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The anomalous Hall effect for polarized electrons in semiconductors is predicted and calculated in the Kane model. The effect 
consists in the appearance of an e.m.f. along the y axis on illumination with polarized light and in the z direction of a sample 
located in an electric field directed along z. The effect is due to asymmetric scattering of polarized electrons by crystal lattice 
defects resulting from their spin-orbit interaction with a periodic field. The spin-orbit scattering constant is obtained for the 
7ase of scattering by charged impurity centers. It is found to be m2c2 /m*Eg times greater than the free electron constant (m 
is the free electron mass, m* the effective electron mass in the crystal, Eg the forbidden band width, and c the velocity of light). 
An expression is also found for the spin relaxation time s. 

A stationary polarization of the conduction electrons is 
established in semiconductors under the influence of po
larized laser radiation. [l-4l The degree of conduction
electron polarization at high radiation intensity is deter
mined by the ratio of the electron spin-relaxation time 
Ts to the non-equilibrium electron lifetime Tn and can 
reach 50%. [5l The polarization of the conduction elec
trons leads to a number of singularities in the kinetic 
equation. [sl In particular, the asymmetrical polarized
electron scattering due to the presence of strong spin
orbit interaction with the initial field of the lattice should 
lead to an anomalous Hall effect. 1> An exact quantitative 
analysis of this phenomenon was carried out within the 
framework of the Kane model, and an expression was ob
tained for the anomalous Hall conductivity as in terms of 
the known semiconductor parameters, viz., the effective 
mass m *, the width of the forbiddvn band Eg, and the 
spin-orbit splitting constant 6. of the hole band. In the 
present paper we consider the case when the conduction 
electrons are scattered by charged impurities. The pho
non scattering mechanism will be investigated in a sub
sequent paper. 

1. WAVE FUNCTIONS OF ELECTRONIC STATES OF 
THE CONDUCTION BAND, PROBABILITY OF ELEC
TRON SCATTERING BY A CHARGED IMPURITY 
CENTER 

The Hamiltonian for the conduction electron is 

' p' h ' ~ H=-+v(r)+--, O"[Vv(r),P]+ <D(r-r;) 
2m 4m'c 

(1) 

e'z 
<D(r-r;)=- I I' x r-rj 

where m is the free-electron mass, v(r) describes the 
interaction of the electron with the periodic field of the 
crystal lattice, <I>(r- rj) describes the interaction of the 
electron with the impurity center located at the point rj, 
ez is the charge of the impurity center, K is the dielec
tric constant of the crystal, and a is the Pauli matrix 
vector. The interaction with the impurities, which leads 
to elastic scattering of electrons, will be regarded as a 

1Yrhe idea of the existence of such an effect was independently ad
vanced by V. G. Fleisher. 

perturbation. The spin-orbit interaction with the peri
odic lattice field, which in the case of a semiconductor 
is not small, will be taken into account exactly within 
the framework of the Kane model. [?J 

We seek the eigenfunctions of the Hamiltonian H0 in 
the form l/Jnk(r) = eik·runk(r), where unk(r) is a periodic 
function. In the case of semiconductors of the III-V type, 
taking into account only the interaction of the conduction 
band with the valence band, we obtain for the Bloch am
plitudes unk of the electronic states of the conduction 
band the following expressions (the direction of the quan
tization axis is chosen to be the direction of the incident 
polarized light): 

a) for materials where 6. >> Eg (such as InSb), 

{ I . kP I [ ( kx . ky ) ( ky . k, ) u•t=c, zst>+-- 2--z·- x+ 2-+z- y 
3E, k k k k 

+ 2i-z] t) - ::., I [ -t(x + iy)- (; + i-~) z] t)}, 
{ . I kP I [ ( k, . k, ) ( k, . k, ) uq=c, lzs-r>+-·- 2--+t- x+ 2--l- y 

3E, k k k k 

k, ] I > kP I [ k, ( k. k,) ] )} +2kz '!' - 3E, - k-(x-iy)+ k-i-k z t ; 
(2) 

b) for materials where 6. « Eg (such as GaAs ), 

{ I . t · kP I [ kx k, k, ] ) Uq=C, lS >+- --x+-Y+-z t 
E, k k k 

kP ( 1\. fz'k 2 
) I [ k, . ( kx . ky) ] )} + 3E, E, + 2mE, -k(x+zy)+ k+'k z t • 

{ I . I kP I [ k, k, k, ] > u•l =C, !8-r)-l-- ---x+-Y+-z t 
E, k k k 

kP ( 11. n' k' ) I [ ( k, k, ) k, ] ) } +~ -+-- --+i- z+-(x-iy) t . 
3E, E, 2mE, k k k 

(3) 

The symbols t and I at the Bloch amplitudes uk t and uk 1 
denote the spin projections corresponding to the given 
state at the minimum of the conduction band (at k = 0), 
and the symbols I > denote the corresponding spinors 

( ~) and (~). The symmetrical function I is> coincides 

with the Bloch amplitude (without allowance for spin) of 
the electronic states at the minimum of the conduction 
band. The functions I x >, I y >. and I z > are orthonormal
ized functions that behave in transformations from the 
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crystal symmetry point group like the vector components 
x, y, z. The parameters A and P, in accord with [7 \ de
note matrix elements of the type 

3 ift ~ 
t; = -4 m'c' <xi [Vv(r)p],lz), 

ft -
P=-;:;;-(islp.!x), 

(4) 

here A determines the spin-orbit splitting in the p-band 
(i.e., it measures the distance at k = 0 between the bands 
of the heavy and light holes corresponding to the total an
gular momentum %, and the split-off band corresponding 
to a total angular momentum 12), while the parameter P 
is connected with the effective mass m * by the relation 

2 P' ft' ft' 

3 E, 2m" 2m (5) 

The quantity k2P 2/Eg is a small parameter of the or
der of T/Eg in nondegenerate semiconductors or t/Eg 
in degenerate ones (T is the temperature and !;; the chem
ical potential), i.e., on the order of the ratio of the aver
age conduction electron energy to Eg. The coefficients 
c~> c 2, c 3, and c 4 are normalization factors equal to unity, 
accurate to the small quantities K2P 2/Eg (and A/Eg in 
case (b)). It is seen from (2) and (3) that when k * 0 the 
eigenfunctions of the Hamiltonian H0 are not states with 
definite spin projection, as was the case in the absence 
of the spin-orbit interaction, but remain degenerate in 
energy and correspond to the eigenvalue 

2P'k' ft'k' 2 P'k' 
e,=--+-~.----,-. -

3E, 2m 3 E, 
(6) 

(inasmuch as m* << m). 
Let us calculate the matrix element for scattering by 

a charged impurity center between Bloch functions 
Ukseik-r (uks is Uk t or Uk 1 in formulas (2) in (3)): 

where 

(ks I <D(r- rJ I k's') = e'i•·~•l';rp( I k- k' I) 

{ [ P'(k'-kk') yP' (7)* 
X 6,. 1- E/ ]-i 3E_,<sicr[kk'Jis')}, 

v= { 1, if 
2A/E,, if 

4ne'z 
'P ( I k - k'd ) = - --::-:---:-:-----,

Vx(k-k')'' 

(8) 

Here V is the volume of the crystal. In formula (7), the 
term with the vector product k x k' corresponds to the 

magnitude. 
We shall need in what follows the square of the modu

lus of the matrix elements of the amplitude for elastic 
sc~tte~ing of an +electro~ b¥ a Coulomb center without 
spm fhp I ( sk It ( Ek) I sk I) . We recall that in formal 
scattering theory the amplitude e (E) is defined by the 
relation 

(10) 

As is well known, the scattering of an electron by a 
Coulomb center depends on the direction of the electron 
spin, owing to the spin-orbit interaction. When pertur
bation theory is used, this dependence appears only in 
the approximation that follows the Born approximation. 
We write down I (skIt+( Ek) I sk') 12 in this approximation, 
neglecting the corrections to the spin-independent term: 

I (skjt+ (e,) I sk') I'= rp'( lk- k'l) 

+ 4n'e'z'v ln(1/sin1jJ/2) (slcr[kk'Jis> 
x'V'E,k' sin'ljl · ' 

(11) 

where ¢ is the angle between the vectors k and k'. We 
note that the term responsible for the asymmetric scat
tering has the same structure as the analogous term in 
quasirelativistic theory. (aJ 

The corrections to the scattering matrix element due 
to the Bloch amplitudes were taken into account by a 
number of authors, [9 ' 101 but they, unlike us, were inter
ested in corrections to symmetrical scattering and 
therefore confined themselves to the Born approximation. 

2. KINETIC EQUATION, ANOMALOUS HALL 
CONDUCTIVITY 

We assume that the time TE of the photoelectron en
ergy relaxation is much shorter than the photoelectron 
lifetime Tn, and the spin relaxation time Ts is compa
rable with Tn. Then stationary illumination of the semi
conductor with polarized light establishes in the conduc
tion band a uniform electron-energy distribution with a 
temperature equal to the lattice temperature T, total 
concentration n, and degree of polarization a. The de
gree of polarization is calculated in detail in [4 , 51 • 

Assume that a weak electric fi.eld E is applied to the 
semiconductor. Then the density j of the electric current 
can be represented in the form 

j = j' + j' = crE + cr, [Es] Is. (12) 

correction for the spin-orbit interaction in the quasi- We shall call the quantity as the anomalous Hall conduc
relativistic electron-scattering theory, with the electron tivity. The anomalous Hall current j 1 is due to the spin-
mass replaced by the effective mass m* and mc2 by orbit interaction (9). 
Eg jy, and with the sign of the entire expression reversed. The total-current density j is determined by the ex-
This term can be formally obtained in the effective-mass pression j = - eV-1 Tr pv, where p is the density matrix 
approximation by adding to the initial Hamiltonian and v the electron-velocity operator. In the representa

tion of the Bloch functions IJ!ks = eik·ruks 
- fl'v -H, =---. -" cr[V<D(r-r;),p]. 

4m'E, 
(9) 

The additional term H1 has the structure of the Hamilto
nian of the spin-orbit interaction of the electron with the 
scattering center, except that the coupling constant is 
larger here than the ordinary one by several orders of 

*[kk'] = k X k'. 

- I I Ge> ftk 
<sk 1 v 1 s k > = -~-6 ... 6 ••. = -6,.6 ••. 

nok m• 
(13) 

(Ek is defined by (6)). Consequently, in calculating the 
current density we need only the diagonal density-matrix 
elements Psk sk = fsk· 

We obtain 'the distribution function fsk by solving the 
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kinetic equation in the approximation linear in the spin
orbit interaction. At low impurity concentration N, the 
kinetic equation in [UJ 

(14) 

Using (11), we rewrite the kinetic equation as follows: 

(15) 

where 

W.~. = 2: NV<p'( lk- k'l )b(e•- e••) (1- b ••. ), 

, Bn'e'z'Ny . , [( . 'iJ} -•] w .•..•. = Vnx'E,k' sm- 'iJ ln sm2 (16) 

X (s lu[kk'JI s)b(e•- e>') (1- bn.). 

In the case of a weak electric field, the distribution func
tion fsk can be sought in the form 

00 0 ' 00 { ( 8• - b• ) } _, t •• = f,, + f,• + f,., f,, = exp -T- + 1 , (17) 

where f~k is the equilibrium electron distribution func
tion, f~k and f~k are corrections proportional to the elec
tric field, and the chemical potentials ~s are expressed 
in terms of the conduction-electron concentration n and 
the degree of their polarization a from the relations 

n = -. - 1- J J J Ut~ + !(~ ) d'k, 
(2n)' 

a = - 1- JJJ u;: - t1:) d'k. 
(2n) n 3 

(18) 

From (15) we obtain the following equations for the de
termination of f~k and f~k 

(19) 

'\" ' 0 '\" 0 ' - ~ w .•..•. J •• • = ~ w ••. J .... (20) 
kl kl 

Solving (19) in the approximation of the relaxation 
time T(k), we get 

where 
1 n'x'k' 

't' ( k) = - ----::-:-::---:-
2n Ne'z'm'A 

(21) 

(22) 

is the usual time of momentum relaxation on charged 
impurities (A in (22) is the Coulomb logarithm). A for
mal solution of (20) is 

(23) .. 
Using (13) and (23) we obtain for the anomalous Hall cur
rent 

., en ~k"{(W')-'} W ' f ' J = - -- ku,k 1 ak.',sk ak 
Vm' 

k",k',k (24) 
en '\" ' 

=- Vm' ~F •. w .•...• f •• ', 
k,tk 

where the function Fk' is determined from the equation 

k =~F •. w.: •. (25) .. 
Solving this equation, we get 

F.= -kr(k). (26) 

Substituting (26) and (21) in (24) we obtain for j1 the ex
pressions 

e'n' ()j 00 

··=- ""k'W I '(k)(Ek)-'"J Vm•Z~ Bkt,sk'f aek • 
k,k' 

(27) 

Integrating with respect to d~' and with respect to the 
angles in the integration with respect to d~, we obtain 

•! :n; e'.z'Nnv s~,i ' ( ) a Ut•"- fl•") 
l =---- ,e·c e de 

3 x'hE,m' 0 De (28) 

X [~ 1eUt•" + fi, 00 )de r [E:] . 

The integration with respect to E can be easily carried 
out in the following limiting cases: 

a) nondegenerate semiconductors 

., 35 xT'v n 1 [Es] 
J =-----a--

4ct E,zh N A' s ' 

b) strongly degenerate semiconductors 

. n e'z'nNyr'(~o) (1+a)'1•-(1-a)'l, [Es] 
Jt = ---·--·----------, 

2 x'hE.m'1;,0 2 s 

(29) 

(30) 

where ~0 is the chemical potential corresponding to the 
total electron concentration n and to zero degree of po
larization (a "' 0), y is defined in (8), and T(~0) 
= T(V'2m*~0 /ti) is defined in (22). 

The foregoing analysis can be easily generalized to 
the case when a temperature different from the lattice 
temperature is established in electron system by sta
tionary illumination of the semiconductor with polarized 
light. 

3. SPIN RELAXATION TIME IN SCATTERING BY 
CHARGED IMPURITIES 

Using expression (7) for the scattering matrix element, 
we can write an equation for the density matrix in the 
case of scattering by charged impurities with allowance 
for spin-flip processes that appear "in second order in 
the spin-orbit interaction." To calculate the relaxation 
time Ts of the z-projection of the spin (this time is des
ignated T 1 in the review [121 ) we can confine ourselves 
only to diagonal elements of the density matrix fsk. for 
which the Overhauser kinetic equation holds. [131 Since 
the literature contains only order-of-magnitude estimates 
of Ts for III-V semiconductors, and furthermore for a low 
degree of polarization, [141 we present the exact expres
sions: 

a) for nondegenerate semiconductors 

~= v n v'e'z'yT NA ; 
T, 2 x'Ejym' 

(31) 
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b) for degenerate semiconductors 

1 _, (3n )''•y'e'z'hn'I•NA (1+a)'1•-(1-a)'1• 
-=3'•-

T, 8 x'E,'m" a 
(32) 

It is interesting to compare the spin relaxation time 
T s with the time ( T) in terms of which the electron mo
bility 1J is determined in the case of scattering by charged 
impurities (IJ = e ( T) /m *), and which can be determined 
from experiments on the measurement of mobility at low 
temperatures: 

a) in the case of nondegenerate semiconductors 

(33) 

b) in the case of degenerate semiconductors 

32 ( E, )' a 
T,=s y~. (1+a)''•-(1-a)''• (T). 

(34} 

4. DISCUSSION OF RESULTS 

The predicted anomalous Hall effect can be observed, 
for example, in the following experiment: circularly po
larized light is incident normally to the surface of a 
semiconductor in the z direction. A current of density 
j 0 flows in the x direction under the influence of an ap
plied electric field E. Then an electric field I E1 I 
= asa-2 lt I should appear in they direction, and the sign 
of the field should be determined by the polarization of 
the electrons and by the sign of the charge of the impur
ity centers, so that the most suitable material for the 
observations are semiconductors in which impurities of 
definite sign predominate. We present the value of the 
Hall angle for such semiconductors in the case when the 
electron mobility is determined by scattering from 
charged impurities: 

a) for nondegenerate semiconductors 

b) for degenerate semiconductors 

~= 12 e'zvi~y ~ (1+al''·-(1-a)''• 

a xhAyE, E, 2 

- ,(~(1+a)''•-(1-a)'1• 
=)"2A f . E, 2 

(36} 

The values of A for InSb and GaAs are ArnSb R:< 2 x 10-2 

and AGaAs R=< 10-2• The degree of polarization in optical 
excitation was estimated in [4' 5l and can vary in a wide 
range (up to 50%). It is clear from the derivations that 
even when the degree of electron polarization in the sam
ple is of the order of 10-2 the Hall angle is as faR:< 10-4-
10-5. 

At low temperatures, when the electron momentum 
scattering is from charged impurities, the spin relaxa
tion time Ts can be estimated from formulas (33} and 

(34}. The obtained values are in good agreement with the 
experimental data. [3' 15l For example, for InSb with con
centration n = 1015 em -3 and 1J "'" 105 em 2 /V -sec we have 
Ts "'" 2 x 10-9 sec at T ::>. 20°K, when degeneracy sets in. 

The effect of asymmetrical scattering can be obtained 
also with another experimental procedure. For example, 
in the case of uneven illumination of the sample, if the 
resultant electron-diffusion flux is not collinear with the 
light-incidence direction, an emf should be induced in a 
direction perpendicular to the plane of the light and dif
fusion flux. An analogous effect should appear also under 
conditions of uneven heating of the electrons. 

All these effects are analogous in a certain sense to 
the well-known anomalous Hall and Nernst effects in 
ferro- and paramagnets. We note that the large value 
of the spin-orbit interaction, which must be introduced 
here for a quantitative description of the effects, have 
not been obtained theoretically as yet (see, for example, 
[16, 17]). 

In conclusion, the authors thank M. I. D'yakonov and 
V. I. Perel' for a number of valuable remarks. 
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