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The interaction of electrons with ionized impurities in thin quantizing layers is considered. The thickness of the layer is assumed 
to be smaller than the effective Bohr radius in the bulk sample. The donor activation energy is determined, and it is shown 
that it may appreciably exceed its bulk value. The possibility of the formation of quasi-stationary states is demonstrated. The 
temperature dependence of the mobility, which also differs substantially from the temperature dependence in the case of a bulk 
sample, is calculated. Qualitative agreement with experiment is noted. 

WE consider the interaction of the electrons with 
ionized impurities in very thin quantizing layers. The 
thickness of the layer, a, is assumed to be small in 
comparison with the Bohr radius 3.o of a donor in a 
bulk sample. At the present time such films of Bi, I~ 
and InAsr 1J have been prepared; in addition the ques­
tion may involve near-surface conducting layers in a 
semiconductor under conditions of the field-effect type 
(for example, an inversion channel). In this case the 
thickness of the layer may reach a value between 30 and 
40 A. As will become clear from the following, it is 
necessary to distinguish between two cases: double lay­
ers and triple layers. An inversion channel or a film on 
a substrate whose dielectric constant E: having an iden­
tical value can serve as an example of the first case. 
The triple-layer case occurs for a film on a substrate 
with a different value of E:. 

Let us begin with the first case. The potential energy 
of the interaction between an electron and a donor lo­
cated at the point (0, 0, Zn) is given by 

U= _!:__[ 1 + s,-e, 1 ] 
s, l'p'+(z-z,)' s1 +e2 yp'+(z+z,)' · 

Here the cylindrical coordinate system p, qJ, z has been 
introduced; the z axis is directed perpendicular to the 
layer; E:1 and E2 denote, respectively, the dielectric 
constants of the semiconductor and of the medium ad­
joining it. As will be shown below, the distances which 
are characteristic for the Coulomb problem in the ~lane 
of the film are of the order of 3.o = l'i2(E:l + E:2)/2m*e , 
where m* is the effective mass of the electron. By hy­
pothesis the characteristic values of z and z0 are of 
the order of a, that is, much smaller than (E:l + E: 2)/2e2 
(we have set ti = m* = 1). Therefore, in the first ap­
proximation one can set U0 = -~I p, where ~ 
= 2e2/(E:l + E:2). The remaining part of the potential is 
given by 

V=e'[ 2 - 1 
(s,+e,)p e,l'p'+(z-z,)' 

8t-8a 

e,(e, + e,))'p' +(z + z,)' 

and it is substantially different from zero only in the 
region p .Sa<< 3-o· Solving the Schrodinger equation 
containing the potential U0 (p), we find the energy levels 
corresponding to bound states of the electron: 

e' 
E,~=ro,- 2 (n+'f,)'' s=1,2, ... ; n=0,1,2, ... , (1) 

where w s are the quantum levels of the transverse mo­
tion, and n is the principal quantum number of the two­
dimensional Coulomb problem. The wave functions of 
these states are given by 

eiml!p 

IJ.' .. m = C.mq>,(Z)-=-(2k.p) lmle-•.•F(- n +I ml, 2Im I+ 1, 2k.p), 
l'2n 

Here m=O,±L .. ±n. 

k.' = y2(ro,- E,.), 
C = 2k. 1/ (n+lml)! 

nm 2jmp f (2lml+1)(n-jmi)! 

(/Js(z) is the normalized function describing the trans­
verse motion: fi ({Js(z) 12 dz = 1, and F is the confluent 
hypergeometric function. 

Thus, at the bottom of each sub-band Ws, energy lev­
els of the electron appear which (in the approximation 
under consideration) correspond to localized states. The 
characteristic dimension of the bolUld state in the plane 
of the film is of the order of (n + %)e-2>> a. The multi­
plicity of the degeneracy of the n:-th level is equal to 
2n + 1. Taking the perturbation V( p, z) into accolUlt 
leads to a shift and a splitting of the levels which have 
been folUld, 

In addition, all of the levels with s > 1 lie in the 
background of the continuous spectrum associated with 
the lower sub-bands, and therefore the perturbation 
V(p, z) also leads to their smearing-out. The corre­
sponding transitions are analogous to the predissocia­
tion of diatomic molecules and are related to the ma­
trix elements of V( p, z) which are off-diagonal with 
respect to sr2 J (see the figure). However, in contrast 
to predissociation, the motion with respect to the co-
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ordinate p has a quantum nature, and it is not quasi­
classical in nature. Since no crossing or pseudo-cross­
ingof the terms occurs in the situation under consider­
ation, one can calculate the width of the level by using 
perturbation theory. 

Let us calculate the probability for decay of the state 
with s = 2 and n = 0 (the ground Coulomb level of the 
second sub-band). The wave function of the initial state 
has the form l/li =..f211Tko exp {-k0 p} cp2(z). In the final 
state the particle is described by the axially symmetric 
(since the perturbation does not depend on the angle cp) 
wave function l/Jf, corresponding to the same energy 
w2 + Ea, but referring to the first sub-band: 

1jl1 =e-..,F('f,- t= ,1,2ixp)q>,(z). 

Here K =..../2(w 2- w1 + E20} ~ 1/a and l/Jf is normalized 
to a 0-function of energy. In evaluating the matrix ele­
ment Vif of the transition, we shall utilize the smallness 1 

of the parameter ~/K and the property that V differs 
substantially from zero only for small p(p ~a), when 
one can replace l/Ji.(p) by its value for p = 0. As are­
sult we obtain the following expression for the decay 
probability per unit time: 

4n'e'k,' r .. =--I ((e, + e,)e-•1•-•,1 
X 2es2 

+(e,- e,)e-•1<+•,1),1'. 
(3} 

The angular brackets denote taking the matrix element 
with respect to the functions CfJs(z). In the case of a 
surface donor center (z0 = 0), one obtains the following 
result in the model of a rectangular potential well: 

112 snz r3n ( 2 2 

q>,(z)= v-asin-;z-, x=-a-· r .. = an) e'lk,a)'. (4) 

Thus, the ratio of the levelwidth r 20 to the distance be­
tween the levels, E20 - E21 , is given by (e 2a/rr )2 

~ (a/aa)2 << 1. 
Now let us determine the shift and splitting of the 

Coulomb levels, ~Enm· It is a priori clear that the in­
fluence of the perturbation V(p, z) on the levels with 
m * 0 will be less important than on the levels with 
m = 0, because the wave functions of the bound states 
tend to zero as p- 0 if m * 0. In first-order pertur­
bation theory we find 

dE - k.' e'l(z) .. l" 
••m- 2 lml(m'-'f,)' m =I= 0. (5) 

Formula (5) again refers to a surface donor at z0 = 0, 
but the order of magnitude of the splitting, ~Enm 
~ k~(a/aa)2 , remains for any value of z0 between 0 and 
a. 

The levels with m = 0 are shifted by an amount which 
is of first-order of smallness in the parameter a/aa: 
~Esno = 4e2 k~(z)ss. One can determine the position of 
the ground level of the donor with a great deal of accu­
racy if one utilizes a straightforward variational method. 
Choosing the trial function in the form CfJs(z)e->..P, we 
obtain 

E,(J..) = w, + 1..'/2- 4e'J..'( 1/ 2nz[H,(2J..z) -N1(2/..z)]- z) 11 , 

where H and N denote the Struve and Neumann func­
tions, respectively. Let us minimize Es(>..), assuming 
that 2Az < 2>..a << 1. As a result we find 

E ... ~:::~ w,- 2e' I (1 + Se'(z) .. ) == w,- 6(a). (6) 

Formula (6) for s = 1 gives the distance of the donor 
level from the bottom of the conduction band, which was 
shifted upward by an amount w 1 as a consequence of the 
quantization of the transverse motion. In other words, 
the quantity O(a) for s = 1 is the donor activation en­
ergy in a thin film. It is interesting to note that this 
quantity may substantially exceed the activation energy 
of the same donor in a bulk sample. For example, for 
InSb we have m* = 0.014 me, E 1 = 17; assuming € 2 = 1, 
a= 150 A., and CfJs =...f'iTa sin (JTZ/a), we obtain 

6(a) = 2l'(1 + 4ae') -• :::::-; 37° K. 

The bulk value Oy of the activation energy amounts to 
7°K. 

The increase of the donor's activation energy with 
a reduction of the film thickness should lead to a de­
crease in the carrier concentration (at a fixed tem­
ature). If the density of acceptors and holes is neg­
lected, then the number of carriers in ann-type film in 
the region exp ( -0/T) << rrN/T « exp (0/T) is given by 
.JNT/rr exp (- 0/2T), where N denotes the total number of 
donors per unit surface area of the film. For a bulk 
sample, the corresponding expression is proportional 
to T314 exp {-0/2T} (see, for example, C31 ). A second 
consequence of the increased value of O(a) in compari­
son with 0y is the possibility of lifting the degeneracy 
of the electrons (for fixed values of the temperature and 
donor concentration) upon changing from thick films to 
thin ones. In addition to the reduction in the radius of 
the bound state, which is proportional to [ O(a)r1 / 2 , the 
point is that for thin layers the criterion for overlap of 
the electron orbits may turn out to be more stringent 
than for the case of a bulk sample. This criterion has 
the form max (nsa;, nya.ag) > 1, where ns and ny de­
note the surface and volume concentrations, respective­
ly, of donors in the layer; the quantity N introduced 
above is given by: N = ns +any. However, in the case 
of a bulk sample it is necessary to require ny~ > 1, 
which can be satisfied for smaller values of ny. 

As was shown above, charged impurities in thin 
films possess quasi-stationary energy levels, a fact 
related to the small probability of a transition between 
sub-bands upon scattering of an electron by an impurity 
center. These levels can be observed either spectro­
scopically or else by their influence on electron scatter­
ing in which resonances appear. The absorption spec­
trum of light obliquely incident on the film and polarized 
in the plane of incidence should contain lines corre­
sponding to the transitions Esnm- Es'nm• For exam­
ple, the probability for the transition 100- 200, that is, 
between the ground levels of the first and second sub­
bands, is given by 

(7) 

where r 20 is defined in (4), ~ = E200 - E 100 , w denotes 
the frequency of the light, and Ez denotes the z-compo­
nent of the electric field of the wave. The quantity W12 

should be compared with the probability Wi for ioniza­
tion of the level E 100 by light of the same frequency 
(i.e., with the intensity of the background on which the 
narrow absorption line is superimposed). Elementary 
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calculations lead to the formula 

w. = 2n'k,'e'.!f.'j(z) 11 j' 
' (ro- 6)' 

One obtains the following results for the above indicated 
values of the parameters for InSb films: the resonance 
frequency w = t!. ::>J 4 X 1014 sec-1 , the line width r 20 

::>J 3 x 1011 sec -l, and the ratio of the absorption inten­
sity at the center of the line to the background intensity 
W12 /Wi ::>J 1.5 x 104 • Of course, for the exis~ence of ~he 
described states it is necessary that the orbits of neigh­
boring donors should not overlap, that is, one must have 
ns~, nya~ < 1. We note that upon filfillment of this 
condition the electrons remain nondegenerate at any 
temperature. 

As to the resonance scattering by quasidiscrete lev­
els, this only changes the kinetic characteristics of the 
film to a small degree. In fact, a resonance in the scat­
tering leads to the result that the phase 1J (E) in the 
asymptotic form of the wave function reaches a value of 
the order of unity. Ther!3fore, the scattering amplitude, 
containing the factor (e2 I1J- 1), increases by a factor 
1/17 (E) in comparison with the case when no resonance 
is p~esent (170 << 1 is the phase of the potential scatter­
ing). It is easy to verify that in the energy range corre­
sponding to the resonances, Es00 < E < w s, the phase 
of the potential scattering is of the order of e"l !IE 
~ a/aa; therefore the scattering cross section a(E) in­
creases by (a0/a)2 times. The electron's mobility is 
determined by the integral J a(E)-1 exp (-E/T) dE. 
Since the width of the resonance region is not larger 
than e', the influence of the resonance scattering is ex­
ponentially small for T << a -2 , and for T .Z a - 2 its rel­
ative contribution is of the order of e4/T ~ e4a2 << 1. 
(In the case of a degenerate system the kinetic charac­
teristics would strongly depend on the position of the 
Fermi level relative to the quasi-stationary levels, and 
the scattering resonances would play an essential role. 
However, the degeneracy is related to the overlapping 
of the orbits and is therefore incompatible with the ex­
istence of quasi-stationary states.) 

We shall now consider the scattering of electrons by 
charged centers without taking the resonances into ac­
count and, for the time being, neglecting the perturba­
tion V(p, z). The question is, therefore, the derivation 
of the two-dimensional analog of Rutherford's formula. 
The problem can be solved exactly by introducing two­
dimensional parabolic coordinates: ~ = p + x, TJ = p- x. 
The variables ~ and 17 vary from 0 to oo, the infinitesi­
mal element of length is given by dl 
= :Y, ...; (1 + 11 I~ )de + (1 + U 17 )d17 2 , and the area element 
is ~ ven by dS = [ ( ~ + 17 )/ 4 fi,1i ] d~ dTJ. The Schrodinger 
equation containing the potential - e2/ p has the form 

2 [- 8 ( -81jl) -8 (-81jl)] '2e' (8) - s + 11 16-ar l1sar + 111 a; 111 a; - s +'I] 1jl = E1jl. 

It is necessary to find the solution of Eq. (8) which has 
the form of a plane wave for negative values of x and 
for large values of p 

1jl ~ e"'" for -oo < x < 0, p-+ oo, k == y2E, 

or in terms of the coordinates ~ and 1J : 

ik 
'¢ ~ exp~(s- 'IJ) for 11-+ oo and for all!;. 

2 

The coordinates ~ and 17 detennine only the absolute 
value of the Cartesian coordinate y: y = ,[[i). This dif­
ficulty, however, is unimportant since the Hamiltonian 
is even with respect to y, and the wave function that de­
scribes the scattering also possesses obvious symme­
try with respect to the x axis. 

The following is completely analogous to the deriva­
tion of the "three-dimensional" Rutherford formula 
(see r 2 l), Separating the variables in Eq. (8), we find 
the exact solution of the Schrodinger equation describ­
ing the scattering: 

1Jl = 1 exp{ ne' }r(~-~) exp{ i!:_(s- 'IJ)} · 
l'n 2k 2 k 2 

ie' 1 
.p (--;.;-· 2' ikT] ). (9) 

The signs in Eq. (9) correspond to an attraction field. 
Let us define the scattering amplitude f(cp) in the two­
dimensional case according to the asymptotic expres­
sion for the wave function: 

(10) 

From Eq. (9) we obtain 

1 ·-· e-'•"r ( 2 - T) exp{2i(e'/k)lnjsin cpf21} 

f(rp) = l'2kr(ie'/k) jsincp/21 
(11) 

The two-dimensional analog of the scattering cross 
section lf(cp)l 2 determines the flux of particles scat­
tered at the angle cp: 

e' ne' dcp 
d ( ) -jj(m) j'dm =--th----. 

CJ rp - "' .,. 2m'v' hv sin' cp/2 (12) 

Formula (12) is written down in terms of the usual 
units; v = :llk/m* denotes the particle's velocity. In 
contrast to the "three-dimensional" formula, the 
"two-dimensional" Rutherford formula explicitly con­
tains the quantum constant, as is clear from expres­
sion (12). It is obvious that the classical, quantum, and 
Born expressions for da(cp) do not coincide. The Born 
approximation corresponds to the case e2/liv << 1. In 
this connection the resulting formula 

da ne' 2 ql 
d; = 2m•nv' cosec 2 

was utilized in article r4 l, where the case of a strongly 
degenerate electron-impurity system was treated. As 
is well known, the criterion for strong degeneracy of a 
system with a Coulomb interaction coincides with the 
condition for the applicability of the Born approxima­
tion to the scattering. The opposite limiting case, 
e2/tiv >> 1, corresponds to the applicability of the 
quasiclassical approximation to the Coulomb field. Ac­
tually, in this case formula (12) gives 

da e2 
2 <p 

-=--cosec .....-,, 
dcp 2m'v2 2 

which agrees with the result of classical mechanics. 
The momentum relaxation time T, determining the 
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mobility of the electrons, is expressed in terms of the 
transport scattering cross section: 

1 s 2ne'(ns + anv) ne' 
-=(ns+anv)v (1-cosq>)da= th-li-. {13} ,.. m•v v 

Thus, in contrast to the three-dimensional case, the 
transport cross section turns out to be finite even with­
out taking the screening of the Coulomb field into ac­
count (this property was already indicated in [ 4l). We 
note that for a nondegenerate gas the reciprocal screen­
ing radius is equal to 2rre 2c/T, where c denotes the 
number of electrons per unit surface area of the film 
(see [4 J ). In the problem under consideration, this 
quantity is always substantially smaller than the mo­
mentum l1k ~ m * e2 /li which is characteristic of the 
scattering, that is, it is not necessary to take screening 
into account. 

Let us estimate the corrections to formula {12) which 
are related to the perturbation V( p, z). The wave func­
tions of the zero-order approximation have the form 
IJ!k( p, z) = (/Js(z) exp { ik · p} F{ie 2/k, %, i(kp - k · p)). In 
calculating the matrix elements Vkk' of the perturba­
tion for momenta k, k' ~ e 2 one can take IJ!k outside of 
the integral over dp at the point p = 0, since V(p, z) is 
appreciably different from zero only in the region 
p ..S a. After doing this, one can easily verify that the 
correction to 1J!k has a relative order of magnitude a/a0 

and does not exert any substantial influence on the scat­
tering amplitude. 

Let us calculate the temperature dependence of the 
mobility !J.(T) in scattering by charged impurities. 
Averaging formula {13) over the velocities, we obtain 

f.I(T) =-e-(t(T)), 
m* 

(t(T)) ./~ l -yrM(nYe2·1i~T·), ne ns + anv (14) 

where 

M(z)=J e-"'cth?x'dx. 
0 

At low temperatures (T << m* e 4/li2 } fJ.{T) ~ IT, and at 
high temperatures (T >> m* e 4/li2 } fJ.(T) ~ T. Thus, in 
films which are thinner than the Bohr radius, the tem­
perature behavior of the impurity mobility is substan­
tially different from the bulk case ( fJ. y{T) ~ T 312). 

Now let us consider the triple-layer problem. Let E1 

as before denote the dielectric constant of the semicon­
ductor, and let E2 and E3 pertain to the dielectrics ad­
jacent to it. By solving Poisson's equation with the ap­
propriate boundary conditions, one can calculate the 
potential created by the impurity center (see [s, 6l). In 
the general case, however, this expression is very cum­
bersome. We shall consider the situation in which E1 

>> E2 , E3 , and we shall be interested in the region of 
distances from the center which are substantially 
larger than the film's thickness; the Fourier component 
of the potential with respect to the coordinates x and y 
is given by 

Uo(k, z, Zo);::::: -4:rte' / [e,ka' + (e, + e,)k]. {15} 

The case when E2 or E3 are of the same order of mag­
nitude as E1 is not of theoretical interest, since then 

U0 {k} C::J -4rre2/(E 2 + E3)k, that is, the problem reduces to 
the one already considered. 

From formula {15) it follows that two ranges of val­
ues of p exist, in which the electron's potential energy 
depends on the distance in different ways. In the region 
a << p << E1a/(E 2 + E3) we have 

2e' ( 2e,a ) 
Uo(p)=-~ ln ( -C, 

ae, Bz + e,)p 

where C is Euler's constant. However, if p 
>> aE/(E2 + E3}, then Coulomb's law is obtained, U0 {p) 
=- 2e2/p(E 2 + E3). The exact solution of the Schri:i­
dinger equation with the potential {15} is not known. 
Calculations according to the variational method with a 
trial function e->..p lead to the following result for the 
activation energy o of the ground donor level. In the 
case 16ae2Ej(E 2 + E3 ) 2 = p << 1 the logarithmic region 
in U0 {p) is unimportant and the already-known formulas 
are obtained; in these formulas, however, it is neces­
sary to replace e2 by 2e2/(E 2 + E3 ) (that is, by a larger 
quantity): o = 8e4/(E 2 + E3 ) 2 • In the opposite limit, p>> 1, 
we find 

e' 
6(a) =-;;;-<In 2p- 3) == 6,(ln 2p- 3). (16) 

In the intermediate region p ~ 1, several values of 
o were obtained by numerical methods: o(p = 1) 
= 0.6 60 , o(p = 2) = 0.8 60 • The quantity ae2 is also 
bounded from above by the condition 2ae2 << E1 , which 
means that small distances p ~a are unimportant in 
the formation of a bound state. For a = 150 ~. E1 = 17, 
E2 = 1, E3 = 5, and m* = 0.014 me, one obtains p C::J 33, 
2ae2/E 1 ~ 0.5, and o C::J 68°K. 

Thus, in this case the donor's activation energy is 
increased by an order of magnitude in comparison with 
the bulk sample. In this connection, we note that in ex­
periments [7 l with InSb films, an abrupt decrease in the 
concentration of electrons was observed upon a reduc­
tion of the thickness to the range a ~ 200 ~. We also 
mention the transition from a degenerate electron gas 
to a nondegenerate gas in that same range of thick­
nesses. This is in agreement with the theory discussed 
in the present article. Just like in the double-layer 
case, the existence of quasi-stationary levels near the 
higher sub-bands can be observed in the absorption of 
light. 

Finally, let us discuss the kinetic characteristics of 
the three-layer system. In view of the absence of an ex­
act solution to the scattering problem, let us analyze 
the different limiting cases. For small energies of the 
particle, E << (E 2 + E3 )2/(aE 1 ) 2 , only the asymptotic 
(Coulomb} region of the potential is important. In this 
case we have to deal with scattering in a Coulomb field 
which is distorted over small distances, where the de 
Broglie wavelength of the electron is much larger than 
the dimensions of the region of distortion. Such a prob­
lem can be solved exactly in the asymptotic limit (see, 
for example, [2 J, Sec. 136}. The corrections to the 
purely Coulomb scattering cross section have a relative 
order of magnitude E{E 2 + E3 )2/e4 , that is, in the indi­
cated energy range these corrections are unimportant 
and formula {12) is obtained in its quasiclassical limit 
{it is only necessary to replace e2 by 2e2/(E 2 + E3)). 
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Thus, in the temperature range T << (e2 + e3) 2/(ae1 ) 2 

the mobility depends on the temperature according to 
the law f..L "'IT. The Born approximation is applicable 
for energies E >> e4/(e2 + e 3}2 • In this case the relaxa­
tion time is given by 

,;(k) = (e,+e,)e,ak'/8rre'(ns+anv). 

Hence it is seen that for T >> e4/(e 2 + e3) 2 the tempera­
ture dependence of the mobility is described by the bulk 
law f..L "' T3 f.!; however, the coefficient of proportionality 
depends on the thickness of the film. 
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