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Nonlinear dynamic phenomena in an antiferromagnetic substance with weak ferromagnetism are studied in the case when the 
external variable and stationary magnetic fields are collinear and lie in the basal plane of the crystal. An expression is obtained 
for the threshold field strength. The behavior of the high-frequency complex susceptibility beyond the instability threshold is 
studied with the aid of the nonstationary state density matrix. The effect of various processes of unstable oscillation interaction 
is estimated. 

THIS paper deals with phenomena that take place in 
antiferromagnets of the easy-plane type, in which the 
spin-wave vector consists of two branches when the 
alternating magnetic field h is applied parallel to the 
constant field H lying in the basal plane of the crystal. 
The homogeneous field h of the indicated polarization 
excites linearly homogeneous precession'> of the anti­
ferromagnetic vector L = M1 - M2 (the HF branch in the 
resonant case), which decays into two spin waves of the 
LF branch. This can be accompanied by intense thres­
hold absorption of the source energy, which sets in when 
the rate of excitation of the spin wave of the LF branch 
becomes comparable with the rate of their attenuation. 
The resultant appreciable growth of the amplitude of the 
spin waves of the LF branch in the stationary state 
causes an increase in the rate of relaxation of the homo­
geneous precession L and, as a consequence, a rise in 
the level of the absorbed power. In analogy with the 
phenomenon investigated by Suhlf 1J, which differs from 
the phenomenon indicated here in that the spin- system 
oscillation in a ferromagnet correspond to precession 
of the ferromagnetic vector M, this effect can be called 
"additional absorption" (AA) in the case of nonresonant 
excitation of the oscillations of L and "saturation of the 
main resonance" in the particular case of resonant 
excitation. 

In the presence of weak ferromagnetism (MnC03 , 

CoC03), a direct decay of a photon into two spin waves 
of the LF branch is also possible. The mechanism of 
the threshold growth of the absorbed power is consid­
ered in analogy with the AA, if account is taken of the 
fact that the absorbed power is proportional to the num­
ber of excited spin waves in the stationary state. This 
effect admits of an interpretation given by Schlomann 
for "parallel pumping" (PP)[2J with allowance for the 
fact that the necessary elasticity of the precession of the 
magnetic moment M is ensured here by the Dzyaloshin­
ski1 field H0 . 

The phenomena mentioned above were investigated 
by Ozhogin[3J. The classical equations of motion of 
magnetization were used to calculate the threshold am­
plitude of the alternating magnetic field of "indirect 

l)We are dealing in fact with an almost homogeneous field and "almost 
homogeneous" precession. 
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parallel pumping," but the state beyond the threshold 
was not investigated. 

Recalling the obvious interest aroused by the study 
of the mechanism of spin-wave relaxation, we allow our­
selves to dwell once more on the investigation of the 
indicated effects, and primarily the stationary beyond­
threshold regime, on the basis of concrete calculations 
and numerical estimates. The undisputed stimulus in 
this investigation were the results of the experimental 
study of AA in CsMnFJ (Ho = 0), performed by Seavef4J 
and by Prozorova and Borovik-RomanovC5J. 

The Hamiltonian of an antiferromagnet with aniso­
tropy of the easy- plane type is written in the form 

:ie = ~ [ -J (..:1) Sa,Sa,+A + 2D (..:1) (Sa,s¥.. •• A- Sft,Sit,.A)l 
R,A 

+ ~ Q(R-r)S'/~'ax+~[P(S'ax)2 -fLBg(H+h)Sa], 
r, R,.Pr R 

where h = hz, H =Hz, and zy is the basal plane. Chang­
ing over to the proper coordinate axis of each spin and 
carrying out in succession the Holstein-Primakoff trans­
formation in analogy with the procedure used in[s], we 
obtain the quadratic part of the spin Hamiltonian and 
the interaction Hamiltonian of the spin system with 
alternating magnetic field: 

:ie. = ~ BjkCJk Cjk :ie.' = :iei, + :iei., 1-k· 
jk 

where the index 1 is connected with the oscillations of 
M, 2 with the oscillations of L, and f with the oscilla­
tions of h. 

So as not to clutter the results and to simplify the 
analysis, we first study the case when there is no 
Dzyaloshinski1 interaction, i.e., Hn = 0, a situation 
realized, for example, in CsMnFJ. This makes it possi­
ble to investigate the AA in "pure form." 

1. CASE Hn = 0. ADDITIONAL ABSORPTION 

1. The Hamiltonian of excitation by an alternating 
magnetic field of homogeneous precession L is 

(1.1) 

where b(t) is the photon annihilation operator, and the 
amplitude of the interaction of the spin system with the 
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alternating magnetic field is 

To describe the stimulated oscillations of L, we the 
equation of motion for the operator of these oscillations 
c2o(t). Changing over to c-numbers and introducing 
phenomenologically the attenuation, we arrive at the 
following equation: 

dc,(t) eff '¥,.' 
i--=(w,.-il'!.w20 )c20 (t)+-~-b(t), 

dt " 
b(t) =be-'"'. (1.3) 

Neglecting the proper oscillations, we obtain the 
solution in the form 

~ bW~ ~ill 
c,0 (t);::::; ~ 6 =arc tg --•-• _. (1.4) 

1i v (w,.- w)' + u.w,g-q• (1)- w,. 
2. The decay of the homogeneous precession L into 

two magnons of the LF branch is described by the fol­
lowing term in the Hamiltonian: 

(1.5) 

The equations of motion for c20(t), c1k(t), and ci-k(t) 
then take the form 

. dc,.(t) . 'l',o' ~ ('¥,!~,-•) • . 
1-d-t- = (w,.- 1L'!.w20 )c20 (t) + -~ b(t) + 2 "'-.! li c,.(t)c,_.(t.l, 

" 
. dc,.(t) . '!'~~-,_. • 
~~ = (w,. -tt.w,.)c,.(t) + 2---fi-c,_.(t)c,.(t), (1.1>) 

. de:_. (t) . . • ('¥,':.,_.) • , 
-l--d--=(w1-•+tllw,_.,~c,_.(t)+2 fi c,.(t)c20 (t), 

t (1.7) 

In the first equation, the summation is over the set of 
wave vectors k, such that the spin waves with these k 
are degenerate in energy. We seek the solution c1k(t), 
with allowance for the fact: that w 1k = w 1 _ k and w = 2w 1k, 
in the form 

c,.(t) = c,.exp(- iwt/2)<D(t), 

and obtain from the system (1. 7), under the condition 
<l>(t) = 1, the threshold value of the number of elemen­
tary excitations with k = 0, corresponding to the homo-­
geneous precession L: 

(1.8) 

To determine the ampli.tude of the interaction of the 
excited oscillations with the spin system, -1!20k k• which 

1 ' l-

is a function of the Holstei.n- Primakoff transformation 
coefficients uij and v ij, such that the Fourier compon­
ents of the spin-deviation operators are represented in 
the form 

we obtain the connection between c20(t) and the spin­
deviation operators, i.e., the values of ui2 and vi2 in the 
case of excitation of homogeneous precession L with 
arbitrary frequency, whereas ui and vi have the usual 
form in the case w = 2wik (see[6~ ). Wrihng down the 
Hamiltonian in terms of the spin- deviation operators 

ie = •;, ER·~~ .. +(t)~~'~.(tl+ Es .. ~ .. +(t)~,.(t) 
a!) a:!) 

+ '/, ER=~~ .• (t)~o-•(t)+ EQ.~;_.(t) b(t), 
(1.10) 

.. 

we obtain from the equations of motion for aak(t) and 
c k(t), with allowance for (1.9), an inhomogeneous sys­
ttfm of equations for ui2 and vi2. Solving this equation, 
we obtain, knowing R 0 W S08, and Q0 , 

(1) ( w,.' ) vyn; -u,.=u" ~--- 1+-- --
w + Wzo 2wyHE W20 

(1.11) 

-Vu=Vu~--- 1---W ( Wzo2 ) v yHE 
w + Wzo 2wyHE -;;;-;:- · 

In the case of resonant excitation of L, the expressions 
for ui2 and vh take the usual form[sJ. Knowing ui2 and 
vi2, we obtain for Mo « H «HE 

nr" _ . 2~-tw,yH v e,.HE 
Ttkt-k ...-.J t --

• w(w+w,) 2M,V' 
(1.12) 

3. To calculate the effective relaxation rate of the 
homogeneous precession of the antiferromagnetic mo­
ment, t.w;0ff, we turn to the kinetic equations for n1k{t) 
and ll2o(t). 

The behavior of the system of magnons of the LF 
branch in response to a time-dependent perturbation 
will be described with the aid of a nonstationary state 
density matrixp~k(t), 2 > which is a solution of the equa­
tion 

iJ ~ 1 ~ .::... ~ at Plkl (t) = ifi [.U, + dtij!k,!-k(t) I P!k/ (t) l 

under the conditions 

P~i (- 00) = Plkt [~s, Pit] = 0. 

Solving (1.13) by the iteration method, we obtain[aJ 

P••' {I}= P1k + .E L'i(m)p,.{l}, 
m•! 

(1.13) 

"'m-1 

L'i(m)P!k{t)=(-ifi)-m id"t",_f d-r, ... J d"t"m (1.14) 

a'€,:.~-•(-r) = exp{ii€,-r/fi}a'€,;~,-• exp{- t.fe.-r/fi}. (1.15) 

Averaging the equation of motion for n (t) with the 
aid of p' k(t) represented by formulas (1.11) and (1.15), 
we obtafn the answer in the form of a series in powers 
of the perturbation. Neglecting in the odd terms of the 
series the quantity nlk in comparison with n2o(t), where 
i11k = Tr(p 1k, ll 1k), we represent the right-hand side of the 
average equation of motion, with allowance for (1.8), in 
the form 

5f?<Zm-Z) (f)= 0, m = 1, 2 .. ,, 

i'm-2 _ nzo(t) m (1.16) 
(2m- 1)! 2L'iw,.n,. ( n,.thr) + ... , m = 1, 2 ... 

In the same manner we obtain for n1k(t) 

n~~l == n,., n,fm-!'{t) = 0, m = 1, 2 ... ' 

(2m) i'm - ( n,(t) ) m 
n,. (t)=--2n,. --h- + ... , m=1,2 ... 

(2m)! n"t r 

(1.17) 

We express t,(m)p 1k(t) in terms of t,(m-1)p
1
k(t), 

integrate with respect to T1, and after summing over m 
we obtain 

''The idea of using the nonstationary density matrix in the analysis 
of parametric effects was advanced in[7l_ 
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We use this relation for the averaging, noting that the 
summation over min the left-hand side of the equation 
begins with m = 1, since .~'<ol = 0, and the right-hand 
side it begins with m = 0, since n<~ ._. 0. In the right­
hand side, the upper limit of sumbation N- 1 can be 
replaced by N, for whereas t::.. (N)p tk(t) contributes to 
• ':£ (t), it does not contribute to nl}t(t). We can use here 
also the convergence of the ser1es (1.16) and (1.17). 
Taking the limit as N - co, we average the equation of 
motion for fitk on the basis of relation (1.18). Introducing 
the phenomenological damping, we obtain a kinetic equa­
tion, which we write out here for the case of arbitrary 
wand wtk: 

dn,.(t) _ 81'1":! .• -•1' 
-d-t-=- 28ro,.(n,.(t)- n1•)+ h' . 

~ro •• + t::..ro,_. (1.19) 

X [n,.(t) (n,.(t) + nt-> (t) + 1)- n,.(t)n,_. (t) J. 

Analogously, considering the perturbation of a sys­
tem of elementary excitations corresponding to homo­
geneous precession L, we use a relation similar to 
formula (1.18). As a result we obtain a kinetic equation 
for n:w(t): 

dn.o - 2t::..ro (n (t) ii. ) + ( '~"'-)' t::..ro;[f (t) 
dt- - 20 20 - •o T (ro- Oloo)' + (t::..ro;::[f (t))' n, 

~ 81 'Y:&. 1-k 12 L:..rotk + ~Olt-k 
- • n• (ro- Olt• - ro1_.)2 + (t::..rolk + t::..ro1_.)2 [n,o (t) (ntk (t) 

+ n1-• (t) + 1)- n1k (t) ~-• (t}]. (1.20) 

We shall henceforth put w = 2w 1k and take into ac­
count the fact that n1k = n1 _ k' n1k >> n1k, and n2o >> n2o· 
The main result of this is that in the stationary state 
(n1k = 0 = ~0) we get from (1.19) and (1.20) 

t::..ro,:'[f = t::..ro20 + ~ t::..ro1• ::: , n1• = 2 (n20 - n~), (1.21) 

n,o = (~'-)' nt 
" (ro20 - ro)' + (t::..ro~'[f)' · 

The last equation, with allowance for (1.8), (1.12), 
and nr = h2V/87TE, yields the threshold value of the am­
plitude of the alternating magnetic field 

hthr ~ L:..ro,.ro(ro + ro,.)}'(ro20 - ro)' + 8ro202 

' y2Hffizo2 • 

(1.22) 

The solution of the system (1.21) is simplest to ob­
tain in the case E » W2o (where E = ~ (t::..w 1k). Then, 

k 
accurate to W2oE-\ we have ~0 ~ ~~r. To determine 
ntk and t::..w~0ff we obtain the following relations: 

eff ,1 2 ,1/ (ro,o-ro)' 
d(tl,, ~ r (rozo- ro) + t::..ro .. V p- ( )'+ 8 2 , 

Olzo- (i) (i)" (1.23) 

thrAro,;ff- AOlzo 
nu,~nlo ~ , 

where p = (h/hthr)2. 
Finally, taking into account the expressions 

• .1/ M,ll,: , , 1/ 2ztll , 
{JM,(t)=-' y -9 c20 (t)+h.c., h,(t)= t r-b(t)+h.c. 

2 .. v v 
and changing over to c-numbers, we obtain for the 

FIG. l. Dependence of the 
imaginary part of the suscep­
tibility on h at Jwlo-wJ)> t.w20 
and Ho = 0, foro equal to zero 
(curve 1), 0.1 (2), and 0.2 (3) . 

O '------,0~----2,-LD­

h/hthr, dB 

susceptibility x zz(w), with allowance for (1.4), 

( Mo Oloo 
X ro, P) = 2H E (ro20 - ro) - it::..ro~ff (p) 

which can be represented, using (1.23), in the form 

"( ) "( 1) l'(ro,o-ro)'+t::..ro,.'1/ (ro,.-ro)' x ro, p ~ X ro, V P - , 
!!J.ro,.p (ro,.- ro)' + 8ro202 

x'(ro, p) ~ x.'(ro, 1)p-•. (1.24) 

In the case considered above, the expressions for 
n1k and t::..w~0ff do not depend on the form of the collision 
integrals, in view of the fact that under the condition 
E » W2o the considerable increase of the effective re­
laxation rate t::..w~t£ as a result of the decay of the homo­
geneous precession L into spin waves of the LF branch 
leads to "quenching" of the amplitude of the homogene­
ous precession L near the threshold value, and this de­
termines uniquely the stationary state of the system. 
The value of t::..w~P is then obtained from the relation n2o 
~ n~~r, and n1k is obtained from the first equation of 
(1.21) with n20 ~ n~~r taken into account. 

In the more general case E 2 » pt::..w~0 , when the am­
plitude of the homogeneous precession L can increase 
beyond the threshold, we obtain for the susceptibility at 
p > 1 and W2o = w 

x"(p) ~ "(1) [ t::..ro,. + 1/( A(tl,. )' __!__] 
X 4~ f 4~ +p' (1.25) 

x'(p) == o. 
For lw2o- w I » t::..w2o we get (see Fig. 1) 

"( ) "( t) TJ o(p-2)+-y'o'p'+(p-1) 
X ro, p ~ X ro, 1 + 40', p 

(1.26) 

where 
'(ro )~ '(ro 1) 1+2cr'p+fcr'p'+(p-1) 

X ,p X ' . (1 + 4cr')p 

TJ = I ro,. - ro I I t::..ro,.. cr = I ro,. - ro I I 4i:. 

It is of interest to estimate the parameter a. Chang­
ing over in a from summation to integration, for a sam­
ple dimension l » 7T/2k, in the case of a low degree of 
energy degeneracy of the spin waves with different k we 
obtain at w2o » w 

where ko is obtained from the equation E = E1k, i.e., 

ll ~ 2}'s1o' + 8c'(koa)', (1.27) 

and ok is obtained from the condition that the energy 
degeneracy of the spin waves is determined only by the 
field of the spin wave[sJ, it being assumed that Ilk« ko. 
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The final expression for a takes the form 

a~ :ruo20a' H8 (~~)' [i- (~ )'] -'I• . 
V.1.ro,. M, e e 

Let us estimate a for CsMnF3 (HE Rl 3 x 105 Oe, 
W2o Rl 7 x 1011 , e(: Rl 5.3 x 10-15 erg(4J) at f = 36 GHz and 
H = 3 x 103 Oe: 

a" ~ 30/ V8ro, •. 

As shown above, if :E ~> w 20 the behavior of the sus­
ceptibility beyond the threshold does not depend on the 
form of the collision integral. Let us consider now the 
influence of magnon collis:ions on the magnitude of the 
instability threshold. The threshold for the scattering 
of two elementary excitations corresponding to the 
homogeneous precession 1., with formation of two mag­
nons of the LF branch, exeeeds under ordinary condi­
tions the threshold of the instability considered here by 
several orders of magnitude. Three-magnon processes 
with only LF-branch magnons taking part are forbidden. 
The probability of processes in which two LF-branch 
magnons and one phonon take part, as shown by calcula­
tion, turns out to be very small. The coalescence of two 
magnons of the LF branch with approximately equal 
quasimomenta into a single magnon corresponding to 
the oscillations of L, as follows from the energy and 
quasimomentum conservation laws and from the fact 
that the value of k for each H is determined from (1.27), 
is possible only when w ~ w2o ~ 2 W1o· In the latter case, 
the relaxation rate of the LF-branch magnons obtains 
an increment that does not depend on the pumping power. 

We note that in the foregoing calculations it is neces­
sary to take formal account of four-magnon interaction 
of pairs of excited magnons of the LF branch. It can be 
shown, however, that for the antiferromagnets investiga­
ted here the influence of the indicated interaction on the 
stationary state is negligibly small. 

2. CASE Hn ;atO 

1. In this case the action of the alternating magnetic 
field on the spin system is not limited to excitation of 
the homogeneous precession L. The new terms in the 
Hamiltonian, deficribing the decay of a photon of the 
radiation incident on the crystal into two LF-branch 
magnons, has the followin~~ form: 

i1.~.•-• = ,E '1',~.•-•~•• +(t)~.~.,t) b(t)+ a. c., (2.1) 
k 

where 

Defining the threshold of tlh.e excitation of spin waves of 
the LF branch by the cond:ition c1k(t) = c1ke- iwt/2, which 
denotes equality of the relaxation and excitation rates, 
we obtain at w = 2w1k, from the condition that the sys­
tem of equations of motion for clk(t) and ci _ k(t) have a 
solution, the following expression for the threshold field 

h.~hr= 2.1.ro,.ro(ro+ro.,)[(ro-ro,,)'+.1.ro,,']"o (2 2) 
y'{[ro,,'·2H +(ro,,'- ro')HD)'+(<ll + ro,.)'.1.ro,,'HD'}'i• . • 

In the limiting cases of low and high frequency and 
in the case of saturation o:f the main resonance, the ex­
pression for the threshold field coincides with the 
formula obtainecflJ, with allowance for the fact that 

here t.wiq has the meaning of the line half-width. 
2. To analyze the threshold processes that occur in 

the spin system under the action of a time-dependent 
perturbation, we use, in analogy with the case Hn = 0, 
the nonstationary density matrix defined by formulas 
(1.14) and (1.15). When considering the perturbation of 
the system of magnons of the LF branch, we use a rela­
tion analogous to ( 1.18): 

Jf ""' f .,.. zo """ N-i ,E .1-<"'>p,. (t) = _ ih.1.ro,. [ ~ ••. ,_.(t) + ~ ••. ,_.(t), L, .1-<"'>p,. (t)] . 

m=l m=O ( 2.3) 

However, unlike the case Hn = 0, here :£(2m)(t) ;at 0 
(m = 1, 2, ... ), as determined by the coupling of two 
spin- system excitation channels. To take this coupling 
into account, we also carry out averaging using the fol­
lowing formula: 

- f ( 0 :M. ) [ - 20 - f +~ .. (t-,;,-,;,), exp -!h"t' ~ ••. ,_.(t-,;1 )+~••.•-•(t-,;1 ) 

+.jci, (t- T.), EM"'>p,.(t) ]exp( i ~· 't',)] exp (i ~'(,;, +"tz)), 
mzO 

(2.4) 
where, in accordance with the statements made above, 
the summation in the left-hand side begins with the 
minimal nonzero even index. The averagings on the 
basis of relations (2.3) and (2.4) do no~ duplicate each 
other, since the former yields only .::d1)(t) with odd i, 
and the latter with even i. In other words, averaging 
with the density matrix p ,k(t) obtained after summing a 
series of the type (1.15) is equivalent to averaging on 
the basis of relations (2.3) and (2.4) with N- oo, 

In the analysis of the perturbation of a system of 
elementary excitations corresponding to homogeneous 
precession L, it is necessary to take into account in 
exactly the same manner the coupling of two excitation 
channels of the spin system on the basis of relation 
(2.4), with t. (m)p1k(t) replaced by t. (m)P2o(t). The sys­
tem of kinetic equations have the following form: 

dn1k (t) 2 41 'l'{k 1-k I" 
~::::::- ~w1kn,k (t) + n•~~1k (2n1k (t) n1 - 11~• (t)) 

+ 41 'l'~t 1-k I" (2n, (t) n (t)- 11' (t)) + 81 '1'~&, 1-k II '1'{ •. 1-k I 'I'~ 
li'~w1k k 20 1k n•~w,. 

(w20 - w) (2 ( ) 1 ( )) 
X (W.o _ w)' + (~wM'r: (t))' nu, t n1 -1111< t , 

dn20 (t) ~ ('~' ,/ )' ~ro;;,ff (t) (2 • 5) 
-d-t-~- 2~w201120 (t) + -,;- (w20 - w)2 + (~ro;j,ff (t))' 111 

~ 41 '1'~. 1-k I' (2 ( ) ( ) • ( )) - ..::J n•~ n,. t 11oo t - 1111< t 
k (l)1k 

~ 81 '1'~.1-k II '1'{1<,1-k I 'I' ..f (woo- w) 2 
- k li"~w,k {Wzo- w)' + (~w:{f ~t)~' (2n1k (t) nl- n1k (t)). 

From the condition that n1k(t) must increase exponen­
tially with time at t ~ 0 we obtain the instability thres­
hold (2.2). 

In the investigation of the stationary state, we use 
the following notation: 

( h tp )' ~ = ""hihr , (2.6) 
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where 

Confining ourselves to the case 

1 +11'~ [£(~ -p) (~ -1) /~']'. (2.7) _,,l 
where ~ = 2 ~ t:.w 1k t:.w;~ and for H > 10-2HDw112w20 , 

recognizing that nf » ll2o, we obtain the stationary solu­
tion of the system (2.5): 

eff 
z- ~ - p ( Ll (l)zo 1 ) 

n1t = nzo £(~ -1) ~- ' (2.8) 

~w eff ='Liw [ ~(11'+ 1)-1 ( _ 11'~ )]'''. 
zo zo ~-1 p ~(11'+1)-1 

To determine the susceptibility Xzz(w) we calculate 
the projection of the magnetic moment M = M1 + M2 on 
the z axis in the second-quantization representation. We 
represent the result in fields H « HE in the form 

Mt, = bM.' + 6M,n, 

.... 1 .1/ Moezo,.. 
6M, (t) = -t y--c,(t)+ h. c., (2.9) 

_ ~ ~t'Hv 2_HEV _ 
6M,n(t)= .i...l--c1,(t)c1_t(t)+ h.c. 

• 2eV 

The quantity c20(t) is determined by the expression (1.4). 
In the calculation of c1k(t)c1_k(t) we take into account 
the four-magnon interaction of the excited pairs of mag­
nons of the LF branch[ 9J with k inside an interval k 
near k0 as given by (1.27). The threshold of the four­
magnon process of production of new pairs of unstable 
magnons cannot be attained at real pump powers, owing 
to the smallness of n1k in the stationary state. The 
equation of motion for c1k(t)c1_k(t) is 

d 
idtc,.(t)c1-k(t) = 2(w,.- iL'lw,.)c,.(t)c1_.(t) 

* • 2 20 
- ( C1• (t) c,. (t) + c1_.(t) c1_. (t)) /l('V,., 1-• c,, (t) + '¥,., 1-• b (t)) 

~ " 2 1q, \-q + .i...J (c1 .. (t)c,.(t)+c1_.(f)c1-dt))h '¥1k, 1-k c,.(t)c1-q(f). (2.10) 

Let us estimate the contribution of the four- mag non 
interaction with allowance for the quantity 

>It~~· ~::::k ~ J..L 2HE/16MQVC 6J and formulas (1.12) and 
' (2.8): 

~ 2 1q 1- 10 10 2 .i...J (n1k + n1-•l 7! '¥,;;:,- 1-• ~ - L'lw1• . 

Since the condition t:.w 1k < 108 sec-1 is certainly satis­
fied in the cases of interest, the indicated interaction 
makes a negligibly small contribution to the effect. The 
solution of (2 .1 0) at w = 2w 1k in the stationary state is 
then 

c,. (t) c,_k (t) = (c' elk + c' c1_k) J(2n fl'H D_ b (t) eW 
lk 1-k ~ eV 2.1ill.w1k ' 

f (2.11) 
2Ll.w e fwz H;H v 

6' = arctg 2o 2o 
(t.w~[f)' (w + w20 ) + (w20 - w) [2w;0 H!H n + (w~0 - w')l · 

Taking formulas (1.4), (1.21), (2.9), and (2.11) into ac­
count, we obtain for the susceptibility 

x(w, p) = x'(w, p) + xn(w, p), 

XI (w, p) = 2MHoE Wzo 
(w20 - w)- it.w:tr (p) 

(2.12) 

xn (w, p) = ~ 2'i•lf;' exp {i (6' (p)- n;2)} n1k (p). 
k. w (t)lk 

FIG. 2. Dependence of the 
imaginary part of the susceptibility 
on hat w ~ w20 and HD = 4.4 kOe 
and H equal to I kOe (curve I), 2 
kOe (2), and 4 kOe (3). 

ZH, X" 
Mo 

J,O 

Substituting here formulas (2.8) and (2.11), we obtain 
the final expressions for the susceptmility, which we 
present here in two limiting cases. For w « W2o we get 
(see Fig. 2) 

R 1 M, [ (2H + Hv)''- Hv'P] 
ex (w,p)= 2HE [(2H+Hv)'-Hv']p' 

Im '(w )= M, Hn(2H+Hv)V(2H+Hv)'- )'p-1 
X ,p SHE H(H+Hv) fin p P ' 

Re n(w )=~Hv'(2ll+Hv)' [(2H+llv)'-] (p-1) 
X ,p 128H H'(ll+H )' H p ' 

E D D p(2,13) 

lm Xn(w,p) = 6~" H;;:((!H++ll:;) y [ ( 2H;, lfv )'- p] (p -1) 

[ 1 (2H + lfv)' -lfv'P ] 
X + . 

2pHv(H +Hv) 

For the case w = W2o, when the investigated effect is a 
superposition of the saturation of the main resonance 
and parallel pumping (PP), we obtain at p « (w20H)2 x 
x (t:.w2oHDf2 

I M, Wzo 1 
Re x'(p) == 0, Im X (p) = -------=, 

2lfE L'lwzo l'P 

R "() M, HD i'P-1 
ex p =--------. 

4HE lf )'p 
(2.14) 

n M, Llwzo ( Hv)' -Imx (p)=--- -- ()'p-1). 
4HE W20 lf 

At h > htp given by formula (2.6), there is no stationary 
solution. In the case w >> wz0 , the region of existence 
of the stationary solution narrows down practically to 
zero in view of the fact that hthr ~ htP. 

We note that the condition (2. 7) means nzo ~ n~~r. The 
character of the change of x "(p), if nzo increases beyond 
the threshold, can be estimated with the aid of formulas 
(1.26) and (1.27), obtained for the case HD = 0. 

At w = wzo there exists a real stationary solution of 
Eq. (2.5) at h > htp, which, however, is not realized 
when account is taken of the saturation of li Mz(t). A 
calculation accurate to njk yields for H « HE 

(ll+Hv)'[ ~(!J.Hs ~tHE )]' 
(M,') """ 4lf.,' 2M,- It .i...l -;.;;- n,. +-;;:- n,, 

k 

~ e,. !!' (IJ.Hs)' It' (2.15) 
- .i...J2flM,Hn,. +-E--n1,n,,--En,.n,.. 

• It e 4 •.• e1• e,, 4 •.• 

From this we get 

On the other hand, the already mentioned solution for 
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n1k and n2o at p "' t is of the form 

We note also that at w = W2o threshold scattering of 
two elementary excitations of the HF branch with k "" 0 
is possible, with formation of two elementary excitations 
of the HF branch with q and- q. Since in this case the 
value of q is small and the sum over q is accordingly 
small, one should expect the contribution of this process 
to the collision integral '! (n20) to be negligibly small. 

As to the PP in ferromagnets, when account is taken 
of the density of the final states, the kinetic equation 
contains formally a term describing the "reaction" on 
the pump, which, however, is suppressed by the terms 
responsible for the four- magnon interaction of the pairs 
of excited magnons. In the case of AA in ferromagnets, 
all the indicated terms are generally speaking, signifi­
cant in the kinetic equation. 

DISCUSSION OF RESULTS 

In the case of AA, the intense absorption is attribu­
ted to the increase of the phase difference between the 
alternating magnetic field and the homogeneous pre­
cession L, this being due to the increase of the effective 
rate of relaxation of the homogeneous precession L, the 
cause being the threshold decay into spin waves of LF 
branch. However, besides the increase in the phase 
difference, a decrease tak,es place in the amplitude of 
the homogeneous precession L, which is also due to the 
increase of Aw~0ff. As a result, the susceptibility 
reaches a maximum and then decreases. 

In the case of a superposition of AA and PP, the 
latter effect (PP) leads to a considerable increase of 

Aw~0ff, the result of which has a decrease in the number 
of spin waves in the stationary state, and consequently 
also a decrease of the susceptibility to zero at h = htp_ 
As to the stability of the solution, as indicated above, 
when the stationary state is investigated the four-mag­
non interaction can be neglected. No question of stability 
arises in this case. 

A comparison of the experimental dependence of the 
imaginary part of the susceptibility on the amplitude of 
the alternating magnetic field, obtained in[sJ for 
f = 36 GHz and H = 2-4 kOe, gives satisfactory agree­
ment with the first formula of (1.26) at a "" 0.1- 0.2. 
The order of magnitude of the calculated imaginary part 
of the susceptibility also agrees with the estimates of 
the experimental value x"(w, p) ~ 10-5 • 

In conclusion, the author is deeply grateful to A. S. 
Borovik- Romanov, M. I. Kaganov, and M. A. Savchenko 
for useful discussions. 
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