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The elementary excitation spectra of a system containing p magnetic sublattices are systematized. The possibility of existence 
of such substances was discussed in ['1• The effect of a magnetic field and also of usual Heisenberg interaction on the spin-wave 
spectrum is considered. 

1. MAGNETIC STRUCTURES CONNECTED WITH 
THE ORBITAL ANGULAR MOMENTUM 

IN our preceding paperr11 we have shown that allow­
ance for the orbital magnetism leads to complicated 
magnetic structures with several sublattices. A simple 
example of substances with non-quenched orbital angular 
momentum are compounds of rare-earth elements. In 
view of the strong spin-orbit coupling, the f-shell elec­
trons in rare-earth element atoms are described by the 
total angular momentum. One should expect at least 
fourfold degeneracy of the d-shell electrons to remain 
also in transition-metal compounds, where the crystal 
fields are large compared with the spin-orbit coupling 
(see r 11 ~. 
. In [1 we considered the ground state of a crystal con­
sisting of atoms with multiply-degenerate electronic 
levels. It was assumed that such a system is satisfac­
torily described by the Hubbard Hamiltonian r21 and that 
there is one electron for each atom. It was also assumed 
that the characteristic "kinetic" energy of the electron 
in the band is small compared with the Coulomb energy 
of repulsion of two electrons by one atom. The latter 
assumption leads to a strong localization of the elec­
tronic states and to the appearance of a gap in the elec­
tron spectrum (dielectric). 

Under these assumptions, the problem of the ground 
and weakly-excited states reduces to an investigation of 
the effective Hamiltonianr 11 , where 

(1) 

Pr r' is an operator representing the states at the sites 
r a'nd r'. Summation with respect to r is over the crys­
tal sites and a are the basis vectors of the lattice. 

The ground state of the system is constructed as a 
superposition of the vectors A (A 1, A2, ••• , AN), where Ai 
denotes the number of the electronic state at the i-th 
site. The vectors A form a vector space A with dimen­
sionality pN, where p is the number of degenerate elec­
tronic states on the atom (Ai = 1, 2, ... ,p) and N is the 
total number of atoms. 

The problem is similar in many respects to the in­
vestigation of the ground state of an antiferromagnet 
(for p = 2, the Hamiltonian (1) coincides with the ordi­
nary Hamiltonian of an antiferromagnet). However, the 
simplest Hartree approximation used in the theory of 
antiferromagnetism is not suitable in the case p > 2. 
In the Hartree approximation, the ground state of the 

crystal with Hamiltonian (1) is any state in which the 
electronic states of the neighboring states are orthog­
onal. Thus, in this approximation the ground state is 
degenerate with a degeneracy degree of the order of 
pN. 

In [lJ we proposed a certain generalization of the 
Hartree method. The crystal was subdivided into ele­
mentary cells containing several atoms each (for exam­
ple, into squares made up of four atoms in the case of 
a two-dimensional quadratic cell, into cubes made up 
of eight atoms in a primitive cubic cell, etc.). 

The wave function of the crystal was represented in 
the form of a product of wave functions of all such cells. 
It was shown that in the ground state there are produced 
p identical sublattices corresponding to different values 
of A. The sublattices are so arranged that identical 
states are at maximal distances. The ground state de­
fined in this manner is still degenerate, but its entropy 
does not depend on the volume (the degree of degeneracy 
is p! ). 

2. SPIN WAVES AS ROTATION IN A SPACE 

The Hamiltonian (1) is invariant against uniform ro­
tation, in all the sites, of the p-dimensional complex 
vectors of the electronic states <PA. Therefore, if such 
an operation is performed on the ground state, its en­
ergy remains unchanged. Obviously, when the rotation 
parameters change slowly from site to site, the energy 
of the state differs little from that of the ground state. 
For the stationary state it is natural to expect the ro­
tation of the variation parameters to have the character 
of a plane wave whose energy tends to zero together with 
the wave vector. Such oscillations will be called arbi­
trarily acoustic spin waves (ASW) in analogy with an or­
dinary antiferromagnet. 

We shall now classify the ASW. 
The electronic states at the sites are transformed 

under an infinitesimally small rotation in accordance 
with the law 

(2) 

where IIEA,A' II is a complex antisymmetrical matrix. 
Any rotation in p-dimensional space can be represented 
in the form of rotations in p (p- 1)/2 mutually orthogo­
nal planes. Since each complex EA A' is determined by 
two parameters, we have a total of p (p - 1) independent 
parameters determining the rotation. Consequently, 
there exist p (p - 1) independent ASW for each wave 
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vector q. These p (p- 1) ASW branches differ from one 
another in their "polarizations." It is natural to classify 
the spin waves in accordance with the planes in which the 
rotation takes place. We shall thus speak of ASW (1, 2), 
(1, 3), etc. A plane does not define the ASW uniquely: 
there exist two spin waves degenerate in energy and 
corresponding, for example, to real and imaginary E. 

Any other infinitesimally small rotation € can be rep­
resented as a superposition of rotations in the coordi­
nate planes: 

~'f = (1 +e.,J,,}q•, ((i, k)=(1, 2), (1, 3), ... ), (3) 

where Iik are the generators of the rotation in p-dimen­
sional space. 

One more principle of excitation classification is 
connected with the integrals of motion of the Hamilto­
nian (1 ), namely the total numbers N;\ of the electrons 
in the state ;\, In the ground state all the NA are equal 
to each other. The lowest excited state, say in the (1, 2) 
plane, is characterized by the smallest possible (but not 
zero) value, I N 1 - N2 1 = 2. A state with a large degree 
of excitation is characterized either by I N1 - N2 1 > 2, 
or by simultaneous inequality of several NA to one an­
other. 

In the present paper we confine ourselves to elemen­
tary ASW, which we take to mean the following: if an 
ASW is excited in the (m, m') plane then I Nm - Nm'l 
= 2, and all other NA = N/p. 

3. ASW DISPERSION 

We shall show that, just as in an antiferromagnet, the 
frequency of the ASW in the absence of a magnetic field 
depends linearly on the wave vector. The difference 
from an antiferromagnet consists in the fact that aniso­
tropy of the spectrum with respect to the directions q 
sets in. In an antiferromagnet p = 2 and only ASW of one 
type (1, 2) are possible. In complex magnets, differently 
polarized ASW have different properties with respect to 
the crystallographic axes, and this gives rise to the 
anisotropy. 

To calculate the excitation spectrum it is necessary 
to know the wave function <1> 0 of the ground state. In r11 

we found the ground state by a variational method. But 
to elucidate the general properties of the ASW spectra 
we need not a concrete knowledge of <1> 0 , but only some 
general information concerning the ground state. We 
shall assume that sublattices exist. This means, in 
particular, that the probability nyr of finding the state 
y at the site r of the sublattice numbered y is larger 
than the probability ny'r, with y' * y. It is natural to 
write <1> 0 in the representation of the vectors A: 

<Do= .L, C(A)A. (4) 

We seek the excited states of the system in the form 

{j) = S<Do, 

S = JI ~(e,). 
(5) 

(6) 

The product is taken over the lattice sites. Here s(E) is 
the operator of rotation through an angle E, say, in the 
(m, m') plane. Accurate to second order in E we have 

;(e)= (1- '/,lei')+ (ea), 
(7) 

where (€•C1) = E1ax + E2CTy, E = E1 + iE2 , and ax and ay are 
Pauli matrices. To simplify matters, we shall hence­
forth assume E to be real. 

The problem of determining the ASW spectrum is 
equivalent to minimization of the following form, which 
is quadratic in E, 

(8) 

The Lagrangian multiplier E has the meaning of excita­
tion energy. 

Let us consider the first term of (8). Confining our­
selves to terms not higher than of second order in E, 

we obtain 

where 

(<DoS-'HoS<Do) =Eo+~ K,,,,(e,' + e,,2 - 2e,e,,), (9) 
r,r' 

K .... = - 2%,,,, + .E %,,, .. 6,,,, + L %, .. ,,6, ,, (1 0) 

:JC,,,. = g {- 1/, (<DoPr,r' ('11mr~+ 1imr' + '11m'r' + nm•r) (!J0 ) 

+ <<Do ('ltm,nm'r' + nm·r'11mr•) <Do)}, 

nmr and nm'r are the operators of the occupation num­
bers of the states m and m' on the site r. 

From the invariance of the Hamiltonian to a state ro­
tation that is uniform over the entire crystal, it follows 
that 

_EK,,,=O. (11) 

It will be convenient in what follows to specify the no­
tation in greater detail. We divide the crystallographic 
lattice into identical cells of volume p (see, for example, 
Fig. 1 for p = 4). We introduce the vector index H of the 
cell and the number y of the sublattice (y = 1, 2, ... , p ). 
These two quantities defines the lattice vector r com­
pletely. We shall therefore use instead of Kr r' the sym-

bol Ki{ ~'. By virtue of the homogeneity, it i~ obvious 

that K~~' depends only on the difference R- R'. Rela-, 
tion (11) takes the form 

(12) 

Let us consider now the second term of the quadratic 
form (8). Using (6), we get 

(<!J,S-' (Nm- Nm•)S<!Jo) = .E (<!J,;,-t (;;m,- ;;,m,,);,<!J,), {13) 

In the representation of the operators of the occupation 

<{)--~ qr--<4l <{>---<p <r---<;p 
I I I I I I I I 

®---4 ®---4 ®---4 cb--4 

q>--~ q>--~ qr-~ q>---<;p 
I I I I I I I I 

®---4 ®---4 ®---4 cb---4 
b 

FIG. I. Basis vectors of sublattices: a-(2, 0), (0, 2); b-(2, -I), (2, 
1). 
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numbers of the states m and m', formula (13) becomes 

In the derivation of (13) we used the fact that cl> 0 is an 
eigenfunction of the operators NA (NA cl> 0 = Ncl>0 /p ), and 
therefore terms proportional to E do not appear in (14). 

It is obvious the coefficients of E~ in (14) have differ­
ent signs for the sites of the sublattices m and m', since 
( ci> cPmrcl> 0 ) have the meaning of the probability of the 
state m at the site r in the ground state. The remaining 
sublattices can be broken up into pairs, such that the 
first component of the pair is located relative to sublat­
tice m in the same manner as the second in the sublat­
tice m'. Such pairs will be called conjugate. For these 
pairs, the coefficients of E~ also have opposite signs. 
Finally, we can encounter sublattices that are symmet­
rical with respect to m and m'. For such sublattices, 
the coefficient of E~ is equal to zero. We shall call 
such sublattices self-conjugate. 

Thus, we can break up the entire aggregate of sub­
lattices into three groups, the second of which contains 
sublattices conjugate to those of the first group, and the 
third self-conjugate sublattices. The indices of the con­
jugate sublattices will be the same as those of the first 
group (a, {3), but primed. The self-conjugate sublattices 
will be assigned other indices (f-1, v). The index y will 
be used to number all the sublattices. 

In the assumed notation, the conditions for the mini­
mum of the quadratic form (8) take the form 

L K:~n 2Bn 2" + ELa.Bn 1a = 0, 
'I',Rz 

(15) 

Mter changing over to the Fourier representation 
with respect to R, we obtain the following dispersion 
equation: 

K"''(q) 

K"'(q) 

K"'' (q) K"'(q) 

K'"'''(q) - HL.o •. ,. K"'(q) = 0, 

K"'' ( <!) K"' ( q) 

(16) 

where each of the elements denotes a quadratic block 
consisting of the Fourier components of the matrix K 
(with the exception of obvious changes in the diagonal 
blocks). 

We note that at q = 0 and E = 0 the determinant (16) 
vanishes identically by virtue of the condition (12). 

FIG. 2. Basis vectors of sublat­
tices: (1, I, 1),(-1, I, !)and (-I, 
-I, 1). 

Let us show that (16) is a polynomial in E2• Indeed, 
let us interchange the first and second rows of the de­
terminant (2) and then the first and second columns. If 

. '{3' {3 {3' '{3 we rE)cogmze that Kll' = KCi , Kll' = Kll' , and KO' ll 
= Ka ll, then the resultant determinant differs from 
(16) only in that E is replaced by - E, thus proving our 
statement. 

Near q = 0, all the matrix elements K(q) can be ex­
panded in powers of qi. The expansion begins with the 
quadratic term, since the matrix K is an invariant to 
the inversion of q. However, the quadratic form for 
each matrix element is generally speaking not isotropic. 
Thus, at small q we obtain from (16) 

(17) 

As an illustration of the general relations, we pre­
sent the results of calculation of the spectrum for the 
configurations shown in Figs. 1 and 2. We have used 
here the approximate ground-state function 

'~"·= IIIjJ;, 
where the l/Jj stand for the wave functions of the elemen­
tary square or cube, which were calculated in [1]. 

We present the results for the configuration in Fig. 
1a: 

Ell.,J(q) = Eu('l) ~ yq/ + 0.19q,', 

E(l,4)(q) = E(z,s)(q) ~ 1/q,' + O.ifJqx',­

E(l,.o)(q) = Ecz,,J(q) ~ 1/qx' + q,'. 

For the configuration of Fig. 1b we have 

EcuJ(q) = Ec,,.1(q) = £ 1,,,1('1) = E,,41(q) ~ 1/q,' + O.Hiq,', 

Ell.>J(q) = E1,,,1(q) ~ 1/q,;' + 0.59q}:-

Finally, for a primitive cubic lattice we have 

E1121 (q) =c E(3.'i(q) ~ yq/ -+6]5~), 

Ec~,,1 (q) = Ec,,,1(q) ~ yq,' +0.25(q,' + qx'), 

Ect,s)(q) = E(2,<)(q) ~ 1/q,' + 0.25 (qx' + qy'), 

4. OPTICAL BRANCHES OF THE SPECTRUM 

The local rotations described by (5) and (6) are the 
most general ones in A space. Therefore the dispersion 
equation (16), which follows only from the assumption 
concerning the form of the wave function (5), the varia­
tional principle (8), and the existence of sublattices, de­
termines not only the ASW but also the entire aggregate 
of "spin" motions. It is natural to call the spectrum 
branches separated from the ground state by a gap 
"optical spin waves," in obvious analogy with the op­
tical branches of crystal vibrations. The magnitude of 
this gap is of the order of g. 

Let us find the number of optical spin branches. To 
this end we note that each value of q, for a given rotation 
plane (m, m'), corresponds top - p (m, m') solutions of 
Eq. (16). The symbol p (m, m') has been introduced for 
the number of self-conjugate sublattices corresponding 
to rotation in the plane (m, m'). Two branches, as al­
ready shown, are acoustic. Summing over all possible 
rotation planes, we obtain 
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.E(p-p(m,m')-2)='/,p(p-1)(p-2)- L, p(m,m'). (18) 
('11,m') 

In particular, for an ordinary antiferromagnet p = 2, 
p = 0, and there are no optical branches. 

The simplest quadratic lattice shown in Fig. 1a has 
the property that for rotation in the (1, 3) plane the sub­
lattices 2 and 4 are sell-conjugate. Of ourse, the same 
pertains also to sublattices 1 and 3 for rotation in the 
(2, 4) plane. Then, in accord with (18), there are eight 
optical branches. 

For the configuration shown in Fig. 1b, there are no 
self-conjugate sublattices and the number of optical 
branches is 12. 

Finally, for the cubic lattice (Fig. 2), for rotation in 
any plane, two self-conjugate sublattices arise. The 
number of optical branches in this case is equal to zero. 

5. GROUND AND WEAKLY-EXCITED STATES IN A 
MAGNETIC FIELD 

We consider now the dispersion of ASW in a weak 
magnetic field. Homogeneous rotation now no longer 
commutes with the total Hamiltonian H0 + H1• This 
means that the spectrum of the excitations of the mag­
netic field is separated from the ground state by a gap. 
Nonetheless, the wave function of the excited state will 
be determined by formula (5) and (6), if ~0 is taken to 
mean the wave function of the ground state in the mag­
netic field. 

Let us see how Eq. (16) for the determination of the 
spectrum is altered. Just as before, we shall consider 
for concreteness rotation in the plane (m, m'). The ele­
mentary ASW will be defined as before by the condition 
INm- Nm'l = 2. 

The dispersion equation from which we obtain the 
ASW spectrum has, with a slight exception, the form 
(16). Thus, we add to the first diagonal element of the 
determinant the term 

We shall describe the magnetic field by an increment to the second 
to the Hamiltonian (1) of the opera to:: 

n. = h .E '-n •.. (19) and to the third ..• 
It is easy to see that both H0 and the total Hamilto­

nian H0 + H1 commute with the occupation numbers Nx, 
which thus remain conserved in the magnetic field. 

We denote by E0 (N10 ••• , Np) the minimum eigenvalue 
of the Hamiltonian H0 for specified numbers Nx. The 
absolute minimum of Eo coincides with the energy of the 
ground state of the Hamiltonian H0 • We assume that the 
absolute minimum of E0 corresponds to N1 = N2 = ... 
= Np = N/p. This assum~tion is confirmed by a varia­
tional calculation (see u ). 

In a weak magnetic field, the equilibrium value of Nx 
differs somewhat from N/p. We put 

(20) 

We shall show that liNx depends linearly on the mag­
netic field. To this end, we expand E0 near the absolute 
minimum in powers of liNx. We confine ourselves only 
to quadratic terms. In view of the complete symmetry 
of E0 with respect to all Nx, the increment liE0 is of the 
form 

• 
6£, = ; .E ( 6N,)' + b .E 6N16N, •. (21) 

A:::~~l A.:;&=W 

The total energy E(h) of the system in a magnetic 
field is obviously 

• 
E(h)=E,+IIE,+h .E IIN1• (22) 

·-· 
Minimizing this expression with respect to liNx, we 

find 

6N, = -'J..hf(a- b). (23) 

In the derivation of (23) we have changed from number­
ing the states from 1 to p to numbering from - (p - 1 )/2 
to (p -1)/2. 

We see from our result that the values of liNx aver­
aged over the ground state in a magnetic field are pro­
portional to h. 

E(llnm 0 - 6nm•1,). 

Here E = E + Y2(m -m')h. 
It is very important that the coefficients K'Yl'Y2(q), 

which are determined only by averages of the Hamilto­
nian H0, satisfy the relation (12) as before, although 
each of the coefficients depends little on the magnetic 
field. 

In fact, in the derivation of (12) we have used only 
two circumstances: first, the invariance of H0 to homo­
geneous rotations in p-dimensional space, and second, 
the fact that ~0 is an eigenvector of the Hamiltonian H0 • 

Both assumptions remain valid also in a magnetic field. 
It is now easy to obtain the form of the ASW spec­

trum in a magnetic field. The two branches, which were 
previously degenerate, now split and take the forms 

E.(q) ~= l'a.;q;q; + k'h'- kh + l 1/2(m- m') lh, (24) 

E,(q) ~~ 1ja;;q;q; + k'lf + kh- l 1/2(m- m') I h. (25) 

Here k is a constant that depends on the redistribution 
of the occupation numbers over the sublattices and is 
bounded by the following inequality: 

2k~ l'f,(m-m')l. 

From (24) and (25) we see that 

w, = hl'f,(m- m') I 

and 

ro,=h(2k-l'/,(m-m'l) 

are the antiferromagnetic-resonance frequencies. 

6. ASW SPECTRUM WITH ALLOWANCE FOR EX­
CHANGE INTERACTION 

(26) 

(27) 

In real compounds of rare-earth and transition ele­
ments there exists, in addition to the interaction de­
scribed by the Hamiltonian (1 ), also the usual exchange 
interaction. 
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If the intraatomic spin-orbit coupling is large, the 
electrons are described by a total angular momentum 
J. Therefore the exchange interaction, which must be 
added to H0 , is of the form 

H, = -I:IJ(r- r')J,J.,. (28) 
r,r' 

If the interaction (28) is small compared with H0 (we 
shall consider only this case), then the ground state of 
the system differs little from the ground state of the 
Hamiltonian (1). As before, p sublattices will remain. 

We have noted earlier that the operators of the total 
occupation numbers NA commute with H0 and are there­
fore integrals of motion. These operators do not com­
mute with the Hamiltonian Hj. Therefore instead of p 
independent integrals of motion there remains only one 
conserved quantity, connected with the operators of the 
total occupation numbers in the state A: 

(p-1)/2. 

!' = ~ uv, ........ (29) 
1c==-(J1-!)/2 

In formula (29), the sum over A means summation over 
all the projections of the total angular momentum J on 
the z axis. 

The existence of the integral of motion (29) causes 
the elementary ASW to be characterized now by the 
smallest possible value I 5JZ I = 1. 

We have already shown that there exist p (p - 1 )/2 
independent homogeneous rotations that leave the Ham­
iltonian (1) invariant. The consequence of this was the 
existence of p (p - 1) ASW branches. Not all these ro­
tations, however, commute with Hj. Only one superpo­
sition of rotations in the coordinate planes leaves the 
Hamiltonian H0 + Hj invariant. Accurate to terms of 
second order in E, this rotation is written in the form 

~(e,.) = 1 + (e,J,-- e:J,+) + 'j,(eJ,-- e:.J,+)'. (30) 

The rotation S = TI s ( Er ), which is inhomogeneous over 
r 

the crystal and corresponds to lli.JZ I = 1, defines, to-

gether with Eyr ~ eiq .r, two branches of the spectrum. 
There remain, however, p (p - 1 )/2 - 1 independent ro­
tations. Since these rotations no longer commute with 
the Hamiltonian H0 + Hj, a gap will appear in the spec­
trum of the spin waves that correspond to these rota­
tions. The value of the gap D. is obviously proportional 
to 1"0 Ij(r)l Such branches of the spectrum (their num-

r 
ber is p (p - 1) - 2) can be called "weakly optical" since 
the energy gap in the spectrum of the ordinary spin 
waves is of the order of g, and is much larger than D. in 
our case. 

In transition-metal compounds, the spin-orbit inter­
action is small and the exchange is due to the interac­
tion of the spins of the magnetic atoms. The total Ham­
iltonian of the system is made up of H0 and Hs: 

Jl, =-L l,(r- r')S,S.,. (31) 

"' 
It was shown in [ll that the exchange constants in (1) 

and (31) are of the same order. Therefore, if Is > 0, 
the spins have ferromagnetic ordering, and the orbital 
angular momenta form several sublattices. The num­
ber is equal to 2L + 1 if the crystal fields are small, 
and at least to two in the opposite case. In such com­
pounds, the systems of orbital and spin in momenta 
separate. The spectrum of the elementary excitations 
is therefore as follows: there is one spin-connected 
branch proportional to q2, and p (p - 1) branches con­
nected with the orbital angular momenta. At small 
wavelengths, the latter are linear in q. 
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