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Solutions of the dispersion equation for potential oscillations of a magnetoactive plasma located in the field of a plane high 
frequency electromagnetic wave are investigated for frequencies less than, or comparable to, the ion gyroscopic frequency. The 
maximal increments and minimal threshold fields determined by the collision frequency between charged and neutral particles 
are found in the case of weak coupling between the wave and plasma perturbations. The directions of propagation of unstable 
potential oscillations for which the increments are maximal are determined. In the case of strong coupling the instability is 
aperiodic. 

THE theory of parametric resonancei= 1-4J predicts the 
occurrence of a number of instabilities in a plasma 
subjected to the action of a homogeneous high-frequency 
electric field. Such parametric instabilities lead to a 
radical change in the plasma properties. This change 
of the properties becomes manifest, in particular, in 
the strong heating of a plasma without collisions by an 
external high-frequency field, as indicated by the 
theorf2J. The conclusions of the theory do not contra­
dict the experimental data[s-sJ. The coefficient of ab­
sorption, by strong electromagnetic waves, of isotropic 
plasma without collisions, as a function of the electric 
field intensity of the wave, was measured in[s-sJ. The 
theorf9J yields for the "anomalous" absorption coeffi­
cient an explicit expression that agrees qualitatively with 
these measurements. Measurements in a magnetoactive 
plasmaC7 ' 8 ' 10J call for a dE!tailed development of the 
theory of parametric resonance of a plasma situated in 
a constant and homogeneous magnetic field. The princi­
ples of such a theory are •contained irPJ. 

If the intensity of the external homogeneous high­
frequency electric field is not too high (the amplitude of 
the electron oscillations in such a field is small com­
pared with the plasma oscillation wavelength) then, as a 
rule, buildup of the oscillations occurs only when the 
field frequency is close to one of the natural frequencies 
of the plasma. At the same time, g;,rowth of the plasma 
perturbations is possible :also in an equally weak elec­
tromagnetic-wave field at a frequency much larger than 
all the characteristic frequencies of the plasma, if the 
length of the external wav·~ is comparable with the per­
turbation wavelengthC11J. For an isotropic plasma, the 
finite length of the external wave was taken into account 
ini: 11 •12J. In the present paper we show how the region of 
paramagnetic instability of the magnetoactive plasma is 
broadened as a result of the finite wavelength of the 
pump field. 

1. We consider a cold plasma situated in a constant 
and homogeneous magnetie field B. In such a plasma 
there exist potential low-frequency oscillations (see 
Fig. 1) with frequency close to the ion-gyroscopic fre­
quency (at cos2 1:1 > m/M): 

(1) 
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FIG. 1. Dependence of the fre­
quency of low-frequency oscillations 
of a cold magnetoactive plasma on 
the angle 8 between the wave vector 
k and the constant magnetic field B 
(see [ 13 ) ). 
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Here n1 = eiB/Mc is the gyroscopic frequency of rota­
tion of the ions in the constant magnetic field, ei and M 
are the charge and mass of the ion, c is the velocity of 
light in vacuum, m is the electron mass, and 8 is the 
angle between the wave vector k of the oscillations and 
the constant magnetic field B. If the angle e is close to 
rr/2 (cos29 < m/M), then the spectrum is determined 
by the expression 

w2 = w 2 1 +.....!::..sin2 6 cos2 6 ( 
{i) 2 ) _, 

Le Ql , (2) 

in which wLe = (4rrNee2/m) 112 , wLi = (4rrNiei/M)112 are 
the electron and ion Langmuir frequencies, and Ne and 
Ni are respectively the numbers of electrons and ions 
per cm3 • 

Let such a plasma be subjected to the action of the 
field of a plane monochromatic linearly polarized trans­
verse electromagnetic wave with electric field 

E(r, t) =Eo cos (wot- k,r) (3) 

and with a frequency wo = cko greatly exceeding the 
electron gyroscope frequency ne and the electron 
Langmuir frequency WLe: Wo >> ne, Wo >> WLe· The 
field (3) is limited, i.e., the amplitude of the electron 
oscillations in the field (3) does not exceed the wave­
length of the low-frequency potential oscillations (1) 
and (2): k · rE « 1. We assume furthermore that the 
oscillations (1) and (2) and the external field (3) have 
wavelengths of the same order: ko ~ k. Under these 
conditions, we obtain11 the following dispersion equation 

11Equation (4) can be obtained, for example, within the framework of 
two-fluid magnetohydrodynamics. In those cases when the plasma-pertur­
bation energy dissipation is connected with damping due to the inverse 
Cerenkov effect, the dispersion equation (12) is also obtained by solving 
the kinetic equation in a magnetoactive plasma. 
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relating the frequencies and wave numbers of the plasma 
potential oscillations: 

c2 k"' 
1 + 1\e,(w, k) + 6e,(w, k) + - 2-6e,(w, k) [1 + 6e,(w, k)] 

{ 
'V (J) 2} _, 

X 2wwo + c'(k'- 2kk0) + i 'w,L• = 0. ( 4) 

Here 15 Ee i(w, k) is the electronic (ionic) polarizability 
of the magnetoactive plasma, vE = eEo/mwo is the 
velocity of the electron oscillations in the external field 
(3), and v e is the electron collision frequency. Equation 
(4) has the same appearance as Eq. (3.1) (or (1.18)) ob­
tained inC 11J for an isotropic nonisothermal plasma. In 
our case, however, Eq. (4) contains a constant magnetic 
field, on which the partial polarizabilities OEe i(w, k) at 
low frequencies w « Wo are strongly dependent (see, 
for example[ 14J, p. 140). 

Allowance for the external wave (3) in Eq. (4) causes 
the plasma oscillations, with frequency given by ex­
pressions (1) and (2), to become increasing with time, 
starting with a certain threshold value Ethr of the elec­
tric field intensity of the external wave (3). The mech­
anism producing the instability is analogous (in the case 
of weak coupling) to the mechanism that generates sound 
in stimulated Mandel- shtam- Brillouin scattering 
(SMBS). It must, of course, be borne in mind that in the 
"stimulated scattering" considered by us it is not 
acoustic waves that build up (see[uJ), but low-frequency 
potential oscillations (1) and (2), the very existence of 
which in a cold plasma is due to the presence of a con­
stant and homogeneous external magnetic field B. This 
is accompanied by an increase, with increasing time2 >, 
of the amplitude of the scattered electromagnetic wave 
(Stokes component), the condition for the excitation of 
which is 

2w·Wo + c'(k'- 2kk0 ) = 0. 

It turns out that when k2 R< 2k · ko and in the case of 
dissipation due to the collisions, the potential oscilla­
tions that build up most intensely are those having wave 
vectors k parallel to the propagation direction k0 of the 
external wave. We shall consider just this casE::, since 
it is of greatest interest. The scattered electromagnetic 
wave (Stokes component) propagates in a direction oppo­
site to the direction of propagation of the external wave 
(3) and the plasma oscillations (1) and (2)-" backward 
scattering." 

Let us trace the solutions (see footnote 2) of the dis­
persion equation ( 4) as the electric field Eo of the ex­
ternal wave (3) is increased. If the field intensity Eo of 
the external wave is low (Eo « Ethr), then the low­
frequency (with frequency w ~ ni) solution of (4) takes 

2>The dispersion equation (4) is solved here in a formulation corre­
sponding to the initial problem, i.e., to the thermal evolution of the plasma 
perturbation. We obtain here complex solutions for the frequency w at 
a specified real wave vector k. To the contrary, if the frequency w is 
assumed to be specified and real, then we can obtain from (4) a complex 
expression for the wave vector k, corresponding to amplification of the 
potential oscillations of the cold magnetoactive plasma in space (bound­
ary-value problem). 

the form (1) and (2). Then the plasma oscillations (1) 
and (2) attenuate weakly, with eecrements v-
+ (1/2)ve(m/M) tan2 e and ve/2 (we assume\hat the 
dissipation is due to the collisions of the electrons (ve) 
and of the ions (vi) with the neutral particles). With in­
creasing intensity Eo of the external field (3), the damp­
ing decrements of the potential oscillations decrease 
and vanish at Eo = Ethr· 

2. If the field intensity Eo ?; Ethr• then the potential 
oscillations with frequencies (1) and (2) no longer attenu­
ate, but increase with time with increment y. For ex­
ample, at an angle 0 ::o e < JT/2 and a frequency w ~ ni 
(see (1)), the increment y obtained from the solution of 
the dispersion equation (4) is given by the expression 

- !_ wt, 2 2 _ 2 fv !_ ('wE, :!'!_ 2 )}-
1 

· 2 
Y -16 WoQi k (VE V"thr) l l + Z V, w? + ,'rf tg ij Stn 8. (5) 

We see (see Fig. 2) that the increment (5) increases 
with increasing angle e (uo sin2 8) from zero (at e = ei) 
to a maximum value 

(6) 

which is attained at an angle e = 80 such that tan 80 

= (2Mvi/mve) 114• With further increase of the angle e, 
the increment decreases ( vo cos2 B), and vanishes at an 
angle 82. The values of the angles 8 1 ,2 at which the in­
crement y is equal to zero are obtained from the equa­
tion 

When the propagation is at the angle 8 = 80 , the thres­
hold value of intensity Eo of the external field (3) is 
minimal (compared with formula (1 0) ofC12 J): 

, , v,Q, { - 1/ m }' 
Em,n=BnN,mc --, · fv•+ f v,ZM 

Wo-Wu · 

(7) 

The angular dependence of the threshold field at e < JT/2 
is determined by the expression 

, 16n , v,Q, ( 1 m , ) 
Ethr =--N,mc -- · v,+-v,-tg e . 

sin' e w.wd 2 M 
(8) 

Relations (8) and (5) determine the threshold inten­
sity and the increment for plasma oscillations with fre­
quency w ~ ni. At the same frequencies, expressions 
(6) and (7) hold for the maximum increment and the 
minimum threshold field Emin• provided that the fre­
quency vi of the collisions between the ions and the 
neutral particles is bounded (vi « veM/m). In the 
opposite case, when the collision frequency vi is large, 
vi > veM/m, the extremal angle 80 is close to JT/2. 
Then relations (6) and (7) yield the maximum increment 
and the minimum threshold intensity Emin of the 
external-wave electric field for oscillations with a fre­
quency (2) much lower than the ion gyroscopic fre-

FIG. 2. Growth increment (5) of 
low-frequency potential oscillations 
in the near-threshold region E0 "" 

2.24 Emin; VI = 0.9 Vem/M, eo "" 
50°, e! ""20°, e2 ""82°, 'Ymax = 
0.62 Ve (WLe/W 0)2 

rlrmax 

O,:i 

0 
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quency. If 1r/2 ~ e > 80 , then the threshold field inten­
sity of the external wave increases in proportion to 
Jcosj-112 : 

2 V 2 
{ Uhl }- 1h Ethr = 4nN,mc'-'- co:;' 0 +-,-sin' Ocos' B . 

WoWLe Q, 
(9) 

The increment then decreases ( m cos B): 

1 w ( w'. )'1, 
y = -8 ~k'(vE'- v~ ,.l 1 + QL; sin28 /cos 8/. 

Ulo'Ve th,. •i 
(10) 

3. Let the intensity Eo of the electric field of the ex­
ternal wave (3) greatly exeeed the threshold value Ethr, 
Eo » Ethr (see (7), (8), (H)). In the weak-coupling ap­
proximation, when Eo is smaller than the critical value 
Ecr (at a field value equal to the critical, the increment 
is comparable with the oseillation frequency), the solu­
tions of the dispersion equation ( 4) for the frequency w 
(w S. Qi) have the form (1) and (2) as before. The incre­
ments, unlike the preceding case E0 ;? Ethr (see, for 
example, (6) and ( 1 0)), are determined entirely by the 
field intensity Eo of the external wave. In the region of 
frequencies w smaller than or comparable with the ion 
gyroscopic frequency,"' ~; ni, or, which is the same, 
at an angle e not close to :r/2 (see Fig. 1), the increment 
increases with increasing angle(':/) Jsin EIJ): 

(11) 

In this case the critical electric field intensity of the 
external wave is given by 

At frequencies w lower than the ion gyrofrequency 
(w « Qi) the increment decreases in proportion to 
Ieos e 1 1 ~'2 : 

(12) 

The critical field then decreases in the same manner as 
the increment (12): 

If the plasma is sufficiently dense, wL » nL i.e., 
the Alfven velocity VA = c(O/wLi) is much lower than 
the velocity of light, then we can use for the increment 
a simple expression valid for all angles e: 

1 ( c ~lL" )''' ( m )-'I• y=-kJvEsinOJ __ __:__ · 1+-tg2 8 . 
4 VA Wo M 

(13) 

This expression leads to relations (11) and (12), which 
are simplified when c » v A- It is obvious from (13) 
that the increment y reaches a maximum at an angle 80 

(see Fig. 3) such that cos 11 0 = (m/2M) 114 (see formula 
(9) of [ 12 J): 

(14) 

In this case the critical value of the field intensity of 
the external wave is equal to 

4. On the other hand, if the electric field intensity Eo 
of the external wave (3) exceeds the critical value 
(Eo > Ecr » Ethr), then the buildup increment becomes 

YIYmax 

I 

FIG. 3. The increment (13) far 
above the threshold (E0 ;!> Ethr) in the 
case of weak coupling. The maximum 
(14) in the hydrogen plasma is reached 
at an angle 00 ""82°. ~ 
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O,J 

larger than the oscillation frequency. In this case, 
neglecting the dissipation in the dispersion equation ( 4), 
and assuming that k4 is close enough to 4(k · k0) 2 , but not 
exactly equal to it (seeC11J), we obtain an aperiodic in­
stability 

'=-_!__ wL,' [v , __ 1-(kv l'] k'cos'O _ . 
(J) ~ c' E ko' E k'- 4(kk,)' 

(15) 

At the resonance point k2 = 4(k · kd itself, the solution 
of (4) is given by (at k II ko and Eo > Ecr) 

w = 2-'1•( 1 + ry3) (wowL.'vE'c-' cos' 8) 'I•. ( 16) 

We note that expressions (15) and (16) contain not the 
ion Langmuir frequency WLi> as in ( 4. 3) and ( 4. 7) ofC11J, 
but the quantity wLe cos e. This difference is due to the 
fact that formulas (15) and (16) were derived under the 
assumption that the frequency is low compared with the 
ion gyrofrequency, w < ni, i.e., with allowance for a 
strong external magnetic field B. 

Summarizing, we emphasize that a consistent allow­
ance for the finite wavelength of the pump field (3) leads 
to a broadening of the region of parametric instability 
of the plasma. Namely, the plasma perturbations that 
grow most rapidly are those whose wavelength is equal 
to half the wavelength of the external field. These insta­
bilities do not appear in the plasma if the pump field is 
homogeneous. The presence of a constant magnetic field 
B causes the cold plasma to be unstable already in the 
weak-coupling approximation (at relatively weak fields 
E0). The frequencies of the oscillations excited thereby 
are determined by the constant magnetic field, and the 
increments by the electric field of the external wave. 
In a magnetoactive plasma, unlike an isotropic one, 
there is a clearly pronounced anisotropy of the direction 
of the maximum buildup of the potential oscillations. 
For example, in a cold hydrogen magnetoactive plasma 
of sufficient density ( c > v A), the most intense buildup 
of low-frequency waves (14) (B is in gauss and Eo in 
V/cm) 

v'""' "'=' 3.7·10'E,(N,jw,B)'I• [sec-1] 

occurs at an angle {1 0 = 82° (see Fig. 3) to the constant 
magnetic field B. The intensity Eo of the electric field 
of the external electromagnetic wave (3) greatly ex­
ceeds in this case the threshold value (7) (vi, lle, and Wo 

are expressed in sec -1) 

Em,,=O,i{}'v, + }'v,m/ 2M}(B /w,)'k [V/cm]. 

In the ionosphere at an altitude of 200 km and an ex­
ternal-wave frequency wo ~ 109 sec-1 (the meter band), 
the minimum threshold intensity Emil}""' 7 x 10-6 V /em 
corresponds to a flux of 6.5 x 10-10 W/m 2 • The maximum 
increment Ymax""' 1 sec-1 is reached when the threshold 
is exceeded tenfold, Eo~ 10Emill' 
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