X [0 (2) (Rax (8) + nux (8) + 1) — R (t) e i (2) ].

(1.19)

Analogously, considering the perturbation of a sys-
tem of elementary excitations corresponding to homo-
geneous precession L, we use a relation similar to
formula (1.18). As a result we obtain a kinetic equation
for ng(t):

d _ g \? Aottt (1)
_%2 = — 2A(1)20 (nzo (t) - nzo) + (‘;‘?) (m — ('020)2 _:li (A(‘ozeoff (t))’ n
8| Wik, 1-x I? Aok + Aoqx
% h? (0 — o — oK) + (A:l’lk + Aopk)? {20 (8) (max (8
+ nyx (8) + 1) — ny () Pyx (£)]. (1.20)

We shall henceforth put w = 2w, and take into ac-
count the fact that ny =n _,, n, >0, , and ny > Tao.
The main r:esult of this is that in the stationary state
(nx = 0 = n,y) we get from (1.19) and (1.20)

n
A0t = Awy, + % Aoy fj o= 2(m0— ), (1 21y
Mo — (‘F_' ) ny
T\ R ) T — 0P + (Bogiy -

The last equation, with allowance for (1.8), (1.12),
and n; = h®V/87e, yields the threshold value of the am-
plitude of the alternating magnetic field

A(ﬂlkm(ﬁ) + (Dzo)y(ﬁ)zo - 0))2 + A(l)z—oz
v Haoo?

The solution of the system (1.21) is simplest to ob-
tain in the case Z > ws (Where = = > (Aw k). Then,

pthr = (1.22)

accurate to wzoZ ', we have ngo & nthr. To determine
n; and Aweff we obtaln the followmg relations:

((!Jzo - (D) 2

AonT & V(ow — o)+ Aot —
20 V((l)u ©)*+ Awz VP (020 — ©)*+ Awz* ’

(1.23)

— Awzo
E ’

h,A(ﬁzo
Ry & g

where p = (h/hthT)2,
Finally, taking into account the expressions

M oﬁza

oﬂ,(t)=—iV c“m(t)+h c., h, (t)—iv——b(t)—{—h c.

and changing over to c-numbers, we obtain for the
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" FIG. 1. Dependence of the
imaginary part of the suscep-
tibility on h at |wye—wI> Aw,g
and Hp = 0, for o equal to zero
(curve 1), 0.1 (2), and 0.2 (3).

susceptibility x,,(w), with allowance for (1.4),

M, Wgo ,
2H & (03 — ) — 1AGZH (7) ’

%(o, p) =

which can be represented, using (1.23), in the form

Y(mzo-—m)’ + A(Dzoz“/ _
A(l)znp ((Dzo - (1)) z + A(l)zoz
¥ (0, p) = ¥/ (0, 1)p~. (1.24)

In the case considered above, the expressions for
n, and Awgoff do not depend on the form of the collision
integrals, in view of the fact that under the condition
% > wz the considerable increase of the effective re-
laxation rate szeoff as a result of the decay of the homo-
geneous precession L into spin waves of the LF branch
leads to ‘‘quenching’’ of the amplitude of the homogene-
ous precession L near the threshold value, and this de-
termines uniquely the stationary state of the system.
The value of szeoff is then obtained from the relation ny,
= thr and n . is obtained from the first equation of
(1. 21) w1th N ~ nilT taken into account.

In the more general case £° > pszo, when the am-
plitude of the homogeneous precession L can increase
beyond the threshold, we obtain for the susceptibility at
p >1and wz = w

AU EPA0) N T =]

((!)zo - (.0) 2

1 (@,p) = ¥ (0,1)

(1.25)
x'(p) =0.
For |wz — w| > Awsz We get (see Fig. 1)
’” ~ !l n 0(p_2)+-y'02pz+(p_1)
X (0,p) = x"(0,1) 1T a0 P ,
pAteortverip-n (126
X' (0,p) = ¥ (o, 1 ;
where (1+40%)p

N = |ow— 0| /Aow, 0= low—ol/4Z.

It is of interest to estimate the parameter o. Chang-
ing over in o from summation to integration, for a sam-
ple dimension I > m/2Kk, in the case of a low degree of
energy degeneracy of the spin waves with different k we
obtain at wzy > w

0 X mwa/2VAwik, 0k,
where ko is obtained from the equation € = ¢, i.e.,
& = 2Ve + 8. (koa)?, (1.27)

and 6k is obtained from the condition that the energy
degeneracy of the spin waves is determined only by the
field of the spin wavel®] , it being assumed that 6k < ko.
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The final expression for o takes the form
o~ e () [=(2)]

~ 3 x 10° Oe,
5.3 x 107*° ergl¢]) at f = 36 GHz and

Let us estlmate o for CsMnF; (H
wzo ~ T X 10“, ®c
= 3 x 10° Oe:

o* ~ 3()/ VAw‘x.

As shown above, if & >> wy, the behavior of the sus-
ceptibility beyond the threshold does not depend on the
form of the collision integral. Let us consider now the
influence of magnon collisions on the magnitude of the
instability threshold. The threshold for the scattering
of two elementary excitations corresponding to the
homogeneous precession L, with formation of two mag-
nons of the LF branch, exceeds under ordinary condi-
tions the threshold of the instability considered here by
several orders of magnitude. Three-magnon processes
with only LF-branch magnons taking part are forbidden.
The probability of processes in which two LF-branch
magnons and one phonon take part, as shown by calcula-
tion, turns out to be very small. The coalescence of two
magnons of the LF branch with approximately equal
quasimomenta into a single magnon corresponding to
the oscillations of L, as follows from the energy and
quasimomentum conservation laws and from the fact
that the value of k for each H is determined from (1.27),
is possible only when w = w20 = 2wio. In the latter case,
the relaxation rate of the LF-branch magnons obtains
an increment that does not depend on the pumping power.

We note that in the foregoing calculations it is neces-
sary to take formal account of four- magnon interaction
of pairs of excited magnons of the LF branch. It can be
shown, however, that for the antiferromagnets investiga-
ted here the influence of the indicated interaction on the
stationary state is negligibly small.

2. CASE Hp, =0

1. In this case the action of the alternating magnetic
field on the spin system is not limited to excitation of
the homogeneous precession L. The new terms in the
Hamiltonian, describing the decay of a photon of the
radiation incident on the crystal into two L F-branch
magnons, has the following form:

jgu;,x-k = Z qf{i,i—kgxﬂ(t) E;—k(t) Z(t) +a.¢c, (21)
k
where
*H
Wiox = — i 2o p > He<H,
begx

Defining the threshold of the excitation of spin waves of
the LF branch by the condition ¢, (t) = ¢, & 19t/2 which
denotes equality of the relaxation and excitation rates,
we obtain at w = 2w,), from the condition that the sys-
tem of equations of motion for Clk(t) and c —(t) have a
solution, the following expression for the threshold field

pihr 20010 (® F 020} [ (0 — ©20) + Awn?]"
‘ 'Yz{[(!)znz'zH +((l)zoz— (02) Hp]z-f- (ﬂ) + (l)zo) zA(ﬂzqupl} Y

. (2.2)

In the limiting cases of low and high frequency and
in the case of saturation of the main resonance, the ex-
pression for the threshold field coincides with the
formula obtained , with allowance for the fact that

_ 2 8 | ‘Fﬁ, 1k | | \Flk. 1—k'\F20
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here Awjq has the meaning of the line half-width.

2. To analyze the threshold processes that occur in
the spin system under the action of a time-dependent
perturbation, we use, in analogy with the case Hpy = 0,
the nonstationary density matrix defined by formulas
(1.14) and (1.15). When considering the perturbation of
the system of magnons of the LF branch, we use a rela-
tion analogous to (1 18):

Z A(m)pm

However, unlike the case Hpy = 0, here ([(Zm)(t) =0
(m=1,2,...), as determined by the coupling of two
spin-system excitation channels. To take this coupling
into account, we also carry out averaging using the fol-
lowing formula:

Mm [%m () + B (£),

@ oo )

EP
dt, dt, exp ( — iT(r, + 12))

m=2 0 0

X[%ikl k(t-—’r(—‘Tz)-i"Q%

+9@;{,(l—rl—-rz), exp (—t-——r,) [9@‘:’1“ " t—'r.)—!-w%,k, w(t— 7))

(t—Tt—Tz)

+ i (t— ) EA("‘)p,x(t) ]exp(léﬁg—r,)] exp (z—-——(r, +rz))

(2.4)
where, in accordance with the statements made above,
the summation in the left-hand side begins with the
minimal nonzero even index. The averagings on the
basis of relations (2.3) and (2.4) do not duplicate each
other, since the former yields only A’J.'(l)(t) with odd i,
and the latter with even i. In other words, averaging
with the density matrix p i (t) obtained after summing a
series of the type (1.15) is equivalent to averaging on
the basis of relations (2.3) and (2.4) with N — «.

In the analysis of the perturbation of a system of
elementary excitations corresponding to homogeneous
precession L, it is necessary to take into account in
exactly the same manner the coupling of two excitation
channels of the spin system on the basis of relation
(2.4), with A(M)5  (t) replaced by A(M)3o(t). The sys-
tem of kinetic equations have the following form:

d t f [
n:ikt( ) 200 (2) + 4 I;X;oxl: [ @ (g — 2, (8)
20 f
+ 4‘,:‘:;;* " o )7 ) — iy B ¥ B ¥ Wi
Woq — O
X e T O e OO
e 2.
dng, (t) — 28075 (2) + (‘on ) Aoglt ) ( 2
dt 20720 (@59 — @)% - (A gt (t))?
4] WE
- AR o a0 — )

(@030 — )
(@30 — ©)* + (Aogff (t))2

Ao (2ny, (O n, — 02, (2)).
From the condition that n ) (t) must increase exponen-
tially with time at t ~ 0 we obtain the instability thres-
hold (2.2).

In the investigation of the stationary state, we use
the following notation:

" BAow  \* ( Ao )’ (h"’ )2 2.6
Fi; = — ), Byp={|—mp1 > §= Rl ( . )
! (ZI Wik 1k | ) * PAR 2 Iy hthe
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where
B'®? = 20A0. / y*Ho.
Confining ourselves to the case
t+n'<[EC—p)E—1) /)% (2.7
%
where £ =2 Zk“, Aw  Awyb and for H > 10°Hpw" "z,

recognizing that n; > Tz, We obtain the stationary solu-
tion of the system (2.5):
eff

ma = Zﬁ“g—f;——li)‘(%_ t). (2.8)
Boit" = Bo [ g(nzz-_i)i— 1 (p - g(n::f)— 1 )] K

To determine the susceptibility x,,(w) we calculate
the projection of the magnetic moment M = M, + Mz on
the z axis in the second-quantization representation. We
represent the result in fields H < Hp, in the form

oM, = oM,* + oM.,

6M‘(t)=—zV2H cho(t)-*-h .C., 2.9)
o, “(t)—z—c“(t)c, «()+ h.c.

The quantity cqo(t) is determined by the expression (1.4).
In the calculation of clk(t)cl_k(t) we take into account
the four-magnon interaction of the excited pairs of mag-
nons of the LF branchl® with k inside an interval k
near ko as given by (1.27). The threshold of the four-
magnon process of production of new pairs of unstable
magnons cannot be attained at real pump powers, owing
to the smallness of n) in the stationary state. The
equation of motion for clk(t)cl-k(t) is
iditcﬂ(t)c,_k(t) = 2(01x — IA®) Cix () Ci—x (t)
* 2 20
- (Cik.(z) Cu(t)+ co—x(t) cs—x(t) )’h—(qftkv 1 C20(t) + Win, 1k b (?))
* 2 iq, 1—-q

+Z(cik‘(t)ctk(t)“r‘Cx—k(t)ct-k(t)) 7 Wikqt x C1q(2) €1-q( (2 10)
Let us estimate the contribution of the four- magnon
interaction with allowance for the quantity
wig’}:k ~ w’Hg/16M,VL®] and formulas (1.12) and
(2.8):

2(n1k+n1 . l{ff.? S ~ 107 Aon.

Since the condition Aw ) < 10° sec™ is certainly satis-
fied in the cases of interest, the indicated interaction
makes a negligibly small contribution to the effect. The
solution of (2.10) at w = 2w ; in the stationary state is
then

R . on pH
Cu (8) 1k (2) = (¢puenn + cx—kcl‘“)l g’I; Zl;‘lAu?_ b(He,
20002 HiH p (2.11)

§' = arctg

(AL )2 (0 + wy9) + (039 — @) (202, H/Hp + (02, — o?)] ©

Taking formulas (1.4), (1.21), (2.9), and (2.11) into ac-
count, we obtain for the susceptibility

x(o, p) = x'(o, p) + x" (o, p),
(2.12)

M .
I — 0 20
KO P) = 3 Ton— o) — ihagk (7)

2 ' H p*

11 — _ridp” Y _
(@, p) 2! SV ofAon exp {1 (8" (p) — 7/2)} nyx (p).

2 ”I "
Ty
/ 130
FIG. 2. Dependence of the 1.,
imaginary part of the susceptibility .
on h at w < wyo and Hp = 4.4 kOe 2
and H equal to 1 kOe (curve 1), 2
kOe (2), and 4 kOe (3). 7 H /1,0
4 % =5 Vi
h/h'P, qp

Substituting here formulas (2.8) and (2.11), we obtain
the final expressions for the susceptioility, which we
present here in two limiting cases. For w < w3 we get
(see Fig. 2)

M, [(2H + H,)>— Hp*p]

R (o) = S T ) — H 15
AR R

(2H+HD) — Hy'’p
2pHy(H + H)p) ]

For the case w = w20, When the investigated effect is a
superposition of the saturation of the main resonance
and parallel pumping (PP), we obtain at p < (w20H)? x
X (szoHD)

><[1+

M, o 1

2HE A(Dzn VP_'

Reyt(p)— o Ho VP —1 (2.14)
4H, H Vp

Mo Az HD ? -
GHy  0m (H) Vp—1).

Rey'(p)=0, Imy'(p)=

Imx™(p) =

Ath >nfP given by formula (2.6), there is no stationary
solution. In the case w > wqo, the region of existence
of the stationary solution narrows down practically to
zero in view of the fact that hthT ~ htP,

We note that the condition (2.7) means nyp ~ nioT. The
character of the change of x”(p), if ny increases beyond
the threshold, can be estimated with the aid of formulas
(1.26) and (1.27), obtained for the case Hpy = 0.

At w = w2 there exists a real stationary solution of
Eq. (2.5 ath >h p which, however, is not realized
when account is taken of the saturation of 6 M,(t). A
calculation accurate to n]k yields for H < HE

MPH = 'LZ—H:;P)— [ZMo_ w Zk(':a:n‘k+ az: nzk)]

E2x 1 (nHE)? pe
— E 2uM, Ll 2' —_2 .
4 wiy P«HE oy + 4 P Nk Naq 7 Nk Nag
k,q k,.q
From this we get

2M, €20 zMn €4k
max N,y ~ P , max Ny & ———.
wHg ™ wWHg

2

(2.15)

On the other hand, the already mentioned solution for
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ny and ny at p # ¢ is of the form
\FIOI 2 n}hrﬁ; D— E
ki ) 20 ( t—1 )

2M 820
' HZHE '

nae = A(p—1L), Ba= (

We note also that at w = wzo threshold scattering of
two elementary excitations of the HF branch with k ~ 0
is possible, with formation of two elementary excitations
of the HF branch with q and —q. Since in this case the
value of q is small and the sum over q is accordingly
small, one should expect the contribution of this process
to the collision integral % (ny) to be negligibly small.

As to the PP in ferromagnets, when account is taken
of the density of the final states, the kinetic equation
contains formally a term describing the ‘‘reaction’’ on
the pump, which, however, is suppressed by the terms
responsible for the four-magnon interaction of the pairs
of excited magnons. In the case of AA in ferromagnets,
all the indicated terms are generally speaking, signifi-
cant in the kinetic equation.

DISCUSSION OF RESULTS

In the case of AA, the intense absorption is attribu-
ted to the increase of the phase difference between the
alternating magnetic field and the homogeneous pre-
cession L, this being due to the increase of the effective
rate of relaxation of the homogeneous precession L, the
cause being the threshold decay into spin waves of LF
branch. However, besides the increase in the phase
difference, a decrease takes place in the amplitude of
the homogeneous precession L, which is also due to the
increase of Awfoff. As a result, the susceptibility
reaches a maximum and then decreases.

In the case of a superposition of AA and PP, the
latter effect (PP) leads to a considerable increase of

V. A. KOLGANOV

Awfoff, the result of which has a decrease in the number
of spin waves in the stationary state, and consequently
also a decrease of the susceptibility to zero at h = htp,
As to the stability of the solution, as indicated above,
when the stationary state is investigated the four-mag-
non interaction can be neglected. No question of stability
arises in this case.

A comparison of the experimental dependence of the
imaginary part of the susceptibility on the amplitude of
the alternating magnetic field, obtained in"*¥for
f = 36 GHz and H = 2—4 kOe, gives satisfactory agree-
ment with the first formula of (1.26) at 0 =~ 0.1-0.2.
The order of magnitude of the calculated imaginary part
of the susceptibility also agrees with the estimates of
the experimental value x"(w, p) ~ 107°.

In conclusion, the author is deeply grateful to A. S.
Borovik- Romanov, M. I. Kaganov, and M. A. Savchenko
for useful discussions.
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