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Two-photon emission processes in a system of two unlike atoms having close excitation energy levels and located at a fixed 
distance from each other are considered within the framework of the perturbation theory for decaying states. Solutions are 
obtained which describe the behavior of the system during resonance fluorescence and spontaneous decay from an initial state 
with two excited atoms. It is shown that resonant interaction between unlike atoms involving excitation exchange leads to 
complete radiative decay of the system (in contrast to a system of identical atoms) and to the appearance of interference effects 
which considerably alter the time law of decay and the radiation energy spectra. 

INTRODUCTION 

THE process of radiative damping in an ensemble of 
identical two-level radiators was considered by many 
authors. In most papers it was assumed, for the sake of 
simplicity, that the particle interaction is effected only 
via the common transverse radiation field[ 1- 4J. The total 
(including the Coulomb) resonant interaction was taken 
into account only for the simplest systems consisting of 
two atoms[sJ. It was assumed that the atoms are located 
at fixed distances from each other and that one of the 
atoms is excited at the initial instant of time. An analog­
ous problem for two unlike atoms with close excitation 
levels was considered in[sJ. It was shown that coherent 
effects become manifest in the case of unlike atoms. 
The Coulomb interaction leads in this case to certain 
specific features (the absence of excited metastable 
states, radiation beats). The present paper contains an 
analysis of two-photon radiation processes in a system 
of unlike atoms, namely collective spontaneous decay 
from the initial state with two excited atoms, and reson­
ant fluorescence of two atoms. 

COLLECTIVE SPONTANEOUS DECAY 

We consider radiative damping of a system of two 
unlike atoms excited at the initial instant, under the fol­
lowing conditions. 

The excitation levels of the atoms A and B, equal 
respectively to w01 and W 02 (we use a system of units 
with ti = c = 1) are close or coincide. For simplicity we 
assume that the levels are nondegenerate. The distance 
R between atoms is assumed fixed and exceeding the 
dimensions of the atoms, so that the overlap of the wave 
functions of electrons of different atoms can be neglec­
ted. The motion of the atoms as a whole and the recoil 
energy of the nuclei are not taken into account. System 
states with more than two quanta are not considered, as 
a result of which nonresonant multiquantum transitions 
are excluded. The following states of the system are 
assumed possible: 

112) -both atoms in the excited state; 
JlA) (!2A))-atom A (atom B) is excited, and the 

radiation field contains one quantum A(q, IJ.) with wave 
vector q and polarization eq/J.; 

!H')-both atoms in the ground state, the field corre­
sponds to two quanta A and A'. 
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We represent the interaction Hamiltonian in the form 
(Coulomb gauge) 

;M,.., = H + V + Y, (1) 

where the operator 7' is determined by the Coulomb 
interaction of the atoms, and the operators H and V 
describe the interaction of the atoms A and B, respec­
tively, with the transverse field. Using the perturbation 
theory of Heitler and Ma[7J, which makes it possible to 
take the damping of the states into account, we intro­
duce the matrix U(E), which defines the Fourier com­
ponents of the system state amplitudes: 

, s· . b11(t)=- dEG(E)exp {!(E,-E)t}; 
2n 

b~<(t)= ~ j dEUjllo(E)b(E-E,-.)G(E)exp{i(E10 -E)t}, (2) 

where G(E) = [E- Eo + ir(EW1 , Eo and Ejk are the 
values of the system energy in the initial state and in 
the intermediate or final states Jjk), respectively, 
{; (E - Ejk) is the Dirac zeta function, and r(E) is the 
damping function of the initial state. Introducing the 
matrix elements of the operators (1), we write down a 
system defining the matrix U(E) and the function r(E): 

UIAo(E)= v .. • + E H .. •• u .... (E)~(E -E ... )+YA.U,.,(E)~(E- E,.), ,, 

u,.,(E) = n .. '+ L, v .. •· u .... (Eg(E-E,..)+YBAU,,,(E)6(E-E,.), ,, 

Uu•o(E)= H,,''Uuo(E)~(E -E .. )+ V .. ''U,.,(E)b(E -E,.) 

+ H,,'U"•,(E)~(E- E ... )+ V,,'U,.•,(E)i;(E- E,..); 

(3) 

- tr(E) = _EH,,'U,.,(E)6(E-E.,)+ .E' V,,'U,.,(E)6(E-E .. ). 

• • (4) 

It can be shown that the solution of the system (3) 
takes the form 

(5) 
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We have used here the notation 

E jH .. •j't(E-E,.)=-iyA(E), .E jV .. 'j't(E-Eu)=-iys(E), 
• 

.E v .. •· n .. •· t(E- E .. ,)= OUsA (E- co,)- r BA (E- co.).. (6) 

" 
By definition, 2Rey A is equal to the decay probability 

of the excited atom A. Accordingly, 2Rey B is equal to 
the radiative width of the level of the atom B. The quan­
tities Im y A and Im y B are connected with the radiative 
shifts of the levels of the atoms and can be neglected in 
comparison with the level width of the allowed transi­
tions (see[7J), putting Re y A (wol) = y A andRe YB(Wo2) 
= YB· 

According to ( 6), y A and y B are functions of the en­
ergy E. Their arguments, however, can vary within 
insignificant limits (on the order of the level widths). 
Therefore y A and YB enter in (5) as constants. Similar 
reasoning holds for the function OUAB of the resonant 
interaction of the atoms with exchange of excitation and 
for the Coulomb interaction function rAB· (The explicit 
form of OUAB for dipole-dipole and dipole-quadrupole 
interactions in the nonrelativistic approximation is 
given in(sJ see formulas (8)-(10). For the general 
form seeC8 ~ .) From the definition of the functions it 
follows that OUAB = OUBA and rAB = rBA· 

The solution (5) makes it easy to obtain the decay 
probability of the initial state of the system (4). The in­
tegration with respect to the frequencies reduces to a 
sum of the residues of the functions (5). Introducing, in 
analogy withC2•7J, a cutoff limit for the spectrum of the 
virtual quanta, we can show that, accurate to interac­
tions of the order of (y A+ YB)/("'ol + Wo2), the following 
result holds true: 

(7) 

Just as in the case of identical atoms, the decay proba­
bility of the system is equal to the sum of the decay 
probabilities of the individual atoms. The presence of 
a resonant interaction between the atoms in the inter­
mediate state (one of the atoms is excited) does not in­
fluence the decay probability of the doubly-excited state. 

When the amplitude of the state with one excited 
atom is determined with the aid of formulas (2) and (5), 
the integrals reduce to the sum of the residues at the 
poles E1,2 = w~ +[Eo- iT(Eo)]/2 ± [(wol- Wo2- iyA 
+ iyB)2/4 + 0UABOuBA]112 , andEs= Eo- ir(Eo). In the 
general case, the expression for the square of the modu­
lus of the amplitude of the state will contain terms with 
different exponentials, and also interference terms, 
some of which may lead to radiation beats (see[s,sJ). 
Let us note• some particular cases that foil ow from the 
general solution. 

Putting "ltAB = -i(y AYB) 113 (seeC6J) we obtain a solu­
tion for a system of two atoms with overlapping levels, 
separated by a small distance, without allowance for 
their Coulomb interaction. For sufficiently large time 
intervals (t » w~~) the total probability of the atom B 
remaining excited at the instant of time t is given by 

~ jb,.j' = '\'A('\'s- '\'A) 2 r-'(f- e-r1)1 

' 

We see that the interference of the radiation from the 
different states of the system greatly complicates the 
time dependence of the decay of the system. Attention 
is called to the presence of a stable component in the 
case of unlike atoms (dragging of the radiation). This 
result, however, is a consequence of neglecting the con­
tribution of the Coulomb term to the resonant interac­
tion between the atoms, and is not valid in the general 
case. This can easily be verified by noting that when 
account is taken of the total resonant interaction 
(Re auAB "'- 0) the condition !Im(E1- E2) I = r, which 
leads in the foregoing case to cancellation of the real 
parts in the arguments of the exponentials, is not satis­
fied. 

In the limiting case of strongly interacting atoms 
(Re OUAB » r) with overlapping levels (wol Rj Wo2), the 
probability of the excited state of one of the atoms 
changes with time like 

(9) 

For identical atoms ( y A = y B) the results that follow 
from (8) and (9) coincide. Allowance for the strong 
Coulomb interaction does not lead to a change in the 
decay probabilities of a system of identical atoms. In 
the case of unlike atoms, allowance for the total reson­
ant interaction is necessary in principle, since it leads 
to a qualitatively different solution (to a complete decay 
of the system without dragging of the radiation). This 
result can easily be explained. The initial state of the 
identical atoms is symmetrical with respect to permuta­
tion of the atoms, and the decay proceeds to its conclu­
sion to a symmetrical ground state. In the case of 
unlike atoms, there is no such symmetry, and if the 
interaction is effected only through the transverse 
radiation field, then the decay is not necessarily possi­
ble from all the states of the system. However, com­
plete resonant interaction of the atoms can lead to ex­
change of excitations between them[s], thereby shifting 
the states of the system as a whole. As a result, the 
system undergoes radiative decay regardless of the 
form of the initial state. 

Using the corresponding expressions, we can obtain 
from (2), (.5), and (3) the limiting value of the amplitude 
of the final state of the system 

b.,,(oo) =~(A, A')+ ~(A', A); 

(10) 

where 
~ •. ,=co,- COo.•.• + iyA,s; ~: .• = co,•- COou + iyA,B· 

The form of the spectrum of the collective spontaneous 
radiation is determined by the square of the modulus of 
the amplitude (10), summed over the polarizations and 
emission angles of the quanta and over the frequency of 
one of the quanta. The integration with respect to fre­
quency reduces to the sum of the residues at the poles 
wk = Ek- w~ (k = 1, 2, 3), and the summation over the 
polarizations and angles is taken into account, as above, 
by introducing the widths y A• YB• and ImOUAB· From 
the structure of (10) we see that besides the emission 
lines of the individual atoms there are also different 
interference terms that complicate the form of the 
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Emission spectra of interacting unlike atoms: 1-llm "lt, .. i = 0.7 'Y A, 
2-llm'U.ul = 0.7 'YA; 'Y A = 0.05 W01 , 'YB = 0.5 'YA, Wo2 = l.J Wol> 
Re <U,u = 4-y A • 

emission spectrum of the system. The resultant ex­
pressions for the form of the spectrum are cumber­
some. 

The figure shows by way of illustration the forms of 
the emission spectrum of interacting atoms with close 
but not identical levels at certain concrete parameters 
of the system. For comparison, the figure also shows 
the dispersion curves of the emission of the isolated 
atoms. From the figure and from (9) and (10) we see 
that the emission-line shape changes significantly when 
account is taken of the resonant interaction both as a 
result of the level shift (determined by the value of 
Re'UAB) and as a result of the radiation interference 
due to the fact that the intermediate level of the system 
has a sublevel structure. The radiative damping of the 
atoms has a collective character. 

RESONANT FLUORESCENCE OF A TWO-ATOM 
CENTER 

Using the procedure described above, let us show 
that collective effects can also take place in resonant 
fluorescence. For simplicity, the atomic levels are as­
sumed to be nondegenerate, and the external scattered 
field is assumed weak compared with the saturating 
field, so that the probability of the simultaneous absorp­
tion of two quanta from the primary beam can be 
neglected. We regard the following states of the system 
as possible: 

JOO)-ground state of the system prior to the inter­
action; JlA), 12~ )-the atom A or the atom B is excited 
by absorption of a quantum ~; 

1 ~~' )-both atoms in the ground state after the ab­
sorption of the quantum X and emission of the quantum 
~'. 

The system equation for the matrix U takes in this 
case the form 

u.:(l>)= V,o'+"I" .... U,,'(E)~(E-E/)+ L, v .. •·u~.,(E)~(E-E,f), .. 
U,,'(E)= H,.'+r .... U,,'(Eg(E -E,')+ L,H .. '' U,~,(E)~(E -E,f), 

v (11) 

U,~,(E) = V,,V U,.'(E) ~(E- E,') +H .. " U .. '(E) ~(E- E/); 

-if(E)= _L,H .. 'U,.'(E)~(E-E,')+ L, V .. 'U,:(E)~(E-E,'), 
• • (12) 

where 

E,,' =Eo+ w,,- w,; E.'= E, + w,,- w,, k = 1, 2; 

Eo is the energy of the initial state of the system. The 
summation over the quanta .\ should be carried out with 
allowance for the parameters of the primary quantum 
beam. 

From the mathematical point of view, the system 
(11) is analogous to (3), so that its solution is similar 
to (5). Using the solution of the system (11), we can de­
termine the necessary characteristics of the resonant­
fluorescence process. Omitting the intermediate calcu­
lations, we present some results for two types of the 
energy spectrum of the primary beam, namely wide and 
narrow compared with the radiative widths of the atomic 
levels. 

The total probability of absorbing the quantum w~ 
from a beam with a wide energy spectrum, determined 
from (12) by integrating with respect to the frequency 
of the primary- beam quanta, is 

f(Eo) =Jt(l),-1/(w,)(JH.,J'+ JV,.j'), (13) 

where I(w~) is the intensity density of the primary beam 
in a unit frequency interval in the region of the resonant 
frequencies Wo1 and Woz. Here, as above, the radiative 
corrections are small and neglected, so that Imr(E0) 

= 0. As seen from (13), the total width is equal to the 
sum of the probabilities of quantum absorption by each 
of the atoms separately. There are no interference 
effects in this case. The intensity of total absorption 
from an external beam with a broad energy spectrum 
is proportional to the number of active atoms, just as 
in the case of the transition between two levels of atoms 
in an external field without allowance for the direct in­
teraction between the atoms (seeC2J). 

We note that the assumed condition that the intensity 
of the external field be small compared with the satur­
ating field is equivalent, as follows from (13), to the 
condition r(Eo) « y A= YB· Thus, the broadening of the 
initial state by the interaction with the external field is 
small compared with the radiative width of the excited 
state. · 

Absorption from a beam with a narrow energy spec­
trum can be formally described by putting I(w.\) 
= l0o(w- w.\), where Io is the total intensity of the beam. 
Integration with respect to the frequency is equivalent 
to exchange of variables in (12). The resultant absorp­
tion probability is 

Re f(Eo) = lowu-'ID {rou); 

ID{w .. ) = 1H .. 'J" Im IDa0 + I v • .'l 1 Imro,• 
(ro._- Reroa)' +(Imroa)' (ro._- Re ro,)' +(1m ro,)' 

JH • .'J'(ro,- IDo• + iys) +I v •• 'l'(roa-Cllot+iy ... ) +20U .... Re(V,.'H.,') 
-1m~~~~~~~~~~~~~~~~--~--~~~ 

· (ro._- roa) (ro._- ro,) 

where 

w •. ~ = {ro .. + w.,) /2- i(v ... +v.) /2 

± [ (ro.,- w,- iy ... + iy.)' 14 + ou .... ouBA] 'h 

(14) 

are the poles of the solutions of the system (11) at an 
energy E =Eo. 

Thus, in the general case, the expression for the 
total probability of absorption of quanta from a beam 
with a narrow spectrum contains two terms of the dis-
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persion type, which are connected with the amplitudes 
for absorption by each of the atoms separately, and also 
a term due to the interference of different coherent sub­
level states of the system. The occurrence of the inter­
ference terms can also be attributed to the fact that 
there are two channels of excitation for each of the 
atoms, namely direct interaction with the field and 
transfer of excitation from the neighboring atom after 
the latter has absorbed a quantum. Both amplitudes are 
coherent, so that interference terms should appear in 
the quantum- absorption reaction cross section. It is 
easy to ascertain that there is no interference in the 
case of independent atoms (OUAB = 0) and in the case of 
identical atoms at small distances (Im OUAB = -y ). 

Direct interaction of the atoms leads to a shift of the 
maximum of the resonant absorption curve and to its 
broadening, but does not change the total absorption 
cross section (integrated over the frequency wA ). The 
maximum is shifted in only one direction, in full accord 
with the results of the investigation of the decay of a 
system of identical atoms (see alsJ6J). The collective 
level Wo1 + Re"ltAB corresponds to a symmetrical state, 
has a finite lifetime with respect to radiative decay, and 
is excited upon interaction with the external field. The 
level w01- ReouAB corresponds to an asymmetrical 
nondecaying state and accordingly is not excited upon 
interaction with a resonant field. 

The emission line shape and the absorption spectrum 
can be determined from the limiting value of the state 
amplitude as t - oo: 

b.,'(oo) = U,~,(E) [Ev'- E, + ir(E,.') ]-•. 

The absorption line shape is determined by the sum 
f, lb~, 12 over the quanta of the free- radiation field. 

The dispersion factor connects, in o-fashion, the ener­
gies of the absorbed and emitted quanta. Just as in 
resonant fluorescence by a single atom, the energy is 
conserved within the limits of one act of absorption and 
emission (accurate to within the width r). On the whole 
the probability of the resonant-fluorescence process de~ 
pends on the energy of the primary quantum. It can be 
shown that this dependence, which determines the line 
shape for absorption from a beam with a broad energy 
spectrum, is given by 

.E jb,.'(oo) I'= Cll(ro,)/r(E,). (15) .. 
~ere r(Eo) is defined in accordance with (13), and 4>(wA) 
1s analogous to the function (14). Just as in the case of 
reson:ant fluorescence by a single atom (seeC7J), the ab­
sorption spectrum coincides in shape with the depen­
dence of the cross section for the absorption of a mono­
chromatic beam on the quantum energy. 

The emission line shape can be obtained by summing 
over the quanta of the primary beam ~ lb~, 12 • If in addi-
t . A 
1on we average over the directions of the wave vectors 

of the quanta and their polarizations, then the obtained 
e_mis~ion line shape coincides in form with the absorp­
tion lme. The agreement with formula (15) is complete 
if r(Eo) stands for the width (7). 
. An analysis of the absorption and emission spectra 
m the case of a quasimonochromatic beam (~wA « y A 
+ y a) leads to the same results as in the case of ordin-

ary resonant fluorescence. The emission spectrum is 
determined by the shape of the primary-beam spectrum 
or has a dispersion shape with width 2Rer, if the latter 
exceeds the frequency scatter in the beam. 

CONCLUSION 

Thus, the considered emission processes in a system 
of atoms separated by distances comparable with the 
emission wavelength have a collective character. In a 
system of unlike atoms with close energy levels, ex­
change of excitations leads to a total decay of the system 
with the probability equal to the sum of the radiative 
decay probabilities of each of the atoms. Spontaneous 
decay takes place from each initial state (either one[sJ 
or both atoms excited), and the decay proceeds to con­
clusion without formation of metastable states. An ex­
ception is a system of identical atoms separated by 
short distances (R < wiit). In this case allowance for the 
total resonant interaction does not change the main re­
sults obtained without allowance for the Coulomb inter­
action of the atoms at short distances[l-5]. 

Both in spontaneous decay and in resonant fluores­
cence, the intermediate states of the system constitute 
a mixture of coherent sublevel states; this leads to 
interference effects in emission (seeC 9J ). These effects 
are revealed by a nonexponential decay law (the pres­
ence of several exponentials, beats of radiation), and by 
a more complicated emission spectrum as compared 
with the dispersion form of the emission spectrum of 
noninteracting atoms. 

In conclusion, we note that our results, in analogy 
with the results ofCl-BJ, can pertain to systems of arbi­
trary radiators (atoms, molecules, nuclei). Real sys­
tems, in which the considered effects can, in principle, 
appear are complex molecules, activated crystals, and 
under certain conditions also a mixture of rarefied 
gases with close excitation levels. The condition that 
the system of two radiators be isolated was introduced 
to simplify the problem and is not a fundamental one, 
since the Coulomb interaction, which leads to the ex­
change of excitations, is significant only at distances on 
the order of the emission wavelength. In addition, reson­
ant interaction with exchange of excitations is also pos­
sible between groups of different atoms (molecules) and 
makes the emission process collective . 
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