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Calculations of the slowing-down of magnetic charges in metals and ferromagnetic substances are presented. It is shown that 
ferromagnetic substances in large external magnetic fields(- 104 G) are effective traps for magnetic monopoles. 

IN connection with the setting-up of an experiment on 
the 70 GeV proton synchrotron at Serpukhov to search 
for the Dirac monopole, we have estimated the energy 
losses of a magnetic charge in metals and ferromag
netic substances for a wide range of velocities of 
motion -from thermal to ultrarelati vis tic. 

Dirac r 1•21 has shown that the value of the magnetic 
charge may take the values 

g =(lie 1 2e')ne = 68,5 ne, n = ±1, 2, ... 

A negative result was obtained in all experimental 
searches.r3-12l In the experiment on the 70 GeV proton 
accelerator, it is proposed to use the property that the 
monopoles, created in the reaction p + N- p + N + g• 
+ g-, accumulate in ferromagnetic foils after first 
slowing-down in metallic plates. 

The estimate of the energy losses of a monopole 
associated with its passage through metals, which is 
presented in Sec. 1, has a direct relation to the calcu
lation of the transmission of the experiment. The 
passage of a monopole through a ferromagnetic sub
stance is treated in Sec. 2. The results obtained per
mit us to estimate the effectiveness of ferromagnetic 
foils as traps for magnetic charges. 

In the calculations it is assumed that the monopole 
creates a magnetic field around it according to the 
equation div H = 41Tpm or H = gr/r3• 

1. ENERGY LOSSES OF PARTICLES POSSESSING 
MAGNETIC CHARGE DURING THEm PASSAGE 
THROUGH METALS 

A. The case of an infinite medium. We shall calcu
late the monopole energy losses by the method devel
oped by Landau.fl3 l Let us characterize the medium by 
the following macroscopic constants: c;( w) (the dielec
tric constant), a 0 (the electrical conductivity), and 
!l = 1 (the magnetic permeability). Assuming that the 
monopole energy losses over macroscopically suffi
cient distances are small in comparison with its kinetic 
energy, we regard its motion in the medium to be 
steady with velocity u. 

For metals the dielectric constant c; ( w) can be 
written in the form (seer 14l) 

e(ro) = i4na(ro) , 1 + tro"t; 
00 a(ro) = IJo 1 + ro'"I' , 

where T is the relaxation time which generally depends 
on the frequency. For small frequencies, T is equal to 
the time of free flight of the conduction electrons, that 
is, To= mao/Ne2 (m is the electron mass and N is 

20 

the number of atoms per cubic em). One can obtain an 
expression for T at large frequencies by using the 
well-known behavior (seeP3l) of c;(w) as w-oo: 
T - ma 0 /NZe2, where NZ is the number of electrons 
per cubic em. 

The slowing-down of the monopole is produced by 
the action of the magnetic field of the medium. Omit
ting the calculations, which are carried out by the 
standard method (seer 13 l), we present the final results. 

We shall separately distinguish the cases of small, 
comparable, and large velocities of the monopole mo
tion relative to the velocity of an electron in the atom. 

If the monopole is moving more slowly than the 
electron in an atom, then an effective interaction is 
possible with the free electrons of the medium, that is, 
with the conduction electrons. In this case one can 
derive the following expression for the stopping field: 

H = 4n'guNe' I v,.me', 

where Ve Rl 108 em/ sec is the Fermi velocity of the 
conduction electrons. In particular, for Al we have 
H = ( 2.3 X 103 u/10 8 ) Oe. 

If the velocity of motion is comparable with or 
higher than the velocity of the electrons in an atom, 
the stopping field has the form 

fl.,= In-----4nNZ'e'g [ 2m'u'a0 1 ] 
me' NZ'e'li 2 ' 

where Z* is the effective number of electrons in an 
atom, which participate in the ionization process. In 
accordance with the comments with regard to there
laxation time T, the ratio Z* /Z - 1 as u - c. The 
region of applicability of this formula is given by 

( u I e) 2 ,:;;; 1/ 2rt1Jo"t = NZe' I 2nmao'. 

In the limit of ultrarelativistic velocities we obtain 

2nNZe'g [ m'e'y' 
H= ln-=-c~ 

me' nNZe'li' 

(1) 

(2) 

(3) 

where y = 1/ ..J 1 - u2/ c2, The last formula agrees with 
the corresponding expression for electrically charged 
particles. The energy loss of a moving monopole is 
equal to the work done against the retarding force: 
I dE/dz I = gH. 

In order to illustrate these results, we present the 
specific energy losses of a monopole with momentum 
p = 30 GeV/c in different media, calculated according 
to formula (3): 

Metal: W Fe Cu Ph AI 

dE/dx in GeV/cm 121 59 65 12 22 
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B. The case of a medium and a vacuum. The total 
stopping field acting on a charge moving near the inter
face between two media consists of two terms. One of 
these terms corresponds to the field of a charge mov
ing in an infinite medium, and the other term corre
sponds to the field of the radiation which arises due to 
the presence of the interface between the media. The 
field of the first type is determined by the formulas 
derived above; therefore our problem reduces to only 
the determination of the additional radiation fields. 
Similar questions have been considered by Gari
byanr15•16l for electrically charged particles. 

If arbitrary solutions of the homogeneous equations 
are added to the solution of the inhomogeneous Max
well's equations and these solutions are determined 
from the condition of continuity of the total fields 
across the interface, then one can derive the following 
expression for the radiation field at the point where 
the monopole is located, this expression being valid 
for small velocities u :S Ve: 

(4) 

where z 1 = c 2/87Taou, Z2 = ma 0ve/47TNe2 , and z is the 
distance from the monopole to the interface. By com
bining expressions (1) and (4) we obtain the total stop
ping field near the surface: 

(5) 

As z- 0 the quantity H- 27T 2guNe 2/vemc 2 , that is, 
the retarding magnetic field at the surface is one-half 
as large as the field in an infinite medium. The ob
tained result seems to be physically reasonable for 
slow monopoles. In particular, on the surface of an 
aluminum plate, a retarding field H = 12 Oe will be 
acting on a Dirac monopole moving with velocity 
u = 106 em/sec. 

2. PASSAGE OF A DIRAC MONOPOLE THROUGH A 
FERROMAGNETIC SUBSTANCE 

It is of interest to consider the interaction of mag
netic charges with a ferromagnetic medium when the 
velocity of their motion is appreciably smaller than 
the velocity of the electrons in an atom. This is due 
to the fact that the relaxation time for ferromagnetic 
processes is large in comparison with optical periods; 
therefore in the region of large velocities of motion of 
the monopole, the formulas of Sec. 1 are also valid for 
ferromagnetic substances, On the other hand, for 
small values of u, because of the purely magnetic 
nature of the interaction, that is, the absence of the 
relativistic factor u/ c, one can expect the appearance 
of forces which are so large in magnitude that it will 
be a good approximation to consider the electrical 
conductivity of the ferromagnetic substance to be 
O'o = 0. 

Only cases when the ferromagnetic substance is 
located in an external magnetic field, strong enough to 
magnetize the sample close to saturation (H 0 = 104 G), 
will be considered. Here the "single-domain" repre
sentation is valid. And finally, it should be noted that 
the case of thin ferromagnetic plates, positioned 
normal to the lines of force of the external magnetic 

field and to the direction of motion of the monopole, is 
being investigated. 

A. The interaction inside a plate. In the presence 
of uniform magnetization of the sample, the magnetiza
tion vector Mo will be the same over the entire volume 
and will be parallel to the external field H0 • The mag
netization in the medium varies due to the influence of 
the magnetic field of the moving monopole, so that 
M(r, t) = M0 + m(r, t). It is obvious that one can dis
tinguish two regions in the medium: The region of 
remote distances, p >> p*, where I m(r, t)l « Mo, and 
the region of close distances, p «p,., where I m(r, t)l 
""' Mo, Ms (Ms denotes the saturation induction). Let 
us estimate the quantity p,. from the condition ..:l tpr 
= ..:lteff, where ..:ltpr denotes the precession time of 
the magnetization vector in the field of the monopole, 
and ..:lteff denotes the effective time of interaction. 

Mpr ""=' 1 I yH = p2 I yg, 1teff ""=' PI IZ, 

where y denotes the gyromagnetic ratio ( y = e/ me for 
an electron); from here it follows that p* = gy/u. 

Just as in Sec. 1, we characterize the interaction of 
the monopole with the medium by a field applied to it 
by the medium. Let us estimate the contribution from 
the remote region. In order to do this, we jointly con
sider the Maxwell equations 

div b = 4ngll(r- ut), roth= 0 (6) 

and the equation of motion of the magnetization vector 
in the form given by Landau and Lifshitz: 

dml dt = -y[(M, + m) (H, eff +h)]. (7) 

The quantities b, h, and m are connected by the rela
tions b = h + 47Tm and m = xh, where X denotes the 
magnetic susceptibility of the medium; Hoeff is the 
internal effective field, phenomenologically taking the 
various interactions in a ferromagnetic substance into 
account. If the energy associated with magnetic aniso
tropy and the magnetoelastic energy are not taken into 
account, then one can write Hoeff in the formf1 7- 19l 

H, eff = H. + HA + H ,. 

Here Hi is the internal magnetic field with surface 
demagnetization taken into account; for a thin plate in 
a perpendicular external field Hi""' Ho - 47TMo; HA 
= ( 2A/M~)..:lM is the effective field of the exchange 
forces, A is the constant of the exchange interaction, 
Hr = - (3M/yM 0 is the field of the friction forces, and 
{3 is the dimensionless attenuation parameter which is 
related to the experimentally measurable "relaxation 
frequency" ,\ by the equation 

,f1 = (l;lyM,)/[1 + (1./yM,)']. 

Using a Fourier expansion and the smallness 
I m(r, t)l « M0 , from Eqs. (6) and (7) we obtain the 
following expression for the stopping field 

igw.'am=+~ ax[Q'(x)-x']dadx (8) 
H=~~ La'(wMiw,)Q(x)+(a'+x')[Q'(x)-x']' 

Q(x) = ulo / w,- i~x +a'+ x', Wo = yH, ru.u = 4nyM,, 

w,=M,'tL'I2M,Ay, a=qulw,, x=wlw,, 

where q denotes the transverse component of the wave 
vector k in the Fourier expansion. The maximum 
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value O!max corresponds to the minimum "impact" 
parameter, which in the present case we equate to p *, 
that is O!max = u2/gywa. We carry out the integration 
over x in the complex plane with the aid of the resi
dues. Here we shall distinguish between the cases 
wo/ wa » 1 and wo/ wa « 1. We note, without citing 
the numerical calculations, that akax « 1, p « 1, and 
wMI wa « 1 practically up to thermal velocities of 
motion of the monopole. 

The case wolwa » 1. This case corresponds to 
large external fields: H0 2: 2 x 104 G even for thermal 
velocities u = UkT· Let us present the final result for 
the stopping field: 

(9) 

The case wo/wa « 1. This case is of the greatest 
practical interest since it corresponds to small, 
external magnetic fields (up to ~104 G). Carrying out 
the integration in (8) with the aid of the residues, we 
obtain 

H _ oo.' { ( oo.,oo, + II' ) 1 a.... + a.,,.oo, - c-;_;;- --;;}" 2 n-a- ~ (10) 

for a... .. >a, 

where () 2 = wolwa + f,2/4. 

gw.'a~={ 1 5(ooM/w.) 04wu} 
H = -----w- 6'(1 + il/26) T 6'(1 + jl/26)' + ' --;;;-;-

(11) 

for amax « (). 
As already mentioned above, at small distances 

p < p"' the variation of the magnetization is of the order 
of its magnitude, I m(r, t) I ~ Ms. 

In conducting subsequent estimates of the interaction 
of a monopole with the medium, we shall start from the 
assumption that the magnetization vector for each point 
of the region p < p"' at any instant of time is directed 
nearly along the field of the monopole. Such an as
sumption is based on the fact that in the region close 
to the monopole, z ~ p•, the monopole field is con
siderably larger than H0 eff, and at larger distances 
along the z axis inside the region p < p* the angle be
tween the direction of the monopole's field and the 
internal field Hi (Hi 11 z) is negligibly small. The 
distribution of the magnetization in the region p < p"' 
specified in this manner enables us to calculate the 
magnetic field acting on the monopole as an integral 
over the field of the individual magnetic dipoles. How
ever, we shall use another method, which is simpler 
in terms of the calculations. 

Let us determine the force acting on the magnetic 
charge from the change of the interaction energy be
tween the magnetization of the medium and the external 
field 

I!.E •• 
F =I Tz" I= I (M,- M,)H,2:rtp dp, 

where Mo denotes the initial magnetization at the in
stant of time t = - oo, Mz is the magnetization at the 
same point at the time t = +oo, that is, after the pas
sage of the monopole. According to the assumptions 
made above, Mz ~ -M 0 • Thus, in an infinite medium 
the "short-range" region produces a slowing-down 
force 

F = 2:rtM,H,g'y' /u'. (12) 

B. Slowing-down near the surface of a ferromag
netic substance. If the monopole is near the surface, 
owing to the large spatial asymmetry, the free energy 
of the ferromagnetic substance must be a function of 
the distance z of the monopole from the surface. In 
analogy to the force of the mirror interaction for elec
trical charges near the surface of a metal, the force 
FMs due to the z-dependence of the interaction energy 
between the magnetization and the monopole field 
hinders the escape of the monopole from the medium. 
The z-dependence of the exchange energy, arising in a 
ferromagnetic substance because of the radial nature 
of the monopole field, leads to the appearance of a 
force FA which expels the monopole from the medium. 

According toP8l the density of the exchange energy 
has the form WA = (A/M~)(VM)2 , Since it is assumed 
that M and the monopole field h are parallel in the 
region p < p *, we obtain the following expression for 
the free energy density of a ferromagnetic substance: 

W = -hM +(A I M,') (VM)' = -gM,(i- 2A I gllf,)r-' 

We obtain the total energy by integrating the last 
expression over the volume of a semi-infinite cylinder 
with radius p * : 

E = -2ngM,(1-2A/gM,) {-zlncos6' + p'(n-6')'-a}, (13) 

where tan e"' = p*/z and a is the interatomic distance 
in the medium. 

In order to determine the forces acting on the 
monopole near the surface, it is necessary to differen
tiate (13) with respect to z: 

F= FM, +FA= -nM,g(1-2A/gM,) In (1 + p''/z'). (14) 

The minus sign indicates that the force is directed 
against the motion associated with the escape of the 
monopole from the medium. If the internal field Hi 
> g/p"' 2 , where p"' = gy/u, then in formula (14) one 
should assume p* = ~· 

Formula (14) enables us to determine the minimum 
value of the magnetic field Hmin, which is necessary 
in order to remove the monopole from the surface of 
a ferromagnetic substance: 

Hm;n =ln(1+4g/a'Hm<n)• 
:rtM,(1- 2A/gM,) 

The solution of Eq. (15) for the following types of 
ferromagnetic substances is shown in Fig. 1: 
Permalloy 79NM (41TMs = 7500 G, [221 A = 1 x 10-6 

erg/cm[20l), Permalloy 50N (41TMs = 15,000 G, 
A = 1 x 10- 6 erg/ em), and Permendur Fe-Co ( 41TMs 
= 22,400 G, A = 1.9 x 10-6 erg/ em [211 ). 

(15) 

C. Use of ferromagnetic substances as traps for 
monopoles. The results permit us to calculate the 
slowing-down of magnetic charges in ferromagnetic 
foils which are located in an external magnetic field. 

In a ferromagnetic substance the equation of motion 
of a monopole has the form 

m,d'z I dt' = gB + ~F,, 
where B is the magnetic induction in the medium, and 
~Fi is determined according to formulas (10), (11), 
(12), and (14). 
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FIG. I. Minimum value of the magnetic field, capable of extracting 
a monopole from ferromagnetic substances. Curve I corresponds to In 
(I+ g/z~in/Homin), and curves 2, 3, and 4 correspond to Homin/1rM8 

(1-2A/gMs). 

The slowing down of monopoles of various charges 
to thermal velocities in ferromagnetic foils (Permendur, 
Permalloy 50N, and Permalloy 79NM) placed in an 
external magnetic field of 12,000 G perpendicular to the 
surface of the foil, is shown in Fig. 2. It follows from 
the figure that ferromagnetic substances are an effec
tive trap for monopoles even in the presence of large 
external magnetic fields. 
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