
SOVIET PHYSICS JETP VOLUME 35, NUMBER 1 JULY, 1972 

Polarization Oscillations of Dipole Media 

E. YA. KOGAN AND v. N. MAL'NEV 

Kiev State University 

Submitted May 21, 1971 

Zh. Eksp. Teor. Fiz. (i2, 219-227 (January, 1972) 

A collisionless kinetic equation with a self-consistent field is obtained for dipole gases. The dispersion properties of the medium 
in the presence and absence of an external stationary electric field are investigated on the basis of the equation. The dielectric 
constant and polarizability tensors of such a medium are calculated and the conditions and parameters of the proper longitudinal 
and transverse oscillations of the polarization vector are found. It is pointed out that such oscillations may build up in a 
stationary electric field. 

INTRODUCTION 

THE kinetic theory of polar and paramagnetic gases 
was developed by a number of workers, ll-eJ who paid 
principal attention to finding the transport coefficients 
and to their analysis in the presence of external fields. 
In the present paper we consider the dispersion prop­
erties of electric-dipole media and possible oscillation 
modes that arise in them. Examples of such media are 
gases and liquids whose molecules have a constant elec­
tric dipole moment, and also media with dipoles induced 
by an external field. 

It is well known that the character of the interaction 
between the particles ensures specific properties of the 
dispersion dependence of the medium and a set of pos­
sible natural oscillations corresponding to this disper­
sion. Under conditions when the medium consists of 
neutral particles, electric: dipole-dipole interaction is 
decisive and can make an appreciable contribution to 
the dielectric tensor. 

The analysis is based on the Boltzmann collisionless 
equation with a self-consistent field. We show below that 
there exists a region of applicability of the collisionless 
equation for the description of polar gases. The inter­
molecular interaction can be taken into account within 
the framework of the self·-consistent-field formalism, 
which is introduced into the dynamic part of the Boltz­
mann equation. 

1. FUNDAMENTAL EQUATIONS 

The kinetic equation for the single-particle distribu­
tion function can be obtained from the Liouville equation 
neglecting the two-particle etc. correlations, by means 
of the usual procedure of averaging over the dynamic 
variables of all the particles except one (see, e.g., l7J): 

of . at of o J d;r;, --.. - + x,-+ --d, f(x;, p;, t) V,, -.3-dx; d?;- 0. 
rJt ax, ap, ax, ' r;, 

(1) 

The interaction is taken into account in Hamiltonian in 
the dipole-dipole approximation, Xi and Pi are the gen­
eralized coordinate and the corresponding generalized 
momentum (Xi includes the orientation angle coordinates 
ni of the dipole di and the radius vector of its center of 
gravity ri); rji = rj- ri. The integral in (1) can be in­
terpreted as the intensity of the self-consistent field of 
a system of dipoles at the point where the i-th dipole is 
located. 

We shall show that the field E (ri, t) defined in this 
manner satisfies the Poisson equation 

divE = -4n div P, (2) 

where the polarization vector P is defined by the rela­
tion 

P = J d;f (x,, p,, t) dp, dQ,. (3) 

Indeed, by defining the integral in (1) as the field E and 
calculating div E, we obtain after simple transforma­
tions 

divE= - J div,; [ f(x1, P;, t)d;t.,; +1 dx; dp; ,. (4) 
1 . 

+ J ~ .. ,-;jdiv,;[d;/(x1,p1,t)]dx;dp;. 

According to the Gauss theorem, the first integral in (4), 
calculated over the volume d3rj, can be transformed into 
an integral over an infinitely remote surface. It is equal 
to zero. We use the well known relation 

1 
~.,- = - 4nb (r"). 

Tji 

We then obtain Eq. (2) from (4) when we take into ac­
count the definition (3) of the polarization P. 

From the complete system of Maxwell's equations 
for the system of bound charges (where the current den­
sity is j = oPjot), we obtain 

1 .. 4n .. 
~E- -E = -P- 4ngraddivP. (5) 

c2 c2 

We write the kinetic equation (1) in a more compact 
form: 

at . at o at 
-+x-+-(dE)-=0. (6) at ox iJx iJp 

The collisionless equation (6) has been written out in 
first order in the small parameter 

d'n/T~ 1, v/w~ 1, (7) 

where n is the particle concentration, T is the absolute 
temperature in energy units, v is the collision frequency, 
and w are the characteristic frequencies of the problem. 
The first inequality of (7) follows from the condition for 
factorization of the distribution function, which is con­
nected with the smallness of the characteristic time of 
the problem in comparison with the collision-relaxation 
times. 

We shall confine ourselves henceforth to a gas of 
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spherically-symmetrical particles. This simplifies the 
analysis without loss of generality. The dipole-mole­
cule model will be a hard sphere of mass ll and moment 
of inertia J, containing a point dipole d. The coordinates 
of the particle are specified by radius vector r, which 
determines the position of the center of gravity of the 
sphere, and by the Euler angles, which describe the 
orientation of the vector d in space (see the figure). 
The distribution function is specified in the space of 
r, e, cp, and of the corresponding momenta. Separating 
in (6) the angle variables and the corresponding mo­
menta, we represent it in the form 
of iJf iJf iJf 1 iJ/ JII,.o iJf l\I,.• iJf 
-+v-iJ +roo iJ6 +w.a-+-V,(dE)iJ-+-J a-+-J -iJ =0. 
i}t r q:> t.t v ,.0 "• 

(8) 
Here V = r, we= B, Wcp = (p, Me and Mcp are the projec­
tions of the angular momentum of the dipole M = d x E 
on the directions of e and cP (see also the figure). 

To present Eq. (8) in greater detail, we shall need 
the components of the dipole moment vector in an im­
mobile coordinate system xyz: [Bl 

d sin 6 sin (jl, -d sin 6 c.os q:>, d cos 6 (9a) 

and the components of the momentum 

111., 0 .= d(E.cos 1P cos 6- E. sin lJl cos 6 + E, sin 6), 
(9b) 

M ... = d(E. cos q:> sin 6 + E. sin 'P sin 6). 

The definition (3) of the polarization vector, Maxwell's 
equation (5) for the field, and the kinetic equation (8) 
constitute the complete system of equations of the prob­
lem under consideration. 

2. DISPERSION RELATIONS IN THE ABSENCE OF 
EXTERNAL FIELDS 

To find the natural oscillations of the dipole medium, 
it is necessary to find the conditions under which the 
system of equations (3), (5), and (8) has non-trivial solu­
tions in the approximation linear in the perturbation. 
This procedure is described in the mathematical ap­
pendix. We introduce the polarizability tensors Oij and 
the dielectric tensor, which are connected by the well 
known relation Eij = Oij + 41T Oij. Then the dispersion 
equation for the longitudinal wave (k 11 P) in a coordi­
nate system with the z axis directed along the wave 
vector k, take on the usual form (10) 

For a transverse wave (k 1 P) in the same coordinate 
system, the dispersion equation is given by the follow­
ing relation: 

N2 = eJ.. = e%X = e1111 , (11) 

where N = kc/w is the refractive index of the medium. 
The components of the polarizability tensor Oij are 

calculated in the Appendix. Using the results of these 
calculations (A.7), we transform the dispersion equa­
tion (10): 

4nnd2
[ -w {w)] 1+-- t+ifn-W- =0, 

3 T Wr Wr 
(12) 

WT = (2T/J)1/ 2, and W is the Kramp function. We shall 
henceforth neglect the contribution of the translational 
motion of the particles to the dispersion. This contri­
bution is much smaller than unity for wavelengths ex-

! z 

ceeding the dipole dimensions r 0 (of the order of (kr0 ) 2). 

We shall analyze the dispersion equation (10) for two 
limiting cases of high and low frequencies. We consider 
first waves with frequencies w >> WT· Using the asym­
ptotic representations (A.8) for the Kramp function W, 
we obtain from (12) 

1 2 4nnd2 

w=w·sT· (13) 

We now rewrite Ezz in the form Ezz = 1 - (wd/w)2• 

From this we can conclude that oscillations with fre­
quencies w ~ Wd can propagate in the dipole medium. 
The medium is opaque to frequencies lower than Wd· 
We trace here an analogy with the so-called plasma 
oscillations in a homogeneous non-magnetized plasma. 
It should be noted that the limits of applicability of the 
theory, namely the smallness of the parameter K 

= nd2T, narrow down the region of existence of the 
natural dipole oscillations of the medium. Such oscil­
lations can be realized only under the condition 47TK/3 
> 1. In the other limiting case, w << WT, we have 

e.,= 1 + '/,nx(1 + if3;w / w,). (14) 

It is easy to see that Ezz does not vanish, in accordance 
with (14), for any value of w < WT, i.e., there are no 
natural oscillations of the medium in such a frequency 
region. 

We consider now transverse oscillations. The dis­
persion equation (12) is reduced, with allowance for 
(A.6), to the form 

2 4n [ .1/-;;: w { w ) ] N = 1+-x t+tv --w --.-- . 
3 2 Wr Wrl''2 

(15) 

As above, we consider two limiting cases: w » wT and 
w << WT. In the first case, using the asymptotic form 
of W at I z I » 1, we obtain 

N 2 = 1- '/,nx wr'/w2 • (16) 

This relation shows that the refractive index of the me­
dium of dipoles is less than unity for such electromag­
netic waves. In the frequency range 

Wr2 < w < Wr(4nx/3) '1• 

the refractive index becomes imaginary-these waves 
do not penetrate into the dipole medium. The length of 
the skin layer for these waves is of the order of l 
< C/Wd• 

In the limiting case of low frequencies, w « WT, the 
dispersion equation (15) takes the form 

2 4n [ . w 1/ n ] N =1+-x 1+t-v-. 
3 (I)T 2 

(17) 
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The refractive index of the medium has an imaginary 
part connected with the Landau damping. Consequently, 
the wave is absorbed by the medium upon interaction 
with the resonant dipoles (the frequency of the revolu­
tion of the dipoles is of the order of the frequency of 
the electromagnetic wave). 

3. DIPOLE GAS IN A CONSTANT ELECTRIC FIELD 

The dipole medium in an external homogeneous con­
stant electric field has a number of distinguishing prop­
erties in comparison with such a medium in the absence 
of a field. These distinguishing properties are due to 
the change in the character of the unperturbed motion 
of the dipoles, and to the presence of static polarization 
connected with the orienting action of the field and with 
the appearance of a potential energy of the dipole in the 
external field. All this affects significantly the disper­
sion properties of the medium of dipoles and in many 
cases can lead to the appearance of instabilities con­
nected with the conversion of the potential energy of the 
dipole in the external field into the wave energy. Allow­
ance for the field reduces formally to the need for using 
for the total electric field in the kinetic equation (8) the 
sum E0 + E, where E0 describes the intensity of the con­
stant external field and E is the self-consistent field. 

To solve the kinetic equation with allowance for the 
external field, we shall use the method of integration 
over the trajectories (this method was used to obtain 
the results of Sec. 2, see the Appendix). The unper­
turbed trajectories are obtained in this case by solving 
the following equations of motion: 

r·= 0, ~·= 0, li+ (dEo/ !) sinS= 0 (18) 

(the field Eo is directed along the z axis). The last equa­
tion describes the motion of the dipole in a plane pass­
ing through the vectors E0 and d. Jf the total dipole en­
ergy e: exceeds its energy in the field E0, then the latter 
can be regarded as a small perturbation of the free di­
pole, equal in order of magnitude to dE0 /e: ~ dE 0 /Jw0 
« 1. In the first approximation in this small param­
eter, the trajectory is given by 

S(t') - 8(t) = w, (t- t') + (dE,/ !w,') {sin [8(t'- t) (19) 

+e(t)]-sin8(t)}. 

In the other limiting case, e: < dE0, the angle of rota­
tion of the dipole with respect to e is limited, and the 
solution of the last equation of (18) (see, e.g., lSl) does 
not have so simple an asymptotic form. The character 
of the motion of such "captured" dipoles is qualita­
tively different from the motion of "almost free" par­
ticles, a motion not bounded with respect to the angle e. 
A consistent allowance for the two mentioned groups of 
particles calls for integrations over rather complicated 
trajectories e(t), which entails great mathematical dif­
ficulties. Qualitative results can be obtained in the lim­
iting case of high frequencies on the basis of the follow­
ing considerations. Since a = dE0 /T « 1 in a real situa­
tion, we can show that the number of "captured dipoles" 
is of the order of a 112 in 'comparison with the total num­
ber of the particles. Since the "captured dipoles" are 
concentrated near small angular velocities 0 < we 
< (dE0 / J}1/ 2 , the role of captured particles is insignifi­
cant at high frequencies w >> (dE0 /J)1/ 2 , namely, at 

such frequencies this group of particles is practically 
immobile and does not take part in the high-frequency 
oscillations of the medium. Estimates show that the 
total contribution made to the ~olarization by these 
particles is of the order of a 1 2Eod/Jw0. We shall 
henceforth consider the dispersion properties in the 
region of high frequencies, where the contribution of 
the "captured dipoles" can be neglected. 

The procedure of obtaining dispersion relations for 
a system of dipoles in a constant electric field is anal­
ogous to that described for free dipoles in the Appen­
dix. In the representation (A.4), we obtain for the com­
ponents fk~ with the aid of trajectories (18), taking (19) 
into account, 

""" = ± f,d ~ 1 (a. )/ (a. ) w,E, . e±~•-•>' 
r 2T ~ P t n t (!) ± (p + 1) Wo ' 

n,p 

I '1 f,d E' ) Q~- . ± = -- p(t!.t)Jn(tl.t e±•(p-n)00 
4T w ±(p + 1)w 0 + ro0 (20} 

n,p 

f±'-' = ~~ E/,(a.,)l.(a.,) Q¢:+ e±~•-•>', 
n,p w±(p+1)w.-w. 

where 

f, = 8:~T ( 2~T )"' exp{ ; [ E,d- 11;' -'~·· - 1~·· ]} (20a) 

is the stationary distribution function of the dipoles in a 
constant electric field, Jn(a 1) is a Bessel function, and 
a 1 = Eod/Jwe· 

Taking the relations (20) into account, and recogniz­
ing that (a1 ) « 1 (where the angle brackets denote av­
erages over the distribution function), it is easy to ob­
tain the components of the polarizability tensor and of 
the dielectric constant (see the Appendix). We note that 
the equation of the trajectory (19) is valid only in the 
region we > (Eod/J)112• By virtue of the fact that for w 
> (Eod/ J)1/ 2 the contribution made to the integrals by 
the region 0 < we < (Eod/ J)112 is negligibly small, the 
integration over the trajectories (19) can be extended 
also into this region. 

The dispersion equation for the longitudinal waves 
has in this case the form 

4n[ .,-w (ID)] 1+-x 1+i'fn-W-
3 WT (JJT (21) 

. n [ .,;;: ID ( (JJ )] + l 32 a.x 1 +iT:;;:- W 2IDT = 0. 

This equation is valid for frequencies w > (E0d/ J) 1/ 2 , 

and reduces in the range w » wT, with the aid of (A.8) 
to the form 

(J)2 - w/(1 + i·3a./32) = 0, (22) 
whence 

ro = ±rod(1 + '/,.a.i). 

The last relation points to a possible instability of the 
polarization oscillations in a constant electric field, 
with an increment y = 3awd/64 (in this case yfwd « 1). 
Such an instability is connected with the non-equilibrium 
nature of the dipole distribution in the constant electric 
field with respect to the angles e. 

In the case (E0d/J}1/ 2 < w < wT, the result is similar 
to formula (14), with slight shifts of the real and imagi­
nary parts of w, due both to Landau damping and to the 
presence of a constant field. 
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For transverse waves (k 11 E0 , k 1 P), the dispersion 
equation is given by 

In the limit w > wT -15, we obtain 

2 1 wl ( 21 ) N = 1--- 1+-ani 
2 w' 128 ' (24) 

i.e., the transverse wave in the presence of an external 
field can grow in space. The characteristic growth 
length is of the order of l ~ cjaw. 

4. DISCUSSION OF RESULTS AND OF THE REGION 
OF THEIR APPLICABILITY 

We have analyzed the dispersion properties of the 
dipole gas on the basis of the Boltzmann collisionless 
kinetic equation. The possibility of such an analysis is 
connected with neglect of the correlations between the 
dipoles, and also with the larger collision times in com­
parison with the characteristic times of the processes. 
These conditions are described by the inequalities (7). 
Estimates show that the first of these inequalities is, 
at room temperatures and for typical dipole momentsl9 J 

(1-4)D (D = 10-18 abs. units), is satisfied up to the con­
centration 1021 cm-3• The second reduces to the relation 
0.3rof11/ 3K 1/ 6 << 1, where allowance was made for the fact 
that v ~ 7T (p )\rTn; (p) is defined as the length of split­
ting of the correlations between two dipoles from the 
relationl9 J u/T = %d4/(p) 6T2 , where u is the average 
energy of interaction between the dipoles. At the same 
parameters, this condition is satisfied at concentra­
tions n < 1024 cm-3 • Thus, the upper concentration limit 
is imposed by the applicability of the collisionless ap­
proximation, and the lower limit is the threshold of the 
intensity of the interactions, starting with which the col­
lective oscillations of the dipole medium can take place. 
This yields the estimate n ~ 1019-1020 cm-3 • 

From among the dispersion properties of a dipole 
medium in an external constant electric field, the most 
significant is the possibility of buildup of polarization 
oscillations. The mechanism of this buildup is de­
scribed in Sec. 3. 

We note in conclusion that the dispersion properties 
of dipole gases, described above, can occur also in fer­
roelectric crystals with continuously varying orienta­
tion of the dipoles, lto,uJ and apparently the theory is 
applicable, without significant changes, to such crystals 
with cubic symmetry. Nonetheless, the question of col­
lective polarization properties in solids calls for an in­
dependent analysis. 

We are grateful to V. N. Oraevskil for useful discus­
sions and to 0. I. Fisun for a discussion of questions in­
volved in the formulation of the problem. 

APPENDIX 

Equation (8), when linearized with respect to the per­
turbation, takes the form 

at, of, of, of, 1 a of 
-· +v-+wa-+w.-+--(dE)--

iJt or ae iJcp 1.1 or av 

M.,, of M ... &f 0 + J aw, + J aw. = ' 

f 1 is the perturbed part of the distribution function and f 
is a stationary distribution function, which is the solu­
tion of the equation 

iJf • iJf iJf 
v-+w,-+w.-=0 or ae {Jcp (A.2) 

The explicit form of f follows from (20a) at E0 = 0. 
The solution of Eq. (A.1) with allowance for (9a) and 

(9b) and neglecting the translational motion of the dipole, 
can be written in the form 

f,=-ldt' /: (E,(w.cosrp'sin8'-w,sinrp'cos8') 

-· (A.3) 
+ E,( w0 sin q/ sin 8' + w, cos cp' cos 8') + E,ula sin 8']. 

The integral in (A.3) is calculated over the unperturbed 
trajectories of the dipoles 

8(t') -B(t) = w,(t'-t); cp(t') -cp(t) =w.(t'-t); 

8'""" 8(1'), cp'""" cp(t'). 

Choosing the perturbation in the form ~ exp [i(wt + k • r] 
and putting 

(A.4) 

we obtain after integrating (A.3) 

/±'·' fd w,E, 
ll.w = ±2T w±wa' 

f:;,'·'=-~ Q~- f,±l.l=.f!:_ Q+E+ (A.5) 
4T ·W ± Q± ' • 4T w ± Q+ ' 

Q± = Wa ± w., E± = E, ± iE,. 

We now substitute the distribution function (A.5) into 
the equation for the polarization (3) and integrate over 
the phase volume. For the components of the polariza­
bility tensor we obtain 

where 

1 nd' [ v-;- (J) ( (t) ) 1 Uxx=a,=-- 1+i --W --- , 
3 T 2 WT WT 12 

1 nd' [ v-n ()) ( (!) )] a,=-- 1+i --W - , 
3 T 2 WT WT 

i eo e-t2 
W(z)=-f--dt 

n z- t 

is the Kramp function, which is tabulated in l12J. 

(A.6) 

(A.7) 

We present here the asymptotic expressions for W(z): 

lzl~1, W(i) = _i_ ~ f(k + '/,) 
11 ~ z2k+t ' 

(A.8) 
k=O 

(A.9) 

r(z) is the gamma function. 

Note added in proof (27 November 1971 ). It might seem that the 
Langevin expansion (20a) is stable and should not lead to a buildup of 
oscillations. Nonetheless, allowance for the strong correlating action 
of the field in addition to the dipole dipole interaction shows that an 
infinite spatially-homogeneous medium is not in thermodynamic equi­
librium. It is possible that the instability obtained in Sec. 3 is a mani­
festation of this fact. This question, however, requires a detailed analy­
sis. 
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