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The results of measuring the intensity correlation function (ICF) G<2l(r) of a low-power He-Ne gas laser (emission wave
length of 1.1 S~t) are presented. A Michelson interferometer and a frequency doubler (00-> E interaction) are used. Spatial 
and time ICF of nonlocked and locked axial modes are measured. Second harmonic was generated in a LiNb03 crystal both 
in the case of a 90° match and in the presence of birefrigence. A theory of intensity interferometer that accounts simulta
neoulsy. for time and spatial structure of laser emission is developed to interpret the experimental results. The effect of in
complete spatial beam coherence in the presence of birefringence on the results of measuring time ICF is considered. Time 
ICF for the measured inter-mode intensity distribution is computed. Comparison of the latter with experimental data shows 
that there is no mode phase correlation in non-locked operation and an incomplete phase correlation is observed in mode
locked operation. In the last case the contrasts of the G< 2 l(r) function correspond to the following values of the track con
trast R for the two-photon tenchnique: measured R = 2.1 and computed for completely mode-locked operation R = 2.8. 

INTRODUCTION 

INTENSITY interferometry, first successfully used by 
Hanbury Brown and Twiss in stellar interferometers[ 1J, 
is widely applied to study laser emission. 

While the measurement of intensity correlation func
tions (ICF) of emissions with Gaussian statistics yields 
essentially the same information as the measurement of 
field correlation functions and the stimulus to study ICF 
is mainly due to technical advantages (elimination of 
phase fluctuations, increased resolution of narrow lines), 
ICF of non-Gaussian fields (laser emission is one of the 
most important examples of these) provides additional 
information on the envelope statistics. 

Precisely because of this consideration the meas
urement of time ICF became widespread in the study of 
envelope statistics of multimode pulse lasers employing 
glass and rubf2- 7J and of semiconductor pulse 
lasers[8- 10J. The cited papers show that time ICF yield 
important information on the mode phase statistics, 
time sequence of excitation of various modes, etc. 
Similar processes are of considerable interest also to 
other types of lasers, in particular low-power cw gas 
lasers. However, relatively little has been done in this 
area so far; only Davidson et al.[11 ' 12 J report on the 
measurement of time ICF for a two- mode gas laser and 
its second harmonic. This case however is not very in
teresting since the phase statistics of two modes does 
not affect the ICF. 

The purpose of this paper is a detailed investigation 
of ICF of low-power multimode cw lasers operating in 
various regimes (free running and axial mode locking). 
ICF was measured with the aid of frequency doubling; 
both time and spatial ICF were measured. In the study 
of time ICF considerable attention was paid to the effect 
of mode amplitude distribution on ICF1 > and the effect of 
incomplete spatial beam coherence on the measurement 
results. The last problem was recently considered 

1Time ICF are computed in the literature [ 13] only for a large num
ber of modes with uniform and Gaussian amplitude distribution, i.e., for 
the case of solid-state lasers. 
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in[14J in connection with the two-photon technique of 
ICF measuremene>. 

1. FREQUENCY DOUBLING METHODS OF MEASURING 
THE INTENSITY CORRELATION FUNCTION (ICF) 

The two- photon techniquJs-?J is the main method of 
measuring ICF in high-power pulse lasers. For meas
uring ICF in relatively low-~ower cw lasers, only fre
quency doublers are suitabler8- 10J . One such ICF meas
uring system is represented by a frequency doub'ler in 
which the mixed ordinary 0 and extraordinary E rays 
generate a second harmonic extraordinary ray E 
(OE-E interaction). In this system the mean intensity 
(I) of the second harmonic excited in a quasistationary 
regime directly yields the ICF of the fundamental emis
sion 

(l(t)) ~ (/,1,)=(/,(t)/,(t+-r)) =G<'>(-r). (1) 

Here 11 and l2 are the beam intensities of the fundamen
tal emission and T is the delay time between the beams, 
while the angle brackets denote averaging over the ob
servation time. Another variant of ICF measurement 
based on second harmonic generation is represented by 
the 00-E interaction type. In this case the mean inten
sity of the harmonic is3 > 

(/) ~ (/,') + (/22) + 4G<'>(-r) + 4 Re (/,(t)/,(t + T) 
X A, (t)A,' (t + T))e'"'' (2) 

+ 2 Re (A,'(t)A,"(t + T))e""', 

where Ai(t) are complex amplitudes and w is the mean 
frequency of the fundamental emission. 

Consequently, in addition to ICF G< 2 >(T), Eq. (2) con
tains other correlation functions of the fundamental 
emission field above the first order. All these correla
tion functions can be found in principle by measuring (I) 
as a function of T. 

The correlation function (A~(t)At 2 (t + T)) must be 

2 An essentially analogous problem of the effect of spatial coherence 
on the results of experiments with photoelectric mixing of light beams 
was previously considered by Forrester et a!. [ 15]. 

~he same expression determines the current of a two-<Iuantum de
tector recording the Young interference pattern [ 16]. 
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known, for example, to analyze the nonstationary regime 
of frequency doublinlf17J. From now on we are mainly 
interested in the function G<2l(T); it can be readily de
termined by averaging (2) 4 ) over time T within the limits 
27T/w « T « T c• where T c is the shortest of the ampli
tude and phase correlation times. The averaging elimin
ates the last two terms from (2). The value of (I~) or 
(~) is determined in the absence of one of the main 
beams. Therefore the function G<2l(T) can be readily 
normalized in a frequency doubler of this type. An ad
ditional control doubler is necessary for this purpose 
in the intensity correlator based on the OE-E interac
tion. 

Equations (1) and (2) are written for plane waves. 
Correct analysis of experimental data requires a gen
eralization of these equations to the case of spatial 
structure of laser beams. Furthermore we must con
sider the problem of the possible effect of birefringence 
of the nonlinear crystal on the measurement results. In 
order to compare the experimental results with theory 
we only attempt a theoretical analysis of an intensity 
correlator based on frequency doubling in the 00-E 
interaction. 

2. SPACE-TIME ICF. THEORY. 

For the above interaction type the complex amplitude 
of second harmonic field intensity in the approximation 
of a given field and 1eometric optics is given by the ex
pression (see (20) in 17]) 

A(x,y,t,z)=-ivfA•'(x-~s.y,t- zJas. (3) 

Here y is a nonlinear coefficient, Ao(r, t) is the ampli
tude of fundamental emission that consists of two 
beams, so that 

A,(r, t) = A,(r, I) +A,(r- p, t +-r)t'"', (4) 

and p is the distance between beam centers. In (3) the 
z axis is the direction of wave propagation (phase 
matching direction) and f3 is the birefringence angle of 
the harmonic wave. The velocities of the interacting 
waves are assumed equal, which is valid for lengths z 
much smaller than the quasi- static line Lq[17J 

(Lq = 500 em for an LiNb03 crystal and gas laser 

emission at.\ = 1.15 IJ.). 
An expression for the harmonic energy measured in 

the experiment can be obtained from (3) taking (4) into 
account 

W,= 8: ~ds J<IA'(x,y,t,z)l),dt, (5) 

where the index T denotes averaging over T (T c >> T 

» 27T/w). Integration over the area ds = dxdy is per
formed in the plane of the photocathode. The structure 
of the quantity W 7 is analogous to the structure of (I) 
(2): 

W,= W" + W, + 4W,; (6) 

Wjj is the energy of the harmonic generated by a single 
beam. The value of W12 is determined by correlation 

4According to the two-photon technique, such averaging is due to 
the finite spatial resolution of photographic film [ 13]. 

properties of the fundamental emission and is equal to 

where y 2 = c~/87T. 
We assume that the amplitudes A1 and A2 can be 

represented in the form 

A,(r, t) =A;'(r, t)A'a{r, t). (8) 

The function A~(r, t) describes regular modulation of 
emission while1 Ara(r, t) represents a random Gaussian 
process. We then obtain for the statistically average 
value of w12 • 

W.,=y'G''>{-r,Pl~J {b'[ (s,-s,)J+b(-r,P.+~<s·-s•),p,)· (9) 

x b(T, p.- ~<s•- s.), p,) }as. as,. 
Here 

G<'>{-r,p)=J dt~ [,'(r,t)l,'(r+p,t+-r)ds (10) 

is the space-time ICF of regular modulation and b(T, p) 
is the normalized autocorrelation function of random 
modulation (b(T, p) = Ara(r, t)Ara*(r +p, t + T)). The 
derivation of (9) was based on the assumption that the 
birefringence effect can be neglected for regular modu
lation. Setting in (9) p = 0, T = 0, and i = j we obtain 
averaged values for W11 and W22-

Thus for the statistical mean value of the harmonic 
energy W 7 ( 5), considering the intensities of exciting 
beam as equal (I~ = I~), we have . 

F = w, = 4v'G<'>(o,o) SJ {b'[~(s.- sdJ+g(-r,pJ 
0 

X[b'(~(sz- £.,)) + b(-r, p. + ~(sz- s,), p,) b(-r, P•- ~(£,,- s.), p,) ]}ds, ds,, 

(11) 
where 

g(-r, p) =G<'>(T, p) /GP>(O, 0). 

In the absence of the birefringence effect (13 = 0) (11) 
assumes the form 

F=4(yz)'G<•>(O, 0){1+g(T, p)[i+b'{-r, p)]}. (12) 

The last term in (12) represents a space-time ICF of 
the initial beam that has both the regular and random 
modulations described by Gaussian statistics. 

Equation (12) is applicable also to the two-photon 
technique and leads to results that were obtained in a 
somewhat different manner in[14J. Indeed for beams 
with only the regular modulation (b(T, p) = 1) 

F ~ {1 + 2g(,;, p)}. (13) 

In the presence of random spatial modulation of the 
fundamental emission (13) is valid if the initial beams 
coincide completely (p = 0). 

If the fundamental emission has random modulation 
and in addition a shift p » rc and (or) the delay time 
of the beams T » T c (b(T, p) = 0), then 

F~{i+g{,;,p)}. (14) 

Comparing (13) and (14) we see that the contrast of 
the function F(T, 0), i.e., the ratio R = F maxi F min• sig
nificantly depends on the accuracy of coincidence of the 
initial beams. In particular for cases of laser emission 
with completely non-locked and locked axial modes (14) 
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yields 

Rne = 1, (15a) 

instead of the well-known values obtained from (13) 

R ne = 1.5, (15b) 

In the presence of birefringence in the nonlinear 
crystal the contrast of time function F(T) (11) generally 
depends both on the shift p and birefringence {3. With 
an accurate coincidence of the main beams ( p = 0) crys
tal birefringence affects only the absolute value of F( T) 
without changing its contrast. A similar effect can also 
occur in the case of the Gaussian correlation function 
b(T, p); then 

F(,;,p)~ {1+g(•,r)[1+b'(•.P)]}J (z-£)b'(Ps)d£ (16) 
0 

and shift p plays precisely the same role as in the case 
{3 = 0. 

Therefore correct analysis of time ICF requires that 
the interacting beams be completely coincident; it is 
also desirable that frequency doubling occur at a 90° 
match ({3 = 0). 

We note that the above pertains to the 00-E interac
tion type. A similar analysis performed for the OE-E 
interaction type, i.e., generalization of (1) taking spatial 
beam modulation into account, shows that crystal bire
fringence lowers the contrast of the function (I). 

We now compute some time ICF without considering 
spatial structure of--laser emission. Complex ampli
tudes A1(t) and A2(t) of the beams are represented in the 
form 

N 

A;(t)=I>;.exp{i[nQt+<p.(t)]}, (j=1,2), (17) 

·-· 
where N is the number of modes of laser emission, ajn 
and <Pn are mode amplitudes and phases, and n is the 
intermode beat frequency. For any number N simple 
formulas for the correlation function g( T) can be ob
tained only if amplitudes are equal ajn = aj" 

In the case of non-locked modes we obtain the follow
ing expression for g(T) averaged over random phases 
<Pn: 

ne _ 1 [ 1 sin'(NQ,;/2) ] (18) 
g (•)- 2 + (N'- N)sin'(Q,;/2) · 

The contrast of this function is 

(19) 

its value is larger than 2 if N is small. For N- oo the 
value of R~l - 2. 

In the case of mode-locked emission we have for the 
function g( T) 

gm0 (i)= 3 {N'+2~ (N-j)'cos(j[h)}, (20) 
N(2N' + 1) .l.... 

i=t 

Here the contrast for odd N, for example, is 

R;"0 = '/,(2N' + 1). (21) 

The correlation functions g( T) (18) and (20) are 
periodic with an intermode beat period of T = 27T/n; they 
fall off significantly in time periods T c R< 1r/[(N- 1)n]. 
For 1T 'S 2 nT S, 37T function (18) has weak beats whose 

FIG. I. Normalized values of ICF 
g(r) = g{r)/g(O) for the argument r = 
1r/U as a function of the ratio of in
tensities between modes (ex= 111 /1 12 , 

111 = 113 ). !-for non-locked modes; 
2-for locked modes. 
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FIG. 2. Diagram of experimental setup for the measurement of 
ICF of laser emission by means of second harmonic generation. M1, 2 , 3 -

mirrors; L1 , L2 , L3 -lenses with focal lengths 2, 8, 12 em respectively; 
F 1 -IKS-3 filter; F2 -SZS-14 filter; P-photodiode; !-spectrum ana
lyzer; 2-piezoceramic; 3-sound generator; 4-self-tuning system; 5-
expander, detector; 6-shaper; 7-counter. 

depth decreases with increased N and is less for non
uniform distribution of mode amplitudes. The number 
of maxima in the indicated segment nT is (N- 2). The 
behavior of the function gm Z( T) (20) is more monotonic 
than that of gnl(T). 

The contrasts (19) and (21) are obtained for equal 
mode amplitudes; generally speaking they strongly de
pend on the distribution of laser emission intensity 
among the modes. This is illustrated by curves in Fig. 
1 plotted for three-mode emission with a symmetric 
spectrum. 

3. THE EXPERIMENTAL SETUP 

The diagram of the setup for measuring ICF is 
shown in Fig. 2. A He-Ne laser operating at the wave
length 1.15 J.1. was used as the source of the investigated 
emission. A Michelson interferometer formed by mir
rors M1 and ~ and semitransparent mirror M:J was 
used to split the emission into two beams and to intro
duce a delay between them. Mirror M2 was free to move 
through 1 m along the optical bench and finer displace
ment through several J.1. was obtained with a piezo
ceramic mount attached to the mirror. The varying de
gree of coincidence of the beams at interferometer out
put was obtained with mirror M2 regulated by micro
meter feed with piezoceramic plates. The alignment 
accuracy of mirrors M1 and M2 was checked either by 
the power of the second harmonic (a sawtooth voltage 
was delivered to mirror ~ piezoceramic to average the 
interference pattern over time T) or more precisely by 
the maximum of the interference pattern to which the 
system was tuned by means of a self-tuning arrange
ment described below. Alignment was performed at 
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each point of measurement of the correlation function. 
To reduce angular divergence of the beams a telescope 
broadening the beam diameter by a factor of four was 
placed in front of the interferometer. A Nicol prism 
and a quarter-wave plate decoupled the laser from the 
interferometer. Mode locking was checked with the aid 
of a fast acting photodiode and spectrum analyzer show
ing the intermode beats signal. A scanning interferome
ter measured the intensity distribution among the modes. 

The emission emerging of the Michelson interferom
eter was focused into a LiNb03 crystal oriented in the 
phase match direction to generate the second harmonic 
in the 00-E interaction. The harmonic was recorded 
by a photomultiplier operating in the photon counting 
regime. The pulse output of the photomultiplier was 
connected to the counter. The same pulses entered the 
pulse expander and detector. The signal of the detector 
was fed directly to the self-tuning system that included 
a synchronous detector. The self-tuning system opera
ted by impressing a small 30 Hz ac voltage on the cer
amic mount of mirror M2; the same voltage served as 
reference voltage in the synchronous detector. The 
error signal from the self-tuning output was fed to the 
piezoceramic mount of mirror M2. This tuned the sys
tem to the maximum or minimum of interference pat
tern (2). The self-tuning arrangement was used also 
during alignment of the optical system. 

4. EXPERIMENTAL RESULTS. DISCUSSION 

Using the above setup we measured spatial and time 
ICF of the He-Ne laser. In the measurement of spatial 
ICF the time delay between the beams T = 0. The non
linear LiNb03 crystal was either at room temperature 
(the phase matching angle for the 00-E interaction is 
66° 30', birefringence {3 "' 0) or at the 90° match angle 
temperature W ~ 220° C, {3 = 0). The laser operated in 
the fundamental transverse mode or in a free-running 
regime exciting only one or several modes of high order 
(approximately the tenth order). The form of the spatial 
correlation functions was approximately the same in all 
cases; Fig. 3 shows the ICF for one case. The coher
ence radius was usually determined by beam radius in 
the cases under study. This is apparently due to the 
generation of a single mode or a small number of 
transverse modes. This consideration does not permit 
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FIG. 3. Transverse spatial ICF of He-Ne laser operating with sev
eral transverse modes; measurements made for 90° match angle in 
nonlinear crystal. Circles are experimental values; p is beam shift in 
arbitrary units. 

FIG. 4. Time ICF of He-Ne laser operating with several axial and 
transverse modes; nr = 2rri/L; n-intermode beats frequency; L
length of laser resonator; /-difference between interferometer arms. 
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FIG. 5. Time ICF of He-Ne laser with non-locked modes; number 
of modes N = 5. Circles are experimental values; theoretical curve 
plotted for intermode intensity distribution of 0.26: 0.61: I :061:0.26. 

FIG. 6. Time ICF of He-Ne laser for self-locked modes; number 
of modes N = 3. Circles are experimental values; theoretical curve 
plotted for intermode intensity distribution of 0.63: I :0.48. 

us to assume confidently that birefringence does not 
affect ICF, although the experimental data do not con
tradict such a conclusion. 

We used spatial ICF to determine the alignment of 
mirrors M1 and M2. The value of the function 

g'''(r) + G'''('r) I((/,')(/,')) 'I• = 1 

for T = 0 indicates the coincidence of coherence regions 
of the beams exciting the second harmonic. 

The operation of the entire system was checked by 
measuring the time ICF for the case of two or three 
transverse and several axial modes (see Fig. 4). The 
drop in function g(T) is approximately equal to two 
which indicates that the field statistic is close to 
Gaussian. A second maximum less than unity appears 
in g( T) for delay lengths l = 2JTC/ Q (in OUr case 0/ 21T 
= 150 MHz and l ~ 100 em). This effect seems to be 
due to the deteriorating coincidence of the fundamental 
beams when l is large because of angular divergence. 
Another cause of this effect could be the finite width L\w 
in the spectrum of an individual mode. However accord
inf; to data reported in the literature (for example 
inu8 , 19J) this width ~ 104 Hz. Therefore phase fluctua
tions can be neglected for lengths l ~ 100 em 
(ZL\w/c ~ 10-4). Therefore there is no drop in the func
tion g( T) due to finite time of phase correlation. We 
performed the successive measurements for delay 
lengths l up to 50 em. 

Figures 5 and 6 show the measured time ICF of 
lasers with non-locked and self-locked axial modes. 
The same figures show ICF computed for the measured 
intermode intensity distribution. For the case of non
locked modes the experimental points coincide with the 
theoretical curve in a satisfactory manner, and are 
above the theoretical curve for the case of self-locked 
modes. Minimal values of grnl(T) are 0.20 for the ex
perimental case and 0.07 for the theoretical one. Con
verted to the contrast of function F (13), i.e., to the 
track contrast in the two-photon technique, this corre
sponds to the measured valueR= 2.14 and to the expec
ted value R = 2.77 for the given mode intensity distribu
tion. The obtained difference is larger than the possible 
experimental error. 

The accuracy with which we measured experimental 
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values was about 1%. Therefore the computational er
ror is important in the comparison of experimental and 
theoretical values. The principal error here is due to 
the inaccuracy of determination of mode intensities; in 
our case it amounted to ~ 10%. At the same time curve 
2 in Fig. 1 shows that the minimum value of g(r) does 
not exceed 0.10 even for a 20% error. Consequently the 
lack of coincidence between experimental values and the 
theoretical curve in Fig. 6 is due to incomplete mode 
locking. We note that incomplete mode locking in the 
He-Ne laser in the self-locking regime was observed 
also in other cases (for example in[ 2oJ); only Smith[21J 
reports a complete self-locking. 

CONCLUSION 

The reported investigation thus shows that intensity 
interferometers based on second harmonic generation 
can be successfully applied to analyze the operation of 
low-power gas lasers. Such an nonlinear interferometer 
can be used to measure both the time and spatial ICF. 

The resolution time T of nonlinear interferome-
ters is determined by gr~~p delay effects involving 
waves interacting in the nonlinear crystal. For the 
interferometer type considered here T res = vz, where 
v = 1/u2w - 1/uw, un is the group velocity at the corre
sponding frequency, and z is the length of the crystal. 
The harmonic excitation process is quasistatic 
("inertialess") for correlation time Tc > Tres of the 
fundamental emission. For KDP and LiNb03 crystals 
with z = 1 em and for the fundamental wavelength of 
A. ~ 1 f1. T res equals 10-13 and 5 x 10-12 sec respectively 

which is 104-102 times less than the resolution time of 
the Brown-Twiss interferometer. 

The finite spatial resolution r res of the nonlinear 
interferometer is due to birefringence {3 of the crystal 
affecting the extraordinary harmonic ray: rres = {3z. A 
typical value of rres ~ 3 x 10-2 em for z = 1 and can be 
much less than this value for a phase match angle 
near 90°. 

We can readily see that the values of T res and r res 
can be changed significantly by varying the length of the 
crystal. Because of this nonlinear crystal interferome
ters can be used in the interferometry of conventional 
non-laser sources with a broad frequency and angular 
spectrum. 

A disadvantage of the above interferometer is the 
small coefficient of transformation in the analysis of 
weak fields requiring highly sensitive detectors. To in
crease the coefficient of nonlinear transformation we 
can however use methods in which the transformation 
process is accompanied by amplification. 

We note that instead of measuring ICF we can obtain 
data on intermode phase relationships by measurinB the 
statistics of photon counts for the seeond harmonic 22J 
However in the general case it is not possible to com
pare the results of intensity interferometry with har
monic photon statistics since the latter depends not only 
on the ICF G<2 >(r) but also on higher order functions. In 
particular the dispersion of photon counts of the har
monic depends on fourth order ICF. Such a comparison 
can thus be performed only for non-locked modes. 
Computation shows that in the situation corresponding 
to Fig. 5 the value of d measured in the experiment[22J 
should be equal to 0.26. At the same time according 
to[22J the experimental valued= 0.13; we attributed 
this to a partial mode locking. 

The authors are indebted to A. V. Grigor'ev for aid 
in preparing the experimental setup. 
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