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A theory of combined resonance on band carriers in semiconductors is developed for conditions when the spin relaxation time 
Ts of the carriers appreciably exceeds their momentum relaxation timeT. It is shown that under these conditions the electric 
dipole absorption spectrum, corresponding to pure spin transitions, generally must consist of two bands which are superimposed 
on each other. One of these bands has a width T- 1, and its intensity is determined by the average value of the square of the 
matrix element of the velocity operator, which causes the spin transitions. The second band has a width Ts\ and its intensity 
is determined by the square of the average value of this matrix element. The value of this average essentially depends on the 
specific form of the spin-orbit terms in the dispersion law of the current carriers. Examples are indicated when the integrated 
intensity of the narrow band must be several orders of magnitude smaller than the integrated intensity of the wide band. 

From an analysis of the experimental data it is concluded that the effect of the impurities on the combined resonance does 
not reduce to a change of its spectral distribution, and impurities may introduce a substantial contribution to the integrated 
intensity of the resonance. In this connection we investigate the mechanism, due to the influence of random Coulomb fields 
on the donor centers, of combined resonance with impurity electrons in a many-valley compensated semiconductor. According 
to the obtained estimates, the combined resonance should dominate over the paramagnetic resonance for the parameters of 
germanium, starting with concentrations on the order of 1015 cm-3• 

1. INTRODUCTION 

ALL of the articles on combined resonance of band 
<;arriers in semiconductors (that is, electric dipole 
transitions accompanied by a change of the spin 
statefll), in which the authors achieved a clear under­
standing of the mechanism for excitation of the reso­
nance and carried out successfully a comparison of 
theory with experiment, pertain to the case wr >> 1, 
where w is the absorption frequency and T is the usual 
relaxation time of the carriers. 

However, a strong inequality TS >> T exists in many 
semiconductors, where TS denotes the spin relaxation 
time. Therefore, the situation when WTS ~ 1 whereas 
wT $ 1 is quite possible. Bell's experiments {21 inn­
InSb may serve as an example; so far there is no ex­
planation of his experiments, < 

It is obvious that when wr ~ 1 all of the bands cor­
responding to a simultaneous change of the orbital and 
spin quantum numbers possess a large width ~ T- 1• 

Therefore, they can scarcely be distinguished against 
the background of the considerably more powerful cy­
clotron absorption. The situation is more complicated 
for the band associated with a pure spin transition. In 
the present article it is shown that for TS » T this 
band must consist of a narrow band with a width ~ Ts1 
and broad wings of width ~T- 1 , For the reasons indi­
cated above, apparently only the narrow part of the 
spin band can be observed when wT $ 1; we shall 
henceforth call it the spin line. The total intensity of 
the spin band for crystals of different symmetry was 
calculated earlier in a number of articles; a formula 
is derived below for the intensity of the spin line. 

An analysis of the experimental data has led us to 
the conclusion that in certain conditions the influence 
of the impurity centers on the combined resonance does 
not reduce to a scattering of the carriers; by changing 
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the energy spectrum of the system, the impurity cen­
ters lead to the emergence of new mechanisms for 
combined resonance. As a specific example, a new 
mechanism is investigated for the excitation of com­
bined resonance with large-radius donor centers in 
many-valley semiconductors, this mechanism being 
due to the Coulomb interaction of the impurities. One 
can propose that the combined resonance in compen­
sated n-Ge, which was observed in[3l, is caused by 
this mechanism. 

2. INFLUENCE OF CARRIER SCATTERING ON THE 
INTENSITY OF COMBINED RESONANCE 

We start with a very large difference between the 
two relaxation times, TS ~ T, Since the contour of the 
spin line is formed during a time of the order of its 
reciprocal half-width, that is, of the order of Ts\ it is 
clear that during the time of a spin transition the elec­
tron is able to undergo a large number of collisions 
( TS/T >> 1), which change its momentum but not its 
spin. In what follows we shall call such collisions mo­
mentum collisions. In the theory of paramagnetic reso­
nance, momentum collisions lead to the well-known 
effect of kinematic narrowing.[ 4 l However, under the 
conditions for combined resonance the electron momen­
tum k influences not only the electron's g-factor but 
also generally the matrix element of the spin transi­
tion, Therefore, momentum scattering may substan­
tially change the intensity of the spin line. 

We consider nondegenerate bands. We write the 
Hamiltonian of the system without scattering in the 
form 

A e A 

:K5 = :K5,(k)+ g(SH)---;;-(v(k)A(t) ), 

A 

where k is the momentum operator in the magnetic 

(1) 
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field H, A(t) is the vector potential of the electromag­
netic wave, and 

'\'1 - ( S, = S+, S_, S,; v, = v_, v+, v,;) 
v = ~ S,v,(k) S± = z-'h(S, ±iS,) (2) 

is the velocity operator; the z axis is directed along 
H. For simplicity we have assumed the g-factor to be 
isotropic and to be independent of K:, because this 
hardly changes the results. The eigenstates of the 
Hamiltonian (1) for A = 0 are classified according to 
the coordinate and spin quantum numbers, and so long 
as rs >> r it is appropriate to divide the collision in­
tegral into two parts corresponding to momentum and 
spin collisions (W and Ws). We represent the density­
matrix correction ph which is linear in A, in the form 

P• = P•' + p,S; P• = (p_, P+, p,). 

Then in the interaction representation with respect to 
& 0 , the equation for p 1 has the form 

ip, ~ 
-+ ig[(SH), p.]+ W(p,)+ W8 (p,) =- [v(t)A(t),po], at c 

(3) 

As usual it is assumed that the electron has a charac-
' -1 /"''J /"''J 

teristic energy €char >> r ; Wand Ws denote the 
linearized collision integrals. 

Inside the spin line for the component P- (for g > 0) 
the sum of the first two terms in (3) is of the order of 
( Ws - w )p_ ~ P- rs\ where ws = gH; the last term is 
of the same order of magnitude. The third term for 
P- of general form is of the order of p_T- 1 and exceeds 
the remaining terms by a factor TS I r » 1. Therefore, 
in the lowest-order approximation one should seek p1 
from the condition W(p1) = 0. 

It is not difficult to find the general form of the 
solution of the equation W(p) = 0. First, p should be 
diagonal with respect to the configurationaJ quantum 
numbers since the momentum collisions lead the sys­
tem into 'equilibrium with respect to these degrees of 
freedom. Since the momentum collisions still do not 
change the spin, it follows that in a basis in which p is 
diagonal with respect to the spin quantum numbers, its 
components are Fermi functions f with arbitrary 
chemical potentials. If p is close to po, then the bases 
in which they are diagonal are similar. Therefore p 
can be transformed into a basis in which po is diagonal 
by making an infinitesimal rotation. Confining our­
selves to the lowest-order terms in p - po (that is, to 
the terms linear in the angle of rotation and in the 
changes of the chemical potentials), we obtain 

( 
(1'J,-1'))i/,(e;;11) y(/(e,-1'))-/(e,-1')))) 

p(e)- Po(e) = . i/(e, -11) 
y'(/(e,-1'))-f(e,-1'))) (l)z-1')) in 

(4) 

Here € is the kinetic energy of the electrons, € 1,2( €) 
= € ± ws I 2 denote the total energies of electrons with 
different spin orientations, T/1,2 denote their Fermi 

quasilevels, 1J is the equilibrium chemical potential, 
and I' is a complex parameter characterizing the rota­
tion of the basis. From conservation of the number of 
electrons it follows that 11 1 + 1]2 = 21J. This same matrix 
can be written in the form 

Since both functions p and po cancel W, the differ­
ence p -,eo= p 1 calculated here cancels the linearized 
integral W(p1) = 0. 

The matrix element P- is needed in order to calcu­
late the intensity of transitions with spin reorientation. 
The energy dependence of this matrix element is deter­
mined by formula (4); it remains to calculate the mag­
nitude of the coefficient y. For this purpose we calcu­
late the trace of Eq. (3) with respect to all configura­
tional quantum numbers. In this connection the term W, 
as a term which preserves the number of particles with 
a given spin, is cancelled irrespective of the form of 
p 1, and in the remaining terms, having the same order 
of magnitude, it is necessary to substitute the approxi­
mate expression for P- from (4) or (5). After evaluat­
ing the trace, the term Ws reduces to a constant which 
is multiplied by y; thus the spin relaxation time rs 
arises in a natural way. Finally we obtain 

iy y ie - + iw 8 y +- = --=.(v_) A(t); 
it Ts c)'2 

(v ) = Sp{v-[f(e, -1'))- /(e, -1'))]} . 
- Sp{/(e,-1'))-/(e,-11)} (6) 

In Eq. (6) the quantity ( v_) does not depend on t since 
it only contains elements diagonal in the configura­
tional quantum numbers. Calculating the current with 
the aid of the result found for the density matrix, we 
find the following expression for the conductivity ten-
sor: 

e' (v+)m (v_),(n,- n,) 
O'aJ= w i(cos-w)+'t's 1 

(7) 

where n1 2 denote the concentrations of electrons with 
different 'spins. Formula (7) represents a Lorentz curve 
with a small width ~rs1 · The fundamental characteris­
tics of this formula is that it contains the averages of 
the matrix elements of the velocity (but not the averages 
of their squares, as happens in the case of weak scat­
tering). It is natural that in many cases such averages 
must vanish, and then there should be no narrow band 
in the combined resonance spectrum. At this point a 
basic difference appears in the effect of kinematic 
averaging on paramagnetic resonance and on combined 
resonance. In paramagnetic absorption the matrix ele­
ment of the transition essentially does not depend on 
the configurational quantum numbers, and therefore 
kinematic averaging leads only to a narrowing of the 
band. Conversely, in combined resonance the transi­
tion matrix element as a rule depends significantly on 
the configurational quantum numbers, and therefore 
kinematic averaging may abruptly reduce the intensity 
of the spin line. Several examples will be considered 
in the following section. 

Let us emphasize that the scattering does not change 
the total intensity of the spin transitions; it is always 
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determined by the mean-squared velocity-matrix ele­
ments. However, this absorption consists of two 
mutually superimposed bands with widths ~r1 and 
T"ff. When wr >> 1 both the broad band and the narrow 
line in its background can be observed. When wT :5 1 
the broad band should be lost in the background of cy­
clotron absorption, and only the narrow line, whose 
intensity is determined by formula (7) for arbitrary 
values of wT, can be observed. Formula (7) was de­
rived under the usual limitation tcharT >> 1. However, 
there is no reason to doubt that in a model in which the 
influence of the impurities reduces to scattering of the 
carriers the basic result obtained above should re­
main in force even under more general conditions, 
namely, the matrix elements of the velocity operator, 
averaged over k-space in the appropriate manner, 
must enter in the intensity of the combined resonance, 

3. RESONANCE IN CRYSTALS OF DIFFERENT 
SYMMETRIES. DISCUSSION OF THE EXPERI­
MENTAL DATA 

As is clear from formula (7), a spin line should be 
present in the combined resonance spectrum if ( V±) 
¢ 0. The dependence of v on k is determined by the 
symmetry of the crystal and by the mechanism for the 
excitation of the combined resonance. 

Two cases are possible when v does not depend on 
kat all. First, the spin-orbit coupling may be realized 
by dispersion-law terms linear in k, as happens, for 
example, in crystals of the wurtzite type,l51 Second, it 
may be accomplished by similar terms in the g-factor, 
as for example in n-Si.[ 6J It is obvious that here the 
entire intensity is concentrated in the narrow line; 
this case was considered in f71• 

For the Hamiltonians of the spin-orbit interaction 
of higher-order in k, two cases are possible. For the 
Hamiltonians of even order, the velocity is odd in k, 
and therefore averaging yields ( V±) = 0; consequently 
the spin line is absent from the spectrum. As an ex­
ample, terms ~k4 due to nonparabolicity may appear 
in the Hamiltonian of the electrons in InSb. They 
should only lead to absorption with a width ~r-\ its 
magnitude was estimated inr 6 • 1 • 9 l, For the Hamiltonians 
of odd order, the velocity is even in k, and the result 
of its averaging depends on the specific symmetry and 
on the magnitude of the magnetic field. 

Let us consider, as an example, the effect of the 
cubic terms arising in the Hamiltonian of an electron 
in InSb because of the absence of an inversion center. 
Using the matrix elements of the velocity for a pure 
spin transition (seef 10l, formulas (31) and (32)), it is 
not difficult to verify that 

(v±) ~ (kx' + ky'- 2k,' +f. -2 ), (8) 

where ;\. is the magnetic length. In the quasiclassical 
limit when tchar >>we (we denotes the cyclotron 
frequency), the leading terms in (8), which are of the 
order of tchar, cancel out. As a result the matrix 
element is reduced by a factor wc/tchar « 1. There­
fore, almost all of the absorption is concentrated in 
the broad band. For tchar ~ we the absorption intensi­
ties in the spin band and in the line are comparable. 

According toPoJ the angular dependence of the 

velocity matrix elements does not depend on the con­
figurational quantum numbers. Therefore the a verag­
ing associated with the scattering should not have any 
influence on the angular dependence of the intensity of 
the resonance (the line of reasoning cited above is 
valid for tcharT ::?> 11> ). We recall that strong angular 
dependences of the intensity were obtained in poJ. 

The spin transition in the combined resonance spec­
trum has been experimentally observed in the UHF[ 2J 
and infraredruJ bands, In the second case the condition 
wr :>> 1 was satisfied. Below we shall be interested in 
the results on UHF absorption, when this criterion was 
roughly violated, as is evident from the curve of the 
cyclotron resonance presented in[2l, 

Bell r2J reported the observation of a spin electric 
dipole line, in which the absorption had the following 
properties: 1) it was isotropic and 2) the same for 
right-hand and left-hand polarizations of the UHF field, 
Since under the conditions of his experiments the Fermi 
energy is 7J ~ We, the very presence of a spin line due 
to the cubic terms in the dispersion law does not con­
tradict the results obtained above. However, in the 
remainder of the picture, the absorption differs from 
the theoretical prediction, in that the intensity should 
be anisotropic and different in the cases of right-hand 
and left-hand polarizations. 

In discussing the possible reasons for this disagree­
ment, it is necessary first to emphasize that Bell's 
experiments were performed under the conditions 
rJT 'S 1; formula (8) therefore is not valid, Its extrapo­
lation into this region can be carried out only in the 
sense of taking account of the purely "scattering" ef­
fect of the impurities. In actual fact, however, the re­
arrangement of the energy spectrum, which was not 
taken into ac::ount above, 2> becomes important when 
1jT ~ 1. 

Estimates of the absolute intensity of the resonance 
also lead to difficulties. From the absorption curve 
given in f21 it follows that the oscillation strength of the 
spin line is large and amounts to 10-4 to 10-3 of the 
oscillator strength of the cyclotron resonance. The 
theoretical value of the intensity is determined by the 
coefficient 50 associated with the cubic terms.P0l A 
rough estimate based on Kane's model gives o0 !:::J 200 
atomic units; poJ according to experimental data 50 

"" 50 atomic units.ruJ Neither value explains such a 
high intensity of the combined resonance, 

The above difficulties in explaining the absolute 
magnitude of the intensity and its angular dependence 
force us to assume that in strongly doped crystals the 
impurities play an essentially different role in the 
combined resonance. Their influence does not reduce 
to carrier scattering that leads to a broadening of the 
levels and an averaging of the transition matrix ele-

1llt was proposed earlierl2•1l that strong scattering may smooth out the 
angular dependence of the resonance. From what has been said above, it 
follows that this does not occur when E,h., r> I. When Echar T -I it is already 
impossible to neglect the influence of the scatterers on the energy spec­
trum, and therefore the formulation of the problem itself must be changed 
(see below). 

2>Jn this connection let us emphasize that it is important to carry out 
new, more detailed experiments, in particular under the conditions 
w,r:S I, but with EcharT> I. 
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ments. By causing a rearrangement of the energy spec­
trum of the system, they lead to the appearance of new 
mechanisms for the combined resonance and, conse­
quently, to a new contribution to the oscillator strength 
of the combined resonance, which in certain cases 
turns out to be predominant. 

It is not difficult to indicate in principle several 
mechanisms whereby the impurities contribute to the 
intensity of the combined resonance. For example, 
according to Blount, P2 l the impurity potential V( r) 
generates an additional term in the velocity (the ano­
malous velocity); in n-InSb it has the structure v =a 
x grad V. Further, the impurity centers create a 
deformation which in turn leads to the appearance of 
terms linear in k in the dispersion law of the elec­
trons in InSb[ 13l, and so forth. However, we shall not 
discuss this question in more detail. 

Interesting experimental data was recently obtained 
about the influence of the impurity concentration on the 
intensity of the combined resonance with impurities. 
Gershenzon, Pevin, and Fogel'son[3 l showed that in 
compensated samples of Ge doped with As and P, a 
combined resonance band appears in which the inte­
grated intensity considerably exceeds the intensity of 
the paramagnetic resonance. 

The very observation of the combined resonance 
with donors in Ge is of interest for the following 
reasons. Combined resonance with band electrons in 
Ge phould be caused by the dependence of the g-factor 
on k, and according to estimates/ sJ its intensity 
should be small (on the order of the intensity of the 
paramagnetic resonance). According to[ 14l the binding 
of the carriers to the donors should sharply reduce the 
intensity of the combined resonance, provided the 
mechanism for its excitation remains unchanged. The 
contribution to the intensity of the combined resonance 
with large-radius donors in Ge was estimated inP5l, 
this contribution being due to the absence of an inver­
sion center in the point group; this intensity turned out 
to be lower than the intensity of the paramagn"etic 
resonance. Therefore, according to the theoretical 
data, one would expect a low intensity of combined 
resonance with donors in Ge, and the results off3l were 
a definite surprise. 

At the same time the experimental data of[ 3J clearly 
indicate that the high intensity of the combined reso­
nance is a consequence of the interaction of the impurity 
centers, most likely Coulomb interaction. We shall 
demonstrate below that such an effect actually should 
arise in many-valley crystals. 3 > According to the 
models which have been developed thus far, a multi­
valley structure does not have any influence on the in­
tensity of the combined resonance of the band electrons 
and the electrons of isolated donor centers. We there­
fore encounter here a definite example of the switching­
on of a new mechanism for combined resonance with 
increased degree of doping. The corresponding calcula­
tions are contained in the following section. 

3>There is a certain analogy between the role of a many-valley structure 
in the problem under consideration and in the theory of spin relaxationY 61 

4. INFLUENCE OF ELECTRIC FIELDS ON THE 
COMBINED RESONANCE OF THE DONOR 
ELECTRONS 

In partially compensated samples the neutral donor 
centers are located in the field of the positive (ionized) 
donors and negative acceptors. In the simplest ap­
proximation, neglecting the correlations in the arrange­
ment of the centers and assuming that the average dis­
tance between them appreciably exceeds the radius aB 
of the donor center, one can assume the field to be 
homogeneous within the limits of the center. 

Neglecting the interaction of the valleys the Hamil­
tonian of an electron belonging to the n-th valley is 
given by 

{9) 

Here l and a denote the Coulomb and spin quantum 
numbers. Assuming in what follows that the valley­
orbital splitting 1:J.. is small in comparison with the 
Coulomb energy EB, we take it into account only in 
the lowest level l = 0. Changing from valley functions 
to functions that diagonalize the total Hamiltonian at 
H = E = 0 (the corresponding quantum number is N, 
and the transformation coefficients are CNn), we 
obtain 

The lowest level--an orbital singlet--is denoted by 
N = 1. For what follows it is convenient, assuming the 
last two terms in (10) to be a small perturbation, to 
construct the spin Hamiltonian OJ8S for this level. 
Carrying out the calculations in third-order perturba­
tion theory and selecting the leading terms in the 
parameter a/EB, we obtain 

2[11:•, ~ ~ des= g(SH) +- - (HgnS) (EpnE) 
L'. v' 

(11) 

where ll denotes the number of valleys, 

n ~ (d~)un(d,)un 1 
P~• = "8, e,-(e,- L'.)' g = T(g,, + 2g_c), {12) 

g 11 and g1 denote the principal values of the tensor 
gn, and ( da )zz' are the matrix elements of the dipole 
moment. 

The summations over the valleys appearing in Eq. 
(11) can be calculated for specific band structures. 
For example, for Ge 

~s = g(SH)+ 9: (gil- g_c) (p 11 - P.L) [(HE) (ES)- I:H~E~'S~], (13) 
a 

where the subscript a labels the Cartesian coordinates 
in the principal axes of the crystal; Pll and Pl denote 
the principal values of the tensor pn. 

The dependence of the spin frequency on E follows 
immediately from (13): 

ffis (E)= ffis{ 1 + 9~ g 11 ~ g_c (PII- P.c),1J, [(HE)'-~ Ha'E~']} .(14) 
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The operator d . E describing the interaction of the 
electron with the high-frequency field and responsible 
for the combined resonance is immediately obtained 
from (13): 

:f6s<nt = Ed:f6s/dE = EKS = ~(gu- g_j_) (p,,- h) [ (EH) (ES) 
9~ 

+(HE) (ES)- 2~ E.E.H.s.]. 

" 
The conductivity tensor calculated for a single 

center is expressed in terms of the tensor K intro­
duced here: 

(15) 

a.~(w, E)= ~K.+K,_w th (~) 1\(w- Wa(E)). (16) 
1 2T 

Ka± = 2-112 (Kax ± iKay), where x and y denote the 
coordinates in the system in which the direction of H 
is chosen as the z axis. 

Expression (16) must be averaged over all positions 
of the impurities. It is convenient to find first the dis­
tribution function for the fields E acting on the spin 

eR 
E(R)=- R:. (17) 

Here Q is the volume of the sample, and E(Ri) is the 
field created by the i-th charged impurity. Represent­
ing the 0-function in the form 

and noting that the factors pertaining to individual im­
purities are averaged independently, we obtain 

•'•(E) = J~exp{ikE- nJ d'r(1- eikE(•I)} = - 1-rn (!_) 
"' (2n)' 2n'E 'E " E ' 

. 0 0 (18) 

where n denotes the concentration of the charged im­
purities. The function r.p of dimensionless argument is 
defined by the formula 

cp(x) = J ksin(kx)exp(- k'h)dk, (19) 

and the characteristic field E0 , determined by the im­
purity concentration, is given by 

Eo= 4ne(n/30)'1'. 

For x « 1 we have r.p (x) ~ x, and for x :>:> 1 

(jJ (x) :=:::: 15f2n/16x'l'. 

(20) 

Thus, averaging formula (16) over the positions of 
the impurities reduces to multiplication by 1/1( E) and 
integration with respect to d3E. Let us introduce the 
unit, vectors e, e, and h directed respectively along 
E, E, and H, and let us express the angular depend­
ences in formula (16) with their aid. Changing to the 
dimensionless integration variable x = E/E 0 , with (18) 
taken into account, we obtain from (16) the following 
formula for the conductivity tensor: 

o.,(w)= a 0 J x'<p(x)dx J dQ,(M._MH)· (21) 

X ( w- Ws- w8ax2 [ (eh)'-~ e.'h.']), 

" 
where the following notation has been introduced: 

2Eo.2fl2 2 2 (J) 

Oo=~(g,,-g_j_) (Pu-h) wth2f; (22) 

4 gll-g_L 
a = M--g-(p,,-h); M., = h.e, +(he- 2h.e,) 11.,. 

As w ·- ws the conductivity aa {3 diverges logarith­
mically; here the decisive contribution arises from 
these orientations of the field E for which the fre­
quency shift cancels out (see formula (14)). For large 
values of I w - ws I it decreases like I w - ws l-31 \ that 
is, the curve has slowly decaying wings, and the area 
under these wings diverges. The characteristic curve 
width at which the logarithmic law is replaced by a 
power law is of the order of I w - ws I ~ a ws; the 
curve width estimated from experiments should be of 
this order of magnitude. According to formula (14), the 
frequency shift aw corresponds to a perturbing field 
E ~ E0 • The criterion for the applicability of perturba­
tion theory with respect to the field Eo, 

(eanEo) 2 / ~E.~ 1 

is equivalent to the condition a « 1. Therefore 
1 w- ws « ws. 

The absorption curve depends significantly on the 
orientation of H. When H is directed along a fourfold 
axis, the expression inside the square bracket in (14) 
cancels out and the absorption curve becomes a 0-
function. Since upon averaging over the orientations 
of E this bracket cancels out for any arbitrary orienta­
tion of H, there is no reason to expect any appreciable 
asymmetry of the band relative to the unbiased fre­
quency ws. 

A formula analogous to (21) can also be written down 
for the paramagnetic resonance spectrum, that is, the 
absorption spectrum under the conditions of magnetic 
excitation. 41 It differs from (21) primarily in that 
r.p ( x) is preceded by x rather than x3 • As a result the 
decrease of the absorption is much faster, like 
I w - ws l-71 \ that is, the spectrum is narrowed down. 

Rough estimates of the intensity, carried out as 
applied to the parameters of Ge according to formula 
(21) at E ~ E0 , indicate that at 10 10 Hz the combined 
resonance must dominate over the paramagnetic 
resonance beginning with charged-impurity concentra­
tions ~10 15 cm-3 • This estimate, and also the general 
shape of the spectrum, do not contradict the experi­
mental data of[3J. With regard to the narrow paramag­
netic resonance bands which are preserved in[3l 
against the background of the combined resonance band, 
they must correspond to centers which are located at 
points where E is small. 
, We thank G. E. Pikus, M. S. Fogel'sen, and G. M. 
Eliashberg for helpful discussions. 

41The broadening of the paramagnetic resonan~e band of small-radius 
centers, due to the Coulomb interaction of the impurities, was investigated 
inl171 . 
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