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The law of motion of a charge moving in an isotropic, transparent medium in the field of an intense electromagnetic wave 
is found. The dependence of the intensity of Cerenkov radiation and the normal and anomalous scattering cross sections on 
the intensity of the incident circularly polarized wave is investigated. 

THE study of the emission of photons by electrons in a 
vaccum in the field of an intense electromagnetic wave 
U-3J has shown that the spectral and angular character­
istics of the emission depend strongly on the value of 
the field intensity. The presence of a refracting medium 
changes the character of the interaction of the electrons 
with the intense field in significant fashion. Actually, 
even in the interaction of an electron with a weak field 
(when perturbation theory and the classification of the 
radiation effects by Feynman diagrams are valid), the 
possibility of Cerenkov emission and absorption arises, 
and the effect of next order-the scattering of light by 
the electron-takes on a number of interesting features, 
l4- 71 associated with the normal and anomalous Doppler 
effects. 

In the interaction of the charge with a sufficiently in­
tense electromagnetic wave, perturbation theory be­
comes inapplicable and it is necessary to use exact so­
lutions of the equation of motion of the charge in the 
field of the wave for the calculation of the radiation in­
tensity. Account of this circumstance leads to a depen­
dence of the various physical processes on the field in­
tensity of the wave and allows us in principle to obtain 
new information on the effect of the optical properties 
of the medium on the character of the interaction of the 
particles with the electromagnetic waves. In the pres­
ent paper we consider the spontaneous emission of elec­
tromagnetic waves from an electron moving in an iso­
tropic transparent medium in the field of an intense 
monochromatic wave, and we study the dependence of 
the intensity of the Cerenkov radiation and the cross 
sections of normal and anomalous scatteringl61 on the 
intensity of the incident circularly polarized wave. 

For this, we first need to find the solution of the 
classical equations of motion. The field of a plane 
electromagnetic monochromatic wave, propagating in 
a medium along the direction k, can be described by 
the 4 potential Ai = Ai(cp), which depends on the coor­
dinates only through the single variable cp = kx. Here 
k is a wave 4-vector of nonzero length: 

k'=(~. k), jkj= n(ro)ro, k'=~(f-n'(ro))+O. 
c c c 

It is most convenient to determine the law of motion of 
the electron by starting out from the Hamilton-Jacobi 
equation 

(~+_:_A')( 0~ +~A.) -m'c'=O, 
fJx, c fJx c (1) 

which can be solved exactly in the plane wave case under 
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consideration. The action has the form (see, for exam­
ple, raJ) 

8 =- pz+ :~ rp ± k~ J R(rp)drp, (2) 

R(rp)= {(kp)'-k'[( p-7-A) '-m•c•]}"', (3) 

where 
px = p'z'- px, kp = k'p'- kp. 

The constant 4-vector p is identical with the momentum 
of the free particle p2 = m2c 2• The choice of sign in (2) 
is determined by the condition that as Ai - 0, the action 
(2) transforms into the expressionS= -px for action 
corresponding to free motion. Therefore, we must 
choose the plus sign in (2) if the wave is incident on 
the particle inside the Cerenkov cone (kp < 0), and the 
minus sign in the case of incidence of the wave outside 
the cone (kp > 0). It follows from (3) that the region of 
motion achieved classically is determined by the con­
dition 

Following general rules, we determine the kinetic 
momentum of the particle 

(4) 

fJS e e k' 
q'=----A'=p'--A'+-(-kp=FR). (5) 

oz, c c k' 

Taking (5) into account and the relation kq = =FR which 
follows from. it, we can write the law of motion (x~ 01 
=- as;apf, X~O) are COnStants) in the form 

x' = Z:o) + J :~ drp. (6) 

Well known expressions are obtained from (2) and (6)l91 

for the action and the law of motion of the charge in the 
field of a plane wave in a vacuum in the limiting transi­
tion n(w)- 1. 

We note that the formula (6) determines the law of 
motion of the charge in the medium in the field of a 
plane electromagnetic wave of arbitrary polarization 
for arbitrary initial conditions, with given parameters 
xl01 and p. 

In the following, we shall consider the emission of 
an electron in a system of coordinates in which the wave 
is propagated in the direction of the z axis and the elec­
tron is at rest in the medium in the xy plane. In the sys­
tem of coordinates used, (6) takes a very simple form 
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for interaction of the electron with the circularly polar­
ized wave, the potential of which is Ai = (0, a cos q;, 
ga sin q;, 0). In this case, kq = 'f R, the energy cqo and 
the component of the momentum along the z axis are all 
constant quantities, while the equation of motion has the 
form 

me 
X= Xo + ykqsin<p, 

me 
Y =Yo- ykqgcos <p, 

q, 
Z = Zo + /;q <p, cp = e(kq) (t _to), 

qo (7) 

kq = ~'~o = roqo (1- n~,). 
c c 

Here y = eajmc 2 is an invariant parameter, and g = ± 1 
corresponds to right (left) circular polarization. It is 
seen from (7) that in this case the electron moves on a 
helix along the z axis with velocity Vz = qzc/q 0 and ra­
dius ymc/lkql. The velocity of the particle here is con­
stant in value. It is not difficult to see that the relation 
q2 = m!c 2 is satisfied for the average momentum q, 
where m* = (m 2 + m 2y2) 1/ 2 plays the role of the effec­
tive mass of the electron in the field of the wave. 

In addition, we obtain by standard methodsl91 the 
spectral angular distribution of the intensity of radia­
tion of the two principal components of polarization by 
the electron, the law of motion of which is determined 
by the formulas (7): 

FOP P(w,n) =P,(w,n) +P,(w,n), (8) 

ne2w2 +QO ( me )' 
P,(w,n) = --L, y-/,'(x) ll(w!l-sw0 L'l 0 ), (9) 

2ne •=-oo qo 

ne'w' +oo ( sw 1'1 ) 2 

P,(w,n) =-- L, - 0
-

0 ctgB- B,sinB /,'(x)t'\(wi'l- sw0 L'l 0 ). 

2nc •=-oo wn (1 0) 

Here n is a unit vector in the direction of emission, 
D. = 1 - n( w) f3z cos () is the Doppler denominator for 
the emitted wave, w0 the frequency of the emitted wave, 
J s(x) and J8(x) the Bessel function and its derivative, 

me nw 
x=v---sinB. 

qo woL'lo 

In Eqs. (9) and (10), the s-th term of the sum (s > 0) 
describes the emission of a photon of frequency w and 
absorption from the incident wave of s photons of fre­
quency w0 • The components with s < 0 describe the 
emission of a photon of frequency w and simultaneous 
emission by the electron in the incident wave of I s I 
photons of frequency w0 • 

The total emission of the electron (8) can be divided 
lSl into Cerenkov (the direction and frequency of which 
are connected by the relation D. = 0) and non-Cerenkov 
(D. * O) components. Consequently, the spectral angular 
distribution of the intensity of the Cerenkov emission 
of the electron in the field of the wave is determined 
by the component with s = 0 in (8). The total intensity 
of the Cerenkov radiation is 

Po= J e'w {(v me lo'(x) )'+(ll,slnB/o(x))'}dw, 
11~:>1 cBz qo 

me nw ( 1 )'" x-v--- 1--- . 
- q, woL'lo n'B/ 

(11) 

If the intensity of the incident wave y is so small that 
x « 1 for all frequencies, then (11) transforms into the 
well known expression for the spontaneous Cerenkov 

radiation in the absence of a field. llOJ In the opposite 
case x >> 1, the spectral distribution of the Cerenkov 
radiation P 0 (w) has an oscillatory character. 

We now consider the non-Cerenkov case. It follows 
from (9) and (10) that the emission has a discrete spec­
trum with frequencies determined by the condition 

L'lo 1- n(roo) ~. 
ro=sroo-=Swo . 

1'1 1-n(w)B,cos8 (12) 

Integrating the expression (8) over the frequency and 
dividing by the energy flux density in the incident wave 

(13) 

(n0 = n(w0 ) and r 0 is the classical radius of the electron), 
we get the differential scattering cross section 

!!!__ = ~ da, 
do ~do' 

where the partial cross section dcrs /do is equal to 

ti:a = 2ro' n~ c~o:e n lhxl+ (cos ell~ nB. )' l,'(x) 1 (14) 

Here 

I s!lo dn ~-• 
X 1'1- TwoB, cos e d;;;- . 

X=Stj, 
me n 

tj=y--sinf.l. 
q, 1'1 

We now consider in more detail the case of low in­
tensity of the incident wave. Then y « 1 and the emis­
sion has principally a dipole character. In this case, 
the components with s = ± 1 in (14) give the principal 
contribution to the cross section of the normal and 
anomalous scattering. lSl For super luminal motion 
(nf3z > 1) it is expedient to consider the emission in­
side and outside the Cerenkov zone, which is deter­
mined by the condition nf3z cos 80 = 1. Then, for s = 1, 
inside the cone (e < 80), the Doppler effect is anoma­
lous-the frequency w increases with increase in (). 
The spectrum of the anomalous frequencies is compli­
cated and does not have an analogy in the scattering of 
light by an electron moving in a vacuum. Outside the 
cone (8 > 80 ) the Doppler effect is normal, since the 
frequency w decreases with increase in e. 

The two cases of light scattering by an electron in a 
medium, considered above, can be named normal scat­
tering, according to the definition of Frank, lSl since the 
scattering takes place in the "normal" manner-the 
photon of the incident wave is absorbed and a photon of 
the scattered wave is emitted. The conditions s = -1, 
D.. 0 > 0, D.< 0 and s = -1, D.. 0 < 0, D. > 0 determine the 
anomalous scattering, which corresponds to the induced 
emission of a photon of frequency w 0 in the incident 
wave and spontaneous emission of frequency w. It fol­
lows from (12) that in the case of anomalous scattering, 
there is a possibilityl61 of obtaining a scattered photon 
of high frequency in scattering at zero angle: 

no~.-1 

w""' 1- B. ' n(w),::::; 1. 

In a vacuum, the scattering at zero angle takes place 
without change in frequency. In the case under consid­
eration, of small intensity of the incident wave, the 
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cross section of normal and anomalous scattering has 
the form 

dcr±, = ~ro'~ ( !1,mc )'[ 1 + (cos e-n~,)'] 
do 2 n, 11q, 11 (15) 

I /10 dn ,-· x ll=F-ro,p,cose-
11 dw 

In the special case of motion in a vacuum, the well 
known expression for the Thomson scattering cross 
section from fixed electrons follow from (15) for f3z = 0. 

For scattering in the direction of the Cerenkov cone 
(!1 - 0), the cross section (15) has a resonance charac­
ter. Neglecting dispersion, we find 

dcr±, I do - 11-'. 

This result also follows from rsJ, but contradicts llll 
It should be remarked that Eq. (15) and the resonance 
behavior found above take place only in the region of 
applicability of the perturbation theory ( 17 « 1 ). For 
analysis of the behavior of the partial cases for arbi­
trary values of 17 we use the exact formula (14). Taking 
into account the well known properties of Bessel func­
tions, we find that as 1 - 17 « 1, the partial cross sec­
tions increase with increase in Is I in the region Is I 
< Scr as Is 1113, and for Is I > Scr• decrease as Is I 
x exp (- 21 s I /scr. where scr = (1 - 772f 112. In the re­
gion 17 < 1, one can sum the partial cross sections and 
obtain the complete cross section of normal scatter­
ing£121 

:: =t~:·=s~~~ (~':cf-
s=t (16) 

[ ( cose-n~·)' 4+TJ'] 1 
X 4 + 3TJ' + 11 1 - TJ' --,(_,-1---TJ--::,:-:) ,-:-,, . 

For the anomalous scattering cross section, we get an 
analogous expression. It is seen from (16) that the cross 
section is large not only near the Cerenkov cone (!1 - 0) 
but also for the condition 1 - 772 « 1. 

In this case, when 17 » 1, it follows from (14) that 

dcr, l:!.o' me 1 [ ( 1 1 ) - ~ 4ro'lsl sih' x--sn--:rt 
do 11'q, :rtyn sine 2 4 

( cose-np, q, )' , ( 1 1 )] + cos x--sn--n . 
ysin8 men 2 4 

(17) 

Thus, in the region TJ >> 1, the resonance behavior of 
the partial cross sections dcrs /do ~ !1-2 is considerably 
different from the corresponding expression found in 
the region TJ << 1. lSJ 

Of course, account of dispersion leads to a smooth­
ing out of the resonance and to a finite expression for 
the partial scattering cross sections in the direction 
of the Cerenkov cone. Actually, taking into account the 
fact that dn/dw * 0, we see from (14) that in the region 
of the Cerenkov cone (TJ » 1, t1 - 0) 

dcr, = 4ro' dome lnp,y sin ij COS 6wo !!!..,-l [sin' (x-~ Slt- .!_lt) 
do q,n, dro 2 4 

+ (cose-. n~. q, )' ( 1 1 )] cos' x--s:rt--n . 
ysm8 men 2 4 

(18) 

In conclusion, the authors express their thanks to the 
members of the seminar of A. A. Sokolov for useful dis­
cussion. 
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