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The physical properties of atoms, molecules, and solids in a superstrong magnetic field up to 1012 to 1013 Oe are considered 
in the quantum "drift" approximation. It is shown that the atoms, which are strongly elongated along the magnetic field, merge 
together into polymer molecules at low temperatures and, therefore, a solid should have the structure of a polymer. 

1. INTRODUCTION 

AccORDING to contemporary ideasPJ magnetic fields 
up to 1012 to 1014 Oe may eXist in' neutron stars or on 
their surfaces. Such fields .must strongly influence the 
physical properties of matter. In fact, the interaction 
of atomic electrons with an external magnetic field be­
comes larger than their Coulomb interaction if the mag­
netic field exceeds the magnitude m2e3cli-3 = 2.35 
x 109 Oe (in what follows the magnetic field B will be 
measured in precisely these units, and all remaining 
quantities will be expressed in atomic units). Therefore 
a complete rearrangement of an atom's electron shells 
must occur for B » 1. In particular, for the hydrogen 
atom with B » 1 the electron cloud takes the shape of 
a thin needle, whic.h is elongated along the direction of 
the magnetic fieldP-<~J For heavy atoms with atomic 
number Z » 1 the spherical symmetry is preserved 
for B < z\[sJ but then for B > Z3 they are also elonga­
ted along the magnetic field.[6 ' 7J Markedly elongated 
atoms possess a large electric quadrupole moment, 
and at not very high temperatures, the forces of attrac­
tion acting between these moments should lead to the 
formation of moleculesC8J and their condensation into a 
solid phase. 

In the present article we consider certain physical 
properties of matter in a superstrong magnetic field, 
starting with the interaction of isolated atoms and end­
ing with the fundamental characteristics of the solid 
state. 

2. THE QUANTUM "DRIFT" APPROXIMATION 

In a very strong magnetic field, that is (in units of 
m2e3cli-s) for B » 1, in the excited state all of the elec­
trons must be in the very lowest Landau level, and the 
spin magnetic moments are oriented along the field. In 
this connection each electron executes oscillations along 
B, but in the plane perpendicular to B it moves in a nar­
row cylindrical shell whose width is equal to the 
Larmor radius ~ 1/v'B. In classical mechanics the 
so-called drift approximation is used in order to des­
cribe such motion in strong magnetic and slowly varying 
electric fields. It is natural to utilize the analogous ap­
proximation in the quantum case. 

The Schrodinger equation for electrons with spin 
a = -1/2 (in atomic units) has the form 

1/2(p + A)'1jJ -qJ¢- 'hB¢ = E¢, (1) 
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where p =- iV and cp is the potential of the electric 
field. Let us choose the vector potential A in the form 

A= bVx, 8 = [VbVx]; (2)* 

the z axis is directed along B. 
We shall assume that the functions b(x, y) and x (x, y) 

do not depend on z. The arbitrariness in their choice 
is restricted only by the second relation in (2). Employ­
ing this relation, we select the quantity b in such a way 
that the lines b = const correspond to the lines of drift 
of the electrons in the plane perpendicular to B. In ad­
dition, we normalize x so that it varies from 0 to 21T 
(this can be achieved by the introduction of a new func­
tion b1 = b1(b) in place of b, which is constant on the 
same lines b = const). 

Let 1/J = 1/Jm = e-imx¢', where 1/J'(b, x) is a periodic 
function of x., and m is the azimuthal quantum number. 
It is not difficult to verify that ¢' satisfies the same 
equation of the form (1}, with A replaced by A' =A 
- m vx. = (b- m)Vx.. We shall seek the quasi- classical 
solution with m » 1, which is localized near b = m 
and which varies slowly with respect to x. along the line 
b = m, so that la¢'/ax.l «:mil/!' I. In accordance with 
this, one can neglect the derivatives of ¢' with respect 
to x. in Eq. (1). In addition, in the zero-order approxi­
mation of the expansion in powers of 1/B, one can 
neglect the small terms (1/2)p~I/J' + cpl/J', so that Eq. (1) 
for 1/J' takes the form 

1 8'1jl' ( 81jl' 1 ) - 2 as' (VW+i(VbVx) sa~ + 2 11>' 

1 B 
+2(Vx)'s'11l' - 2 11>'=E,Ijl', (3) 

where ~ = b- m, B = [(Vb}2 (Vx.}2 - (vb · vx.)2 ] 112 and in 
addition we omitted the small term- (1/2)(a¢' /aO~b. 
Equation (3) has the solution 

'=ex (-Cs') C=B-i(VbVx) 
11> P 2 ' (Vb)' 

(4) 

with the eigenvalue Eo= 0. As we see, this solution 
corresponds to a wave function localized near the line 
b = m = const with the width of the localization in ~ of 
the order of 1/ IB. One can interpret it as the function 
describing the electron's drift along the line b = m in 
the plane perpendicular to B. 

We shall assume that the lines of drift b(x, y) = const 

*['Vb'Vxl ='Vb x 'Vx. 
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are closed; then these closed lines of drift form a cer­
tain family of lines enclosed one inside the other. Near 
the center (b = 0) let the lines b = const be close to 
circles, so that for small values of b the functions 
v'2b,7B and x coincide with the cylindrical coordinates 
p and (}. Then for small values of m the wave functions 
will be close to functions having a constant angular mo­
mentum, 1/Jm = pmexp(- Bp 2/2). For sufficiently lar~e 
values of m these functions approach exp[- B(p- m) /2] 
and, as we see, go over into the quasiclassical functions 
(4) with (vb · vx) = o. 

Thus, for a sufficiently broad class of functions b, 
coinciding with Bp 2/2 for small band smoothly varying 
at large distances, one can choose the wave functions 
in the form of "drift shells." In the zero-order approxi­
mation, all of these functions have one and the same 
eigenvalue, Eo = 0. The found functions are ap~roxi­
mately orthogonal to each other: for a large difference 
m- m' they simply do not overlap with respect to b, and 
for small values of m- m' their dependences on b are 
similar and they are orthogonal due to their angular 
parts e-imx. . 

Since the level Eo is infinitely degenerate, then m 
order to obtain the next approximation it is necessary 
to solve the secular equation. Let us choose the func­
tion b such that only the diagonal terms remain in the 
secular equation; then it takes the form 

(5) 

where cp represents the potential of the electric field, 
averagefwith the m-th wave function of the variables 
band x, and here the function 1/imz only depends on z; 
l corresponds to the longitudinal quantum number. 

Now it is not difficult to see how one should choose 
the function b. Since according to Eq. (5) the Hamilton­
ian of the longitudinal motion is diagonal in the functions 
1/Jmz• this means that for quasiclassical functions with 
m » 1 the value E along the drift shell b = const re­
mains constant. In ~ther words, for each l the functions 
b are chosen from the condition of constancy of the en­
ergy eigenvalue Emz of the lo?~itu~inal motion as a 
function of x and y. This cond1tlon 1s analogous to the 
condition for the conservation of the longitudinal adia­
batic invariant that determines the drift shells in the 
classical case. Even in the case of small values of m, 
the condition that the Hamiltonian be diagonalized has a 
similar meaning. 

The arguments given here primarily pertain to the 
assumed case when axial symmetry does not exist. 
However, in the presence of such symmetry the entire 
picture is much simpler, since here b = p 2/2 and the 
radial dependence of 1/Jm is exactly known. 

We note that the relation B = Vb x vx implies that the 
Jacobian of the transformation from the variables b, x 
to the variables x, y is equal to B. From here it follows 
that 21Tb = BS, where S denotes the area bounded by the 
curve b = const. Thus one can say that the area assoc­
iated with the drifting motion is quantized: In connec­
tion with a transition from one azimuthal level m to 
another, the area increases by the amount &> = 21T/B. 
One would also anticipate this result according to the 
correspondence principle, since in the classical case 
the area S for B = const corresponds to the third adia-

batic invariant. Therefore, during the interaction of 
elongated atoms (B » Z3) with external fields and with 
other atoms, the area of their transverse cross section 
remains constant and only its shape changes. 

3. ATOMS IN A SUPERSTRONG MAGNETIC FIELD 

Many- electron atoms in the presence of a super-
. . d h b "d d . [s-?J It strong magnetic flel ave een cons1 ere m . 

was shown that for B < Z3 , in the ground state several 
electrons are found in each m-level, and a modified 
Thomas- Fermi model may be used to describe the 
ground state. In this approximation the atom keeps its 
spherical symmetry, but its characteristic radius varies 
like Z115B-275 • For B > Z3 only one electron remains in 
each m-level, and for B » Z3 the atom is strongly 
elongated along the direction of the magnetic field, 
taking the shape of a needle of radius Pz = v'2Z7B. In 
this connection all of the electrons are found in the 
ground level of the longitudinal motion, whose depth in­
creases without limit with increasing magnetic field, 
and for B » Z3 becomes considerably larger than the 
Coulomb interaction energy at the average distance 
from the nucleus. Here the wave function can be ap­
proximated by the exponential I/!= exp(-alzl), and the 
binding energy of the atom, after minimization with 
respect to a and neglecting the exchange corrections, 
turns out to be given by 

E.=-~Z'L', 
8 

1 1 B 
L=ln--~-ln-

apz 2 z· (6) 

This expression can be written in the form Ea = Z€, 
where E is the average binding energy of a single elec­
tron, which in fact corresponds to the binding energy 
of an electron on the periphery, that is, for p = Pz 
= ,,2Z/B, since upon averaging it is precisely these 
electrons which give the major contribution. 

Expression (6) determines the energy of an atom at 
rest. For an atom moving with velocity V, we must add 
to expression (6) the kinetic energy MV2/2 (M denotes 
the mass of the atom, which is essentially the same as 
the mass of the nucleus) and the potential energy of the 
deformation of the electron shell of the moving atom. 
One can find this energy by taking into account the 
properties of the drifting motion of the electrons which 
was considered above. 

In fact, if we change to a coordinate system moving 
together with the atom along the x axis, then in this sys­
tem there is a transverse electric field Ey = - V 1 B, 
whose presence leads to such a displacement of the drift 
surfaces so that the energy on a drift line would be con­
stant. Thus, for small V 1 the displacement ~ along the 
radius is obtained from the condition 

!!.._6- Vj_Bpsin-& = 0. (7) 
iJp 

Since as usual the transverse area So = 21T/B occurs 
for each electron, then the displacement across B is 
incompressible, and in this connection the energy of all 
the internal electrons does not change- the entire change 
of energy is due to the surface electrons, which are 
shifted farther from the nucleus. This change is given 
by 

1J(fJs6') 6E =- -- pd'lt, 
S, iJp 2 P=Pz 

(8) 
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where 1/So denotes the density of electrons. Substituting 
here ~ from (7) and taking into consideration that. 

e = _!}_z'L' as 2 , 2z 
8 ' -ap=eLP, Pz =B' 

we obtain bE = (4/9)BV~/L so that the total energy is 
given by 

E=E +MV'+MoV.L' 
' 2 2 ' 

8 B 
Mo=--9 L . (9) 

For large B the quantity Mo may be comparable with M, 
and therefore an appreciable anisotropy of the atom's 
effective mass appears: M~ = M, M!. = M + Mo. The 
quantity Mo was determined ini: 9J for a hydrogen-like 
atom (for a Mott exciton). In our notation it is given by 
Mo = B/2L. This expression differs from (9) only by a 
numerical factor, and can be obtained from (8) by sub­
stituting the value E =- 2L2 for the hydrogen atom into it. 

4. THE INTERACTION OF ATOMS; MOLECULES 

The strongly elongated atoms associated with B » Z3 

possess large electric quadrupole moments and there­
fore must interact strongly among themselves. For a 
large distance r, two atoms interact simply as two 
quadrupoles, which are rigidly oriented along the direc­
tion of the magnetic field. For the distribution 
n oo exp(- 2a I xi) of the electron density, the atom's 
quadrupole moment is given by Qzz = 2(z2 ) = a-2 and 
for ar » 1 the interaction energy U is given by 

9Z' 
U = --P,(cos 0), 

2a'r' 
(10) 

where 8 is the angle between the direction of the mag­
netic field and the vector joining the centers of the two 
atoms, and Pt(X) = (1/8)(35x4 - 30,( + 3) is the Legendre 
polynomial. 

The potential (10) is a monotonic function of r; there­
fore the sign of the interaction force is determined by 
the sign of the polynomial Pt: when Pt > 0 the atoms 
repel each other, and when Pt < 0 they attract. Conse­
quently repulsion occurs for 8 = 0 and 8 = 'IT/2, and 
attraction occurs in a certain range of angles near 
e = 49°, where cos28 = 3/7 and Pt has a minimum. 

For a r ::o. 1 the interaction energy of needle- shaped 
atoms with rigidly fixed electron density per unit length 
ooexp(-2aizl) can be found numerically. One can repre­
sent the potential U in the form U = Z2au(x, z), where 
x and z are the dimensionless components of the vector 
joining the centers of the atoms, that is, x = aa and 
z = ac, where a denotes the distance between the axes 
of the atoms and c denotes the distance between the 
nuclei along the direction of the field B. The potential 
u(x, z) as a function of z is depicted in Fig. 1 for sev­
eral values of x. It is seen that u(x, z), for a fixed 
value of x, has a minimum um(x) whose value as a 
function of xis depicted in Fig. 2. As is seen, urn ~ 1, 
and since a ~ 1/ZL, then the interaction energy U is 
at most L times smaller than the total binding energy of 
each of the atoms. 

Since um(x) is a monotonic function of x, the inter­
acting atoms will approach each other until they come 
into contact. Upon further transverse motion of the 
nuclei toward one and the same line of force, the elec-

U(l.Z} 

J 

FIG. l_ 

trons will become collectivized into external shells 
whose drift trajectories will encompass both nuclei. 
One can say that these electrons are "extruded" from 
the more interior shells, since the electron shell is 
incompressible in a direction transverse to the mag­
netic field. This effect, which leads to a certain average 
removal of the electrons from the nucleus and to an in­
crease of the potential energy, is equivalent to the ap­
pearance of repulsive forces upon contact of the atoms. 
If L is not large, so that contact begins for rather large 
values of x, when the value of U is small according to 
Figs. 1 and 2, then a molecule having a small number 
of collectivized electron!> will be formed out of the two 
atoms which are stuck together. On the other hand, for 
large values of L a kind of supermolecule is formed in 
which all of the electrons are collectivized and form a 
single needle- shafed cloud along whose axis the nuclei 
are distributed.CS In a very strong field such super­
molecules can be formed out of several, let us say n, 
atoms; in this connection the nuclei are distributed at 
a certain distance R from each other along a single line 
of force. First let us consider precisely such molecules. 

The radius of the electron cloud in such a molecule 
is obviously given by Pnz = v'2nZ/B. In a very strong 
magnetic field, when the molecule becomes extremely 
narrow and the motion of the electrons is essentially 
one-dimensional, the wave function of the longitudinal 
motion will correspond to a bound state in a potential 
having the form of a superposition of one-dimensional 
o-functions at the points where the nuclei are located. 

2 

FIG. 2 
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On the outside away from the nuclei this function has 
the form exp(- al z /), and between the nuclei it has the 
form cosh a z. But if the nuclei are situated sufficiently 
close to each other, so that 0' R << 1, then one can 
neglect the "dip" in the function l/J between nuclei and 
set 1/J = const. If we approximately assume a to be 
identical for all electrons, then the corresponding elec­
tronic density per unit length, .X, has the form 
.x = nZ8 exp (- ajz I) outside of the nuclei and .X = nZ8 
= const between the nuclei. From the normalization 
condition it follows that 8R(n- 1) + {3/a = 1. In this ap­
proximation and with logarithmic accuracy, the energy 
nEn of ann-atom molecule (En denotes the energy as­
sociated with a single atom) is determined by the follow­
ing expression 

{ afl 1 1 - , } z• nE,=nZ 2 -2nZL.!3- 2 nzL.fl+ 2 (n-1)nZ!3R +n/.R, 

(11) 

where 

L.=ln (1/1\p.z), /.='/, + '/,+···+ 1/n. 

The first term inside the curly brackets in Eq. (11) 
represents the kinetic energy of the electrons, the sec­
ond term represents the interaction energy of the elec­
trons with the nuclei, and the last two terms represent 
the Coulomb interaction energy of the electrons among 
themselves. The last term in (11) corresponds to the 
interaction energy of the nuclei. One should regard the 
quantities 8 and R in (11) as free parameters, which 
must be determined by minimizing the energy En. Since 
the minimum with respect to {:3 is reached for 8 ~ nZ, 
then to within logarithmic accuracy we have Ln 
~ (1/2) In [B/(nZ)3 ]. To within the same degree of ac­
curacy, in minimizing expression (11) with respect to 8 
and R one can regard the quantity Ln as constant. 

In terms of the variables ~ = f:3R(n- 1) and 
TJ = B/nZLn the expression for En reduces to the simpler 
form 

1 { TJ' ~} E.=-n'Z' ---3TJ+sTJ+A.- , 
2 1-s TJ (12) 

where An= 2fn(n- 1)/nLn. From here it follows that 
the minimal value of En with respect to ~ and TJ has the 
form En =-n2 Z2L~F(An), where one can easily deter­
mine the function F(A ) which depends on a single varia­
ble by minimizing exp~ession (12). This function de­
creases with increasing An, that is, the molecule's en­
ergy E increases in absolute magnitude faster than L~ 
with in~reasing magnetic field, and with increasing B 
the formation of larger and larger molecules becomes 
favorable. However, since the dependence on B is 
logarithmic, the corresponding values of the magnetic 
field turn out to be very large. Namely, the calculation 
shows that E2 < E1 only for L = (1/2)ln(B/Z3) > 5 and 
E3 < E2 for L > 6, that is, the formation of diatomic 
molecules, and all the more for triatomic and many­
atom molecules with completely collectivized electrons, 
only occurs for very large values of B. 

From here it follows that for B » Z3 , but not too 
large values of the magnetic field, the formation of the 
molecules must occur by means of the "adhesion" of 
the atoms to each other with the preservation of their 
"individuality." The adhesion energy of two atoms in a 

molecule is determined by the quantity urn. If a third 
atom is brought up to such a diatomic'molecule, then it 
becomes attached to it with roughly the same binding 
energy, since u(x, z) rather rapidly decreases with in­
creasing z. In this connection, since the atoms repel 
each other for small values of z (see Fig. 1), then the 
third atom attaches itself to the external side of the 
molecule (along the magnetic field). The subsequent 
atoms will attach themselves to the ends of the mole­
cules in analogous fashion, so that a polymer thread 
will be formed when the number of atoms is large. The 
binding energy of an individual atom in such a thread is 
of the order of magnitude urn, that is, it is in all only 
L times smaller than the total binding energy of an 
isolated atom. 

5. THE SOLID STATE 

At sufficiently low temperatures the attractive forces 
between the atoms due to the presence of their large 
electric quadrupole moments must lead to their conden­
sation into the solid state .. At first glance it appears 
that in connection with the condensation of the "needle­
shaped" atoms which are markedly elongated along the 
magnetic field, nothing hinders them from being packed 
alongside of each other. Here the electrons must occupy 
all space with more or less uniform density, and by vir­
tue of their Coulomb repulsion the nuclei submerged in 
the electronic liquid must form a crystal lattice struc­
ture of the close- packing type. It is obvious that in such 
condensation, the average distance betweep the nuclei 
turns out to be much smaller than the length of the iso­
lated atoms out of which the solid was formed. In this 
connection the characteristic de Broglie wavelength of 
the longitudinal motion of the electrons must be much 
larger than the average distance between nuclei. In 
other words, with respect to the longitudinal motion we 
have, as it were, a strongly compressed substance. In 
this connection, by virtue of the smallness of the wave 
vector k we can approximately replace the periodic 
function vk(z) by the function Vo(z) corr~sponding to 
k = 0 in the Bloch functions 1/Jk = vk(z)eikz of the longi­
tudinal motion. Here the part of the kinetic energy of 
tl).e electrons, corresponding to the exponential factor 
eikz is determined as for the case of a free electron 
gas ~nd is given byE= (p~/2) = (2/3)7T2~max• where 
Nmax denotes the limiting value of the occupation num­
ber of the levels of longitudinal motion per unit length. 

Now let us take into consideration that in a super­
strong magnetic field, in the ground state all of the elec­
trons are found in the lowest Landau level, and to each 
state there corresponds a small area in the plane per­
pendicular to the magnetic field, this area being equal 
to So = 27T/B. Since only a single electron is found in 
each of the possible states, then Nmax = Zn/So 
= 27TZn/B, where n denotes the density of nuclei, and 
nZ denotes the density of electrons. In this approxima­
tion and under the assumption that only one nucleus oc­
curs per elementary cell, the total energy per atom is 
determined by the expression 

Bn'Z'n' 1 (iJv )' Z Z-1 J 3) E=---+ZJ- -' dr+-<p,--- <pv,'dr, (1' 
3B' 0 2 iJz 2 2 0 

where the integration is carried out over the volume n 
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of the elementary cell, <p is the potential of the electric 
field, <fJi is the potential at the point nucleus created by 
all of the charges except that of the given nucleus, and 
vg is normalized to unity. The second term in expres­
sion (13) corresponds to the kinetic energy of the longi­
tudinal motion. We have neglected the exchange inter­
action, considering that Z » 1. To this same degree of 
accuracy, one can replace Z- 1 by Z in the last term. 

The first term in (13) is proportional to n2 , and for 
fixed configurations of the charge distribution the sec­
ond and the last two terms are proportional to n213 and 
n113 , respectively, that is, they depend on n considerably 
more weakly. Therefore, one can approximately seek 
the minimum of E with respect to vo, so that for the 
minimum value of E with respect to n we have 

E = 8n'Z'n'/3B' - AZ'n''•. (14) 

Here A is a certain constant of the order of unity, which 
very weakly depends on n, so that one can seek the 
minimum of expression (14) with respect to n for con­
stant A. From the condition aE/an = 0 we obtain the 
following expression for the minimum value of E: 

5 ( B{A)''• E=-- -- AZ' 
6 4n'Z' · 

(15) 

One can approximately estimate the quantity A by re­
placing the elementary cell by a sphere of radius 
R = (3/ 41Tn) 113 and by choosing the function Vo to be 
spherically symmetric, v0 = vo(r). For the simplest 
trial function vo = const, corresponding to the free elec­
tron gas, the quantity A is equal to (9/10)(41T/3) 113 

= 1.45. In actual fact, however, the electronic density 
must be several times larger around the nucleus, that 
is, v0 must be a decreasing function of r. However, 
even a trial function of the form v0 = const · (1- r/R) 
which decreases strongly with r, and corresponds to a 
vanishing of the electron density on the boundary of the 
cell, increases the value of the constant A by only a few 
percent for the value B = Z3 and doesn't change its value 
for B = 2Z3 • For B > 2Z3 the free-electron approxima­
tion, v0 = const, must be even better satisfied, so that 
for all B > Z3 the binding energy of the solid state, 
under the assumption of close packing, is given suffi­
ciently exactly by expression (15) with A = 1.45. 

But from here one can immediately reach the con­
clusion that in actual fact the density of packing in un­
compressed matter will not be attained. In fact, as one 
can easily verify,. the quantity (15) for A= 1.45 lies 
above the binding energy of a diatomic molecule with 
completely collectivized electrons E2 ~ (9/2)Z3L~, 
where L2 = (1/2) ln [B/(2Z)3 ], and (15) is comparable 
with E2 only for unrealistically large values of the mag­
netic field, B/Z3 ~ 107• Thus, close packing is ener­
getically unfavorable even in comparison with a gas of 
diatomic molecules, and it is all the more unfavorable 

in comparison with polymer filaments. The formation 
of a solid by means of the adhesion of polymer mole­
cules is more natural. It is rather difficult to estimate 
the binding energy of such adhesion, but apparently it is 
appreciably smaller than the binding energy of a single 
atom in the molecule. 

Thus, upon heating the substance one would first ex­
pect the breaking of the bonds between the polymer 
molecules, then side by side with the breaking of the 
molecules into fragments and the reduction of their 
average lengths will also occur the excitation of elec­
tronic m-levels having energies of the order of ZL, and 
only in the final stage will ionization and dissociation 
of the molecules into atoms occur with an energy dissi­
pation ~ zaL. 

CONCLUSION 

Thus, the semi-quantitative investigation carried out 
above indicates that a substantial change in the physical 
properties of matter occurs in the presence of a super­
strong magnetic field. First of all, the dimensions of 
the atoms are reduced and the binding energies and 
ionization potentials are increased. For B » Z3 the 
atoms are markedly elongated along the direction of the 
magnetic field, and the atoms begin to strongly interact 
between themselves, sticking together into long polymer 
molecules. At sufficiently low temperatures these 
molecules can condense into the solid state, so that the 
structure of the solid must have the character of a poly­
mer; estimates show that the usual crystalline lattice 
with closepacking turns out to be energetically unfavor­
able. In addition to the ground state which we have 
treated here, the investigation of excited atoms and 
molecules is of interest. 
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