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Diffusional relaxation of impurity atoms in a crystal containing a fixed local perturbation center is investigated. It is shown 
that diffusional relaxation in such a system can be described by a set of orthogonal relaxation modes, each of which is 
characterized by a single relaxation time. Depending on the form of the perturbation the relaxation modes may either describe 
local or quasilocal relaxation processes. The distribution function of the inverse relaxation times is obtained; it is the imaginary 
part of the Green's function of the relaxation equation. The Green's function is derived from the Dyson equation, which yields 
an exact solution in the case of local perturbations. The analogy with local and quasilocal oscillations of a crystal lattice 
containing separate impurity centers is noted. The presence of a local perturbation in relaxing systems leads to the appearance 
of local peaks in the inverse-relaxation-time density distribution outside the spectral region of the unperturbed crystal and of 
quasilocal peaks within the region. A maximum of internal friction may correspond to each such peak. 

1. I. M. Lifshitz [lJ was the first to investigate the fre­
quency spectrum of the natural oscillations of a har­
monic crystal lattice with isotropic impurity, and to 
find the local normal oscillations whose frequencies lie 
beyond the limit of the frequency spectrum of the oscil­
lations of an ideal lattice. Yu. M. Kagan and Ya. A. Iosi­
levskii r21 investigated the so-called quasilocal oscilla­
tions connected with the presence of an isotopic impur­
ity; these oscillations correspond to frequency-spec­
trum peaks lying in the region of allowed frequencies of 
the unperturbed lattice. An important role is played 
here by the form of the quasicontinuous frequency spec­
trum of the ideal lattice, which depends on the dimen­
sionality of the problem. 

Local and quasilocal oscillations, bound and resonant 
states of electrons in a crystal with impurity, etc., are 
by far not the only possible cases of realization of local 
and quasilocal states. There is one more case of prac­
tical importance when local and quasilocal states can 
exist in a crystal. We have in mind diffusion relaxation 
processes of atom redistribution occurring in a crystal 
lattice in the field of local perturbations. The relaxa­
tion-time spectrum of these processes can be measured 
by the internal-friction method, which has recently been 
extensively used to investigate metals and alloys. 

The inhomogeneous distribution of the atoms of the 
components of a binary solid solution of the substitution 
(interstitial) type is described by the set of probabilities 
of occupying the sites (interstices) of the crystal lattice 
by atoms of one of the components. Since the atoms be­
come redistributed over the sites (interstices) of the 
lattice in order to attain equilibrium, these probabilities 
depend on the time. Whereas in the description of the 
crystal-lattice vibrations each lattice site can be set in 
correspondence with three displacement amplitudes, in 
the description of the diffusion redistribution of the 
atoms each site can be set in correspondence with its 
own relaxing quantity, namely the probability of occupy­
ing the site by an atom of one of the components. Nei­
ther the displacement amplitudes nor the occupation 
probabilities pertaining to different sites are independ­
ent. The former are connected by the equations of 

crystal.-lattice dynamics, and the latter by the random­
walk diffusion equations. In either case, the presence 
of local perturbations can lead to the appearance of lo­
cal or quasilocal states. In spite of the different nature 
of these processes, the analogy can be quite far reach­
ing. 

In diffusion relaxation in the field of local perturba­
tions, the local states are relaxation modes with a sin­
gle relaxation time corresponding to a 15-like peak of 
the distribution function of the reciprocal relaxation 
times; this peak lies outside the region of the quasicon­
tinuous spectrum of the reciprocal relaxation times of 
the unperturbed system. The quasilocal states repre­
sent relaxation processes that do not have equal relaxa­
tion times. They break up into a group of relaxation 
processes with close relaxation times. Corresponding 
to these times is a peak of finite width in the relaxation­
time spectrum. This peak is located in the region of the 
relaxation-time spectrum of the unperturbed system. 

2. Let us consider the diffusion relaxation of a bi­
nary interstitial solution. The analysis is equally appli­
cable to a binary substitutional solution. 

If we denote by c(r, t) the probability that the inter­
stitial atom will occupy the position r, then the random­
walk equation characterizing the diffusion redistribution 
of the interstitial atoms over the interstices takes the 
form 

dc(r, t) ~ 
-d-t -= "'-' L(r, r')c(r', t), (1) 

where L(r, r') is the probability that the interstitial 
atom will jump from the interstice r' into the inter­
stice r in a unit time. The sum is taken over all the 
interstices. - L(r, r) is the probability that the inter­
stitial atom will go away from the interstice r in a 
unit time. From the particle-number conservation law 
it follows that 

~L(r, r') = ·o. (2) 

In the presence of a local perturbation (which may be, 
for example, a vacancy or an atom of a third campo-
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nent), the quantities L(r, r') can be represented in the 
form 

L (r, r') = Lo(r- r') + (',.£ (r, r'), (3) 

where La(r- r') are the transition probabilities in the 
ideal lattice. The dependence of La(r- r') on the coor­
dinate difference is connected with the translation in­
variance of the ideal Bravais lattice considered here. 
From the condition that the number of particles be con­
stant in the absence of a perturbation we have in analo­
gy with (2) 

\1 L,(r- r') = 0. 
L--d 

Using (3), we can rewrite Eq. (1) in operator form 

de ~ ~ 
dt = (Lo + M)c. 

(4) 

(5) 

We seek the non-equilibrium part of c(r, t) in the form 
exp (- vt)c(r), where v is the reciprocal relaxation 
time. 

Then 

(-L,-.!1L)c(r) =vC(r). (6) 

The eigenvalues v =vi of Eq. (6) describe the spectrum 
of the reciprocal relaxation times. The distribution 
function of the reciprocal relaxation time g(v) can be 
represented in the form 

1 ~ 1 ~ 1 g(v)=- ii(v-v,)=-lm . 
N N:t v - v,- te 

' ' 
1 1 

=-Sp ~ ~ ~ , 
Nrr vi +L-id. 

where N is the number of interstices in the lattice; 
E > 0, E- 0 or 

1 . 
g(v)= Nrr, ImSpG(v-ts), (7) 

where G( v) is a Green's function satisfying the equa­
tion 

(vi+ L, + !1L)G = 1. (8) 

Putting v1 +La= (Ga)- 1 , where <}a is the Green's func­
tion of the r~laxin~ system in the absence of local per­
turbations ((Gar 1 Ga = 1), we can write for G the Dyson 
equation 

(9) 

Thus, the problem of finding the distribution function of 
the reciprocal relaxation times in a system with per­
turbations reduces to a determination of the Green's 
function from the Dyson equation (9). 

As a concrete simple example, from which we can 
easily see how local states are produced in a relaxing 
system, let us consider the diffusion relaxation of an 
interstitial impurity over octahedral interstices in an 
fcc solvent lattice. 

Let the center of the local perturbations be an im­
purity atom occupying a solvent lattice site and having 
an intrinsic mobility that can be neglected compared 
with the mobility of the interstitial atom. The octahe­
dral interstices in the fcc lattice also form an fcc lat­
tice without a basis. We can thus consider the redis-
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Distributions of interstitial atoms over the points of an fcc inter­
stice lattice. The light circles denote the fcc interstice lattice over which 
the interstitial atoms can become redistributed. The black circle denotes 
the position of the impurity atom-the center of the local perturbations. 
On the right are indicated the impurity center and those nearest inter­
stitial positions, the transitions between which can be influenced by 
this center. 

tribution of the interstitial atoms over the points of an 
interstice fcc lattice in the field of a stationary impurity 
center located outside this lattice (see the left-hand fig­
ure). Let the probability of a transition of the migrating 
interstitial atom between the neighboring11 octahedral 
interstices in the absence of a local perturbation be 
La exp ( -Q/ T), where La is a frequency factor, Q the 
migration energy, and T the temperature. Using cyclic 
boundary conditions and changing over to k-space in (6) 
at 1::. t = 0, we obtain the proper reciprocal relaxation 
times of the unperturbed system 

v=v.=L,exp(-Q/T) ~(1-exp(ikb,)), (10) 

where bz are the vectors connecting the fcc lattice 
point with its nearest neighbors (l = 1, 2, ••. , 12). 

We now consider the relaxation in the presence of a 
perturbation. Let the potential of the local center have 
such a short range, that its influence changes the tran­
sition probability only between the positions of the first 
coordination sphere around the local center (see the 
right-hand figure). If the transition probabilities are 
equal to La exp l- (Q - V)/T] , then the matrix element 
of the perturbation operator takes the form 

!1L(r,r')=a ~)l(r-a)b(r'-a1)tn 
ij 

-4aii(r'-r) ~o(r-a), (11) 

where a =La exp (-Q/T)[exp (V/T) -1]; 8.j_ are the 
radius vectors of the octahedral interstices of the first 
coordination sphere, drawn from the position of the 
local center (i = 1, 2, ... , 6); 

where bz is any of the 12 translations of the fcc lattice. 
It is easy to see that the perturbation operator (11) sat­
isfies the condition :0 t:.L(r, r') = 0, which follows from 

r 
(2) and (4). Substituting (11) in (9), we obtain 

G(r,r')=G'(r-r')+a ~G'(r-a1)G(a1,r'), (12) 

'lThroughout the discussion that follows, only the transition probabili­
ties between the nearest neighboring interstices are assumed to be different 
from zero. 
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where the kernel is 

G'(r- a;)= .L, G'(r- a,) (4<\;- t;;). 

' 
It follows from (12) that 

.L, {6•;- aG'(a,- a;) }G(a;, r') = G'(a,- r'). 

Introducing the matrix 

we obtain 

G(a,, r') = .L, A,;-'G'(a;- r') n 
j 

G(r, r')= G'(r- r') +a .L,G'(r- a,)A0-'G'(a;- r'). 
<J 

Putting r' = r and summing over r, we get 

SpG = SpG'-a ~ A,1-'~G'(a1 -a,). 4-J dv 
ij 

We have used the identity 

~ G'(r-a,)G'(a;-r)= -~G'(a;-a1 ). 4-J dv 
' 

(13) 

(14) 

(15) 

(16) 

Let V's be orthonormal eigenvectors and As the 
corresponding eigenvalues (which can be degenerate) of 
the matrix Gfj = G0 (ai - aj); s = 1, 2, ... , 6. Then 

• 
""'- ~ 'v'v 1 l:rij - .L.J 1\,p p p' 

p=t 

• 
A,1-' = .L,v.'v//(1- a/o.,). 

Substituting (17) in (16) we obtain 

s c s 8• + ·~ dJ..,/dv 
p = p a .l..l a/o.,- 1 ' 

•=• 

1 E' a.dJ..,/dv g(v)=g,(v)+-Im ---, 
Nn a/o.,-1 

s=i 

(17) 

(18) 

(19) 

where g0(v) is the distribution function of the reciprocal 
relaxation times in the unperturbed system. In the sum 
of (19), which gives the increment to the density of the 
reciprocal relaxation times of the unperturbed system, 
each term can be expressed in the region of its maxi­
mum, where 

aRe/o.,-1 = 0, (20) 

in the form 

r. 
Nn (v- v,,)' + L' 

(21) 

where rs = -Im As(vs0 )/Re Ag(vs0 ), and Vso is the solu­
tion of (20~ (Only the terms linear in v- Vso have been 
retained in the expansion of As(v) about vs0 .) The 
terms of the sum in (20) have a resonant form, and as 
r s - 0 the corresponding term of the sum tends to 
N- 1 o(v- v s0 ). Thus, the o -like peak in the spectrum of 
the reciprocal relaxation times always takes place for 
Vso lying outside the spectra of the unperturbed prob­
lem, where rs = 0 (local relaxation process). If Vso 

is smaller than the maximum reciprocal relaxation 
time of the unperturbed system, then the distribution 
function of the reciprocal relaxation times has a pro­
nounced maximum if the width rs is sufficiently small 
(quasilocal relaxation process). Let us calculate the 
eigenvalues of the matrix aij' given by 

-o (~~~ !~~\ 
(Gii)= CBBABB)' (22) 

BCB BAB 
BBC BBA 

where 
G , _ 4 ~ 1- exp(ikb,) 

A= !I - N 4-J v - v. ' 
• 

B = Gtz' = _!__ ~ 2 exp(ikb,)- exp(2ika,) -1 , 
N 4-J v- "• 

k 

C = G' _ = _±_ ~ exp (2ika;)- exp (ikb1) • 

II N k v -vk ' 
( l=1,2, ... ,12;) 

i = 1, 2, ...• 6. 

The unit vectors of the basis in which the matrix (22) is 
written are numbered in the sequence 1, 2, 3, 1, 2, 3. 
The unit vectors correspond to the interstices shown in 
Fig. b. 

The system of orthonormalized eigenfunctions and 
eigenvalues of the matrix Gj'j is such that 

- 1 
J.., =A +C+4B == 0, v, ==(111111); 

16 
- 1 - 1 

i.z = J.., =A+ C- 2B, Vz = -(OHOH), v, = --=(211211); 
2 213 

A., = :A, = :A, = A - C, 
-1--1 -1 
v. = -=-(100 100), v, = -=-(010010), v. = -=(001 001•). (23) 

-y'2 l'2 l'Z 

Since an interstitial-atom redistribution correspond­
ing to A4 = A5 = A6 does not lead to a change in the shape 
of the crystal, it is possible to excite the corresponding 
relaxation modes by applying external loads, as is done 
in the internal-friction method. For our purposes it is 
therefore necessary to consider only those terms in the 
sum of (19) which correspond to 

A.,=J..,=~~ 1+exp(2ika,)-2exp(ikb,) . 
N.i..J v- Vk 

k 

If V > 0 then, bearing in mind that exp (V /T) >> 1 
(V and T are of the order of several tenths and several 
hundredths of an electron volt, respectively), we seek 
the solutions v >> Vk.max. Neglecting Yk in compari­
son with v in the denominator under the summation 
sign, we obtain from (20) the local reciprocal relaxa­
tion time 

v ~ L, exp{-(Q- V) IT}. (24) 

The other limiting case a - -1 (at V < 0, 
exp (V /T) << 1) does not correspond to a quasilocal 
peak with a reciprocal relaxation time that approaches 
zero asymptotically. The reason for this is that transi­
tions between the positions of the first coordination 
sphere and the neighboring interstices are not forbidden 
in our model. However, if we let the probabilities of 
such transitions approach zero, so that the positions of 
the first coordination sphere form an "island" isolated 
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from the remaining lattice, then the" resonant" recip­
rocal relaxation time tends to zero as a - -1. 2 ' The 
calculation of the position and of the width of the peak 
in the density of the reciprocal relaxation times can be 
carried out in the general case only numerically. 

3. The local reciprocal relaxation time (24) should 
correspond to an absorption peak observed in internal­
friction experiments. Such a peak was observed in fcc 
crystals by Ke, [ 3 l who was the first to advance the hy­
pothesis that the peaks obtained by him are connected 
with the redistribution of point defects of one type in the 
field of point defects of another type. 

As to the centers for which V < 0, relaxation proc­
esses having one relaxation time cannot be connected 
with them at all. This circumstance may explain the 
anomalously large width of the internal-friction peaks 
frequently observed in experiments. (For a review of 
the literature on internal friction connected with point 
defects see L4 l.) A sufficiently pronounced internal­
friction peak can be observed in this case only at small 
values of r. 

In contrast to the case of the local relaxation process 
(V > 0), the quasilocal relaxation process cannot be 
represented even approximately in the traditional man­
ner as a reorientation of a dumbbell made up of an im­
mobile local center and the interstitial atom. 

The resonant maxima in the density of the reciprocal­
relaxation-time distribution, which are connected with 
local and quasilocal relaxation processes, correspond 
to irreducible representation of the point group of the 
perturbation. The number of resonant maxima should 
coincide in the general case with the number of irreduci­
ble representations of this group. For local centers with 
a potential having a very short range, extending only 
over the first coordination spheres of the interstitial 
positions, not all the irreducible representations can be 
realized (as is the case in the example of the fcc crys­
tal considered above). As the radius of action of the 
perturbation increases, new irreducible representations 

2'In the model problem considered by us, concerning the spectrum of 
reciprocal relaxation times in a primitive cubic lattice, in which the escape 
of the migrating particle from one site ("trap") is difficult, the quasilocal 
reciprocal relaxation time v0 --+ 0 as a--+ -1, and the width of the peak 
r ..... 0, so that the peak becomes asymptotically truly local. 

appear, together with their associated local and quasi­
local relaxation times. It must be borne in mind here, 
however, that the internal friction method can reveal 
only those representations which correspond to relaxa­
tion modes (redistribution of atoms) that lead to a 
change in the exterior shape of the sample. 

Since the maximum number of irreducible represen­
tations for each point group is specified, an increase of 
the radius of action of the local center, starting with a 
certain value, does not lead to an increase in the num­
ber of resonant peaks, but only increases the degener­
acy multiplicity of each peak (the number of relaxation 
modes corresponding to a given relaxation time) and 
shifts their positions. The degeneracy can be lifted for 
example, by a time-independent homogeneous elastic 
deformation of the crystal, which lowers the symmetry 
of the lattice, which in turn should lead to a splitting of 
the peaks. Such experiments can be exceedingly useful 
in the identification of the internal-friction mechanism. 
A study of the peak positions would make possible a 
sounding of the interaction between the impurities and 
the local centers. 

It should be noted that, in the interpretation of data 
on the internal friction, peaks that differ greatly in tem­
perature or in frequency are sometimes ascribed to dif­
ferent relaxation mechanisms. The discussion presented 
above shows that a series of peaks may be produced by 
one relaxation mechanism. 
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