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The spectrum of photons interacting with electrons via the induced Compton effect is considered. Assuming weak energy 
transfer per collision, we previously predicted that a discontinuity may arise in the dependence of intensity on frequency ("shock 
wave" in phase space). In the present paper it is shown that if the finite temperature of the electrons is taken into account, 
the slope of the spectrum increases only up to a certain limit, after which an oscillatory dependence of intensity on frequency 
arises on the shortwave side of the spectrum. The structure of the shock wave is thus found to be more complex than previously 
assumed. It is similar to a collisionless wave in a plasma and not to a viscous wave in a neutral gas. 

1. INTRODUCTION 

THE discovery of powerful compact sources of low
frequency radiation in astronomical objects has attrac
ted attention to the interaction between intense electro
magnetic waves having a brightness temperature kTb 
>> mec2 and free electrons. 

Let us consider a spatially-homogeneous and iso
tropic situation, wherein the radiation spectrum is 
specified by the spectral energy density ~.J', of the radia
tion or by the occupation number n(v) = (c /81Thv3)~zr 
The space is filled with electrons with density Ne and 
temperature Te, which we assume specified and con
stant, although the results remain unchanged for a 
variable, and particularly self-consistent temperature 
{which the electrons acquire in the given radiation field). 
The scattering of the radiation by the free electrons 
leads to a redistribution of the energy and of the inten
sity over the spectrum; thus, the object of the investiga
tion is the function ~v{t, v), where tis the time. Instead 
of using ~v• we can characterize the radiation by the 
brightness temperature Tb, which is connected with ~v 
(we are considering long-wave unpolarized radiation) by 
the Rayleigh-Jeans relation 

~. = BnkT. I c'A'·= BnkT.oy' I c'. 

Since ltv is in the general case not in equilibrium, 
Tb(v, t} is also a function of the frequency. We are in
vestigating the case of long-wave radiation of high
intensity, so that Tb » Te in a wide frequency range. 
As is well known.C.1 •2J, the interaction of the radiation 
having the higher brightness temperature with the colder 
electrons is then accompanied by drawing of energy 
from the radiation1 )' as a result of which the radiation 
spectrum is altered in the low-frequency region[3J 2 >. If, 
furthermore, kTb » mec2 » kTe, then (i) the induced 
scattering is stronger than the spontaneous scattering 
and (ii) the integral equation for the realignment of the 
spectrum can be transformed into a differential equation 
at a spectrum width ~v » ~vD = vv'2kTe/mec2 • Here 
~vD is the Doppler width of the spectrum and corre-

1>-fo realize this case it is necessary that the electrons Jose energy in 
some manner that does not depend on the considered interaction with the 
low frequency radiation. 

2>This effect was apparently observed in experiment[41 • 

81 

sponds to the thermal velocities of the electrons. 
Such a transformation was first performed by 

KompaneetsC5J, who obtained the equation 

!! = axN.k 1_~ ~· ( n' + n + kT, !!!...) . at m,c oy' {joy k {joy 
(1) 

As applied to our problem, this equation can be written 
in simpler form 

ag I iJt =gag I av, (2) 

where 
c' f1xN,k 

g= oy'n=--~.; d1:=2--dt; 
Bnkv m,c 

aT=~(~)'. 
3 m,c' 

This nonlinear equation was studied by Levich and one 
of the authonPJ; its characteristics are the lines 

dv/d1:= -g, (3) 

corresponding to a decrease of frequency at a rate pro
portional to the spectral density of the radiation energy 
(more accurately, proportional to the quantity g, which 
is connected with this density). 

Under definite initial conditions, the spectrum evolu
tion in accordance with Eq. (2) leads in the course of 
time to the formation of an infinite derivative a g /a v. 
For this purpose it is necessary and sufficient that there 
exist a point of inflection on the low-frequency side of 
the g(v, 0) curve, i.e., the derivative dg(v, 0)/dv should 
have a maximum at definite values v = v0 and g = g0 : 

dg d'g d'g 
"dv"(v,,O)>O, dv'(v,,O)=O, W(v,,O)<O. 

The situation is mathematically similar to nonlinear 
propagation of an acoustic wave in a gas, wherein the 
dependence of the wave velocity on the amplitude gives 
rise first to an infinite derivative ap/ax- oo and ap/ax 
- oo, and then to a shock wave. In analo~ the forma
tion of a "shock wave" was predicted in 3 :i also for the 
spectrum of the electromagnetic radiation under the 
conditions described above. 

It should be noted that such situations were consid
ered much earlier as applied to plasma oscillations. A 
nonlinear equation similar to (2) was derived in[s] for 
longitudinal plasma waves and it was noted that the evo
lution leads to a narrowing of the wave front. In its 
idea, this reference (see alsJ 7J) anticipates the results 
of C3 J. 
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We note also that KompaneetsC 5J and the workers that 
followed him[l-3] have used the quantum language in that 
they have considered Compton scattering of photons and 
the corresponding transfer of the momentum hv/c and of 
the energy, with account taken of both spontaneous and 
induced processes, as is indicated in Eq. (1) by the fac
tor (1 + n), which is characteristic of Bose particles 
(photons). Planck's constant h, however, is cancelled out 
everywhere, so that actually the problem in question is 
classical, and the quantum language only makes the 
description more conveniene>. 

Let us turn from the history to the gist of the prob
lem. The occurrence of an infinite derivative ag/av 
during the course of the evolution means violation of the 
condition necessary for changing over from the integral 
scattering equation to Kompaneets' differential equation 
(1), namely that g be smooth. An analysis of the integral 
equation shows that instead of a shock wave moving as 
proposed in[3 J along the energy axis towards lower fre
quencies, there occurs an oscillatory frequency depen
dence of the radiation intensity. The resultant spectrum 
is represented by a set of narrow spectral lines of width 
.<lv ~ <lvn, spaced a distance .<lv ~ <lvn apart and mov
ing towards the lower frequencies (see the figure). 

2. FORM OF INTEGRAL EQUATION 

The present paper is devoted to an analysis of the 
situation arising when the spectrum abruptly becomes 
steep. For such an analysis it is necessary to return to 
an integral equation of the form 

iig(v,t) J --=Ag(v,t) K(v,!L)g(!L,t)d!L. 
iit 

(4) 

Here A= 2aTNeh/mec = T/t. The effective width of the 
kernel K(v, IJ.) of Eq. (4) corresponds to the average 
change of the frequency following a single scattering by 
the moving electrons: 

I IL I 111-vl v 11 kT, 
K * 0 for ln- = ~- ~ y --, . 

v v c m.c 

The kernel K is the difference between the probability 
of the photons moving from all IJ. to v and the inverse 
process of scattering from v to all IJ.. It is therefore 
natural that the kernel K alternates in sign and more
over is antisymmetrical, K{v, IJ.) = -K{IJ., v). 

The integral equation (4) should correspond to a num
ber of conditions. In Compton scattering, the total num
ber of quanta in the system is conserved. Since g is 
proportional to the number of photons per unit frequency, 
we have 

dN a • 
0 =df=atJ g(v)dv =SJ K(v,IL)g(v)g(IL)dvdiL. (5) 

0 

The antisymmetry of K ensures identical satisfaction of 
this condition. Additional information concerning K can 
be obtained by using the fact that when the number of 
quanta in the system is sufficient the joint action of the 
induced and spontaneous Compton processes should 
lead to a spectrum of the Rayleigh-Jeans type at low 

3>Compare the ideas ofTsytovich[SJ (and also Zel'dovich[91) concerning 
the number of quanta as an invariant of the classical field, and also those 
of Paradoksov [!OJ concerning the usefulness of quantum language. We 
note that spontaneous scattering by free electrons is also classical. 

f{>') 

Evolution of the radiation spectrum g(v) as a result of Compton in
teraction with thermal electrons. The initial spectrum is chosen in the 
form of a step function. The motion of the quanta along the frequency 
axis to the right of the discontinuity is determined by the induced Comp
ton effect, and the motion near the discontinuity by the spontaneous 
effect. 

frequencies. The determination of the exact form of the 
kernel K is not part of our problem, however. 

In the limit as the electron temperature Te- 0 and 
K is correspondingly narrow, the kernel can be replaced 
by the singular derivative o'(v, IJ.) of the Dirac function. 
In this approximation, the integral equation is trans
formed into the differential equation (2) written out 
above. Our task is to analyze the integral equation at 
low but finite Te· We note that as Te- 0 the differen
tial equation leads to a discontinuity, so that the analysis 
of the structure of the front requires allowance for Te 
.., 0 at any Te. 

The first seemingly natural assumption is that the 
solution contains instead of the discontinuity g(vo + 0) 
.., g(vo- 0) a transition region of width .<lv ~ v0v/c 
~ vov'kTe/mec2, which moves downward along the fre
quency axis as a viscosity- smeared shock wave with 
velocity proportional to the average value 
% [g(vo + 0) + g(vo- 0)]. 

However, even without a detailed mathematical analy
sis it can be seen that the solution is more complicated. 
In fact, the use of a simple "step" (g = g1 when v < v0 

and g = g2 when v > llo with g1 < g2) as the initial condi
tion causes the growth to be slower to the left of the dis
continuity than to the right (since the integral in (4) is 
continuous, it follows that ag/at ~ g). Thus, the dis
continuity tends not to be smoothed out but to increase, 
and a sharp maximum g > g2 is produced to the right of 
the discontinuity. The situation is clearly illustrated by 
the limiting case when g1 = 0, i.e., when the initial spec
trum is described by a step function. Then at v > vo we 
have predominant induced Compton scattering and mo
tion of the quanta towards lower frequencies. In the 
region v < vo there are no quanta, and therefore there 
is no induced process and the quanta can enter this reg
ion only with the aid of spontaneous Compton scattering. 
As a result, the quanta should accumulate and a narrow 
spectral region with width .<lv ~ .<lvn should be produced 
near the discontinuity. The influence of the spontaneous 
Compton effect on the parameters of this line will be 
considered in Sec. 4. 
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In the general case g2 > g1 "' 0 it turns out that at 
v - v0 the single smooth discontinuity gives way to a 
complicated periodic dependence of g on v. Simultane
ously with the general displacement of the singularity 
towards lower frequencies we have a growth of the am
plitude of the oscillations, whose period in the frequency 
scale is of the order of vv/c. 

The question of possible realization and observation 
of such a characteristic spectrum under astrophysical 
conditions is beyond the scope of the present paper. In 
Sec. 5 below we shall give only an example of a situation 
in which the described picture can be realized. To 
answer this question it is first necessary to solve the 
problem in a realistic geometry and with allowance for 
the reaction of the radiation on the electrons4 '. 

We confine ourselves here to an idealized formulation 
of the problem, for the purpose of disclosing under very 
simple assumptions the structure of the wave in pure 
form. In numerical calculations, on the other hand, we 
can use the following form of the kernel: 

d 1/ m,c' 1 
K(v,J.t)=-[aexp{-a'(v-~t)'}], a~v-,---r ---;-· 

df.t ;;; .. ' 
(6) 

In Sec. 3 below we shall determine the analytic prop
erties of (4). 

3. ANALYTIC PROPERTIES OF EQ. (4) AND LIMITING 
CASES 

We choose a scale, changing over to x = v/a, y = JJ.Ia, 
t = bT, such that the kernel of the equation 

iJg(x,t) =g(x,t) JK(x-y)g(y,t)dy (4') 
at 

has the following properties (z = x- y): 

a) JK(z)dz = 0, b) J zK(z)dz = 1, C) J z'K(z)dz = 1, 

d<P(z) f J d) K(z)=---a;- e)<P(+z)=¢(-z), ) 1>(z)dz=L 

(7) 

Conditions (a) and (e) reflect the antisymmetry of the 
kernel K(z), condition (d) is a definition of the symme
trical function q~(z) (which can be considered to be 
Gaussian), and (b), (c), and (f) are normalization condi
tions. 

Equation (4') can be rewritten in the form 

!!!.=gs <P!!Ldy, 
at ay 

(8) 

which yields for a slowly- varying g 

iJg I at= gag I ax. (2') 

According to (2), one can visualize the quanta as 
"moving" with velocity g/2. We note that the flow 
velocity is not equal to the perturbation-propagation 
velocity, but is one- half the latter. The differential 
equation (2) has two obvious "conservation laws" that 
are essential in what follows: 

d "' g'(x!) g'(x,) 
Tt J gdx= --2-+-2-, (9) 

x, 

•>It is curious that when &v has a periodic dependence on v one can 
expect a particularly strong increase of the induced radiation pressure on 
the electrons1111 . 

d "' -S lngdx= -g(x,)+g(x,). 
dt . 

(10) 
"• 

It is easy to verify that both laws also obtain for the 
integral equation, if the function g in the vicinities of x1 
and x2 is constant and equal respectively to gl and g2 
over several units of the chosen scale (we recall that 
the region of influence of the kernel K( x- y) is of the 
order of unity) . 

Let us attempt to construct a solution using a transi
tion region of arbitrary shape moving in stationary 
fashion to the left with velocity u: 

g(x, t) =<p(x+ut); <p(-oo) =g,, <p(+oo) =g,. (11) 

For such a solution, regardless of the form of q~, the 
derivatives of the integrals in (9) and (10) have perfectly 
defined values: 

d +~ g,'- g,' 
dtlgdx=u(g,-g,)= 2 , 

d +~ g, - J lngdx = uln- = g,- g,, 
dt -~ . g, 

from which we obtain two different values of u: 
u' = (g, + g,) 12, 

u"= (g,-g,) I (lng,-lng,), 

which coincide only in the limit as 

(9') 

(10') 

(12) 

(13) 

This means that when g2 "' g1 no stationary solution is 
possible! 

The difference between u' and u" is small: putting 
bt • 1 d II g2 = g0 + et and g1 = go - et, we o a1n u = go an u = go 

- et 2/3go + ... 
Let us attempt to determine the possible quasista

tionary solution when et << go, neglecting the difference 
between u' and u". To this end we seek the asymptotic 
forms of a solution of the type q~(x + got) to the left and 
to the right of the discontinuity 

<p=g1 +~(x+g,t), (14) 

<p = g, + y(x + g,t). (15) 

Assuming (3 to be small in (14) and y to be small in 
(15), we seek a solution in exponential form 

~(lJ) =Be""; y(l]) = Ce-'~"; l] = x + g0t. (16) 

Substituting such (3 and y in (2), we get 

Jlo = f!• cxp(p' /4) = g, exp(q' /4). (17) 

Since g1 < g0 < g2, it follows from (17) that p is real but 
q is imaginary. This means that in the quasistationary 
solution the front of the wave clings exponentially to the 
low-frequency region of x1, g1, but the high-frequency 
asymptotic form g - g2 is reached in an oscillatory 
manner. 

The completely linearized case o = g2 - gl << go does 
not contain the important property of the nonlinear 
problem- the steepening of g(x, t), i.e., the growth of 
j&g/axj when the initial function g(x, 0) is slowly 

max . t d 'd f varying. Nonetheless, the linear case 1s no evm o 
interest. The equation 

ao(x,t) =JKo(y,t)dy (18) 
at 
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for the Fourier components 

I'J = s I'J.e'•tHhdk (19) 

yields the dispersion equation 

w(k) = ke-''1'. (20) 

At small k we have 

(1) = k- 0,25k'. (21) 

At large k 

(22) 

We see therefore that the slowly varying 0 moves (as 
k- 0) as a unit with unity velocity, so that 

irot + ikx = ik(t + x). (23) 

To the contrary, the discontinuity, or any other singu
larity characterizing the asymptotic form as k- oo, 
stands still, since at large k the dependence on t dis
appears in the limit as w - 0. 

4. DISCUSSION 

A detailed clarification of the picture calls for a 
numerical calculation. However, even the presented 
considerations show that in induced Compton interaction 
between a high-intensity radiation whose spectrum has 
an inflection point on the low-frequency side and thermal 
electrons one should expect a unique resultant spectrum 
with several minima and maxima. Spontaneous scatter
ing may smooth them out on the high-frequency side. 

'The very appearance of intensity maxima at frequen
cies not corresponding to any resonances in the system 
is so curious that it is worthwhile to discuss the situa
tion even before the entire picture is quantitatively ex
plained. 

The structure and evolution of the radiation spec
trum can easily be explained qualitatively in the sim
plest example in which the initial spectrum is chosen in 
the form of a step function: g(v > llo) = const, g(v < llo) 
= 0. Then at 11 > 110 the motion of the quanta along the 
frequency axis is determined by the induced Compton 
effect and has a velocity 

~ I = _ Ag = -<.crTN,hv' n. 
dt ind mec 

(3') 

When 11 < 110 there are no quanta, the induced process 
does not take place, and the quanta can enter in this 
region only with the aid of the spontaneous Compton 
scattering. The probability of the spontaneous scatter
ing is w = aTNec and the average change of frequency 
in one act is j~vlsp ~ vv/c. Comparing j~vspl with the 
induced frequency shift 

1 I av I j~vl<nd=- -d 
W,p t ind. 

during the same time 1/wsp we see that at 

kT. = nhv > m,cv = l(m,c'kT, (24) 

the motion of the quanta along the frequency axis as a 
result of the induced processes is faster than that due 
to the spontaneous processes, and that in the region 
11 ~ v0 there should occur an accumulation of the quanta. 
Obviously in the zone with ~v/v0 ~ v/c the number of 

accumulated quanta should be such that their outflow 
towards lower frequencies as a result of spontaneous 
scattering should equal the influx from the higher fre
quencies, due to the induced processes. As a result a 
narrow line is produced near llo (see the figure). Subse
quently, since the flow of quanta towards the lower fre
quencies is conserved, this line should move with veloc
ity (3'), but the spectrum can already acquire a complex 
oscillatory structure. It is easy to make a rough esti
mate (which is patently exaggerated in view of the 
neglect of the role of the induced processes in the form
ation of the line) of the stationary height of the line: 

r.(!J.=~=.!!:..-'avtdtl,n·(g) _ hv.n =!0..V m,c' <25) 
r. n g I ~vd •• (L) w.. m,cv m,c' kT, . 

5. POSSIBILITY OF ASTROPHYSICAL APPLICATIONS 

It was noted inE 12l that induced Compton interaction 
of low-frequency radiation with a thermal plasma can 
greatly distort the spectra of quasars, galactic nuclei, 
and pulsars in the frequency region where the brightness 
temperature of the radiation is kTb > mec2/TT. Here 
TT = aTNel is the optical thickness with respect to the 
Thomson scattering of the radiation region with charac
teristic dimension l. Since the brightness temperatures 
of the radiation of compact radio sources in quasars and 
galactic nuclei reach Tb ~ 1013 °K ~ 103-104 mec2 , and 
in pulsars even Tb ~ 1025 oK ~ 1015 mec2 , it follows 
that one can hope to observe a narrow intense line in the 
spectra of sources whose initial spectra have inflection 
points on the low-frequency side. We note that in this 
case we have a stationary problem wherein the quanta 
emerge from a spatially limited region in which the 
quanta are produced and scattered. 

In order for the inhomogeneity of the source (and the 
differences between the emission spectra in spatially 
separated regions of the sources) to cause no smearing 
of the lines in question, it would be of particular inter
est to consider the following geometrical arrangement 
of the scattering sources. An electron cloud of optical 
thickness TT and linear dimension l is located between 
a source of radius Rand the observer, the distance r 
between the cloud and the source being much larger 
than either R or l. Then, if kTb > (mec2/TT)(r/R)3[ 12J, 
then a narrow intense emission line having a brightness 
temperature larger than that in the continuous spectrum 
should be produced in the spectrum. 
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