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An isolated light body whose world tube is nongeodesic because of the body's internal tensions is considered within the 
framework of general relativity theory. 

AN internally stressed body located in a nonuniformly 
curved space will tend to move in such a manner that 
the deformation accompanying its motion will lead to a 
reduction of the body's energy. Consequently, the world 
line of an internally stressed body can be strongly non
geodesic. 

When the world tube of a specific body is calculated 
it is, of course, sufficient to require that the covariant 
divergence of the energy-momentum tensor should van
ish: 

(1) 

and that no flux should pass through the boundary. The 
calculation is greatly simplified when the body is a thin 
shell. 0 Thinness is here understood to mean that the 
body is subjected to no bending stresses but only to a 
tensile or compressional stress that is uniform through
out its thickness; we can therefore disregard the thick
ness. The shell can then be regarded as a two-dimen
sional surface having a world tube that is represented 
by the equations 

y' = y'(x"); i = 0, 1, 2, 3, a= 0, 2, 3. 

In this case the derivative in (1) should only be taken 
with respect to directions within the tube: 

(2) 

(3) 

here Taj (x) = T a(3 a(3 yi is the energy-momentum ten
sor of the shell with one index transformed to the co
ordinate system of the enveloping space time; r ~(3 is 
the Christoffel symbol of the coordinate system xa in
troduced for the shell. 

As a concrete example we attempt to satisfy (3) for a 
surface of rotation in the form of a saucer: 

r=r(B), 0 < 9 < 9,., (4) 

1>The terminology is taken from the theory of the strength of materials. 

1 

which is suspended motionless in Schwarzschild space; 
we shall use the notation in Sec. 97 of [lJ, but with 
c = 1, r~ = 1. We make the important assumption that 
the dens1ty and total mass of the body are small, and 
that we can neglect distortion of the Schwarzschild 
field. 

The nonvanishing components of the tensor T ~ 
= T<ly gy(3 are denoted by Tg = c:, T~ =- a 2 , T~ =-as. 
Substituting these into (3), we obtain two equations for 
the four undetermined functions of 8: E, a2, as, r. The 
other two equations of the system (3) are satisfied iden
tically because of the static conditions and the symme
try with respect to cp. The elimination of as leads to 

8 = 2r(r-1) (o,sin9)' ( r-1 -~} +a,f(r,r',r'',B), (5) 
r" + r'- r cos 9 sm 9 

where f is a complicated known function and the primes 
denote differentiation with respect to (). 

Ii the shape of the surface r(IJ) is given by (6) 

r'=(r-1)tg9, i.e. r=i+(r,-1)/cos() (6) 

(where r 0 is the Schwarzschild coordinate of the center 
of the saucer) then in (5) the first term, whose sign 
changes necessarily Lbecause a 2(8)m = 0], vanishes, 
and for c: there remains the simple expression 

8 = -a,3(r0 - i)sin' 9 I (cos'S + r, -1). (7) 

Thus with a 2 < 0 (a radially stretched saucer) we have 
E > 0. For the same shape of the surface, as is given 
by 

a,= o,'(cos 9 + r0 - i)sin 9 cosO I (cos'S + r,- 1) + o,a(9), (7a) 

where a( 8) designates a complicated function that 
equals unity approximately. Therefore the scalar Tg 
"' c: - a 2 - a 3 unfortunately becomes negative in a small 
region on the edge of the described saucer. For exam-

Copyright © by American Institute of Physics 1972 



2 R. I. KHRAPKO 

ple, in the case of small 9 (9m << 1) and large I'0 

>> 1 we have 

T.• ~ -36'o,- 2o,- eo,'= -3e'o,- e-•(e'o,)', (7b) 

so that the term which necessarily undergoes a change 
of sign now appears in explicit form. However, for the 
integral over the saucer we have 

&m Zn 

J T."dV = ro' J de J eaiJl[- 3e'o,- .!.-(e'o,)'] > 0 (8) 
o o e 

because E > 0. Moreover, as the size of the saucer is 
increased the region where Tg < 0 becomes relatively 
smaller. If the saucer is extended to infinity ( 9m = n/2) 
while both E and cr2 decrease like r-5 or more slowly, 
we shall have Tg =::: 0 everywhere. 

The total energy of the matter and gravitational field 
of the saucer, given by the integral (in Sec. 101 of [ 11 ) 

J (To'- T,'- T,')dV, 

is, like (8), positive for 9 m << 1. 
The condition of" energy dominance" (i.e., the re

quirement that an observer moving in an arbitrary man-

ner find positive energy density) is reduced to the in
equalities E =::: I a 2 1, E =::: I a 3 1 and is violated for the ma
terial of the saucer because too large tensions are re
quired. 

The condition (6) has the interesting geometric mean
ing that the angular component of the second quadratic 
form [z l of the surface (2) vanishes: G33 = 0. Only a thin 
shell of this form remains undeformed under internal 
stresses. 

:n: should be noted that the foregoing results essen
tially provide a static solution of Einstein's equation for 
two bodies or, at least, prove that such a solution 
exists. 
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