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The theory of cyclotron echo in semiconductors is considered. In contrast to a gaseous plasma for which a classical treatment 
is valid, quantization of electron motion in a magnetic field is important in solids. It is found that the dipole interaction of 
the electrons with the alternating-field pulses leads to the formation of an echo signal only if nonlinear processes entailing 
doubling of the variable field frequency occur in the matter or two-quantum transition are involved in the excitation process. 
A combination of dipole and quadrupole interactions or pure quadrupole interaction also leads to echo formation. The instants 
of appearance and the intensities of the signals are found. The effect of electron-impurity interaction on the echo signals is 
taken into account. In the adiabatic approximation, the interaction between pulses II and III is switched off on formation of 
a stimulated echo and hence the signal may be comparable in order of magnitude with the usual two-pulse echo. 

CYCLOTRON echo was first observed in a weakly
ionized plasma of inert gases and nitrogen. [ lJ The sig
nal intensities of both the two-pulse and three-pulse 
echos admitted of wide-range variation of both the par
ameters of the microwave excitation pulses (pulse du
ration ~tY' where y = 2 and y = 3 for two- and three
pulse echoes respectively; the intervals between pulses 
namely T between the first and second pulses and T 1 

between the first and third pulses, T 1 >> T; the pulse 
intensities) and the plasma parameters (temperature, 
electron concentration llo• pressure, etc.). The main 
mechanisms of echo production, depending on the ex
perimental conditions, can be[ 2 l (i) the velocity
dependent electron relaxation due to collisions with 
ions or atoms (molecules), (ii) nonlinear interaction 
with pulses, and (iii) dependence of the cyclotron fre
quency in the amplitude. This phenomenon was treated 
quantum-mechanically earlier in C3 l. 

We investigate here the possibility of observing cy
clotron induction and echo in semiconductors. It is ob
vious that the experimental conditions in gases and 
semiconductors are essentially different. In particular, 
even in a cold plasma the average electron energy is of 
the order of an electron volt, and consequently in a 
magnetic field corresponding to w c = eH/mc 
"" lOJo Hz [ lJ the Landau levels with N "" 105 are popu
lated. In semiconductors, on the other hand, it is easy 
to attain the ultraquantum conditions nw c >> kBt (for 
nondegenerate electrons) or n w c >> t (for a degenerate 
semiconductor, where t is the Fermi level), when only 
the lower Landau level with N = 0 is populated. It is 
clear that whereas for gases one can treat the electron 
motion classically, in solids the Landau quantization is 
essential. Furthermore, owing to the non-parabolicity 
of the conduction band, the Landau levels may become 
non-equidistant. 

Cyclotron induction and echo signals can yield con
siderable information concerning electron-impurity, 
electron-phonon, and other interactions. 

The system Hamiltonian in a magnetic field H 11 z is 
given by 

de= J 'IJ+(r) (de,+ U(r))'IJ(r)dr, 

de,= n.'/2m, :11 =p-eA/c. (1) 

The function U(r) is the potential for scattering by im
purities: 

Nl 

U(r) = .E u(r- R.) (2) 
k=t 

(Rk is the radius-vector of the k-th impurity,and NI is 
the number of impurities in the sample). We assume a 
temperature low enough to neglect electron-phonon in
teraction. 

We choose the vector-potential of the external mag
netic field in the form A = (0, Hx, 0). Then the eigen
values and the wave functions of the unperturbed Hamil
tonian 

de,= n.'/2m = liw,(a+a + '/,) + n.,'/2m (3) 

are respectively 

e, = liw,(N + '/2 ) + p,'/2m, (3a) 
ljJ,(x, y, z)= L-'qJN(x- X)exp{i(p,zfi·'- Xyl-')} (3b) 

In these formulas a+ and a are the Bose creation and 
annihilation operators, f,ON(X) is the harmonic-oscillator 
wave function, l = (nc/eH)1/ 2 is the radius of the zeroth 
Landau orbit, X is the coordinate of the center of the 
electron cyclotron orbit, J-L = (N, Pz, X) is the set of 
quantum numbers characterizing the state, and L is the 
dimension of the sample along the x axi's. (The symbols 
+ and * will henceforth denote Hermitian and complex 
conjugation, respectively.) 

We express the electron coordinates in the (x, y) 
plane perpendicular to H in terms of the coordinates 
(X, Y) of the cyclotron orbit and the relative coordinates 
(~, ry) of the cyclotron motion:[ 4 J 

CJty i 
X=x-1;, Y=y-'r]; 1;=-=-=_l(a-a+), 

ell rz 
en.. 1 (4) TJ = --= --=.l(a+a+). 
ell l'2 

Further, following Miyake,C 5 J we expand U(r) in powers 
of the relative coordinates and take into account terms 
up to second order inclusive. The Hamiltonian of the 
system is then written in the form 

de= de, +:Je', de,= liw,(a+a + '/,) + p,'/2m + U(X, Y, z), 
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<M' = <M~+ <M~onad <M~ = (l'/2)U+-(a+a + '/,), 

.16'~onacF (il/y2) (U+a- U_a+)-(l'/4) (U __ a+> + U++a'). (5) 

We have introduced here the following abbreviated no
tation: 

U±= U.± iU,, U+- = U .. + U,., U±±= U .. ± 2iU.,- U,,. 

We proceed to consider the interaction of the system 
with an alternating field. Assume that the system is 
acted upon by two coherent pulses of an alternating 
electric field of durations .6t1 and .6t2 with an interval 
T between pulses. The operator of the interaction of the 
electric dipole (p) and quadrupole (Q) moments of the 
system, induced by the external magnetic field, with the 
field E = E0 cos (wt- ky), is given (in the occupation 
number representation) by 

""'dip -Ep ~ ''N+ 1( • + '•'+ + -'•') (6a) O't;l1 - 0 0~ F· 'VIl CN CN+1e 'V).LCN+iCNe , 

+ a.c;+'cNe-'"'). (6b) 
The quantities Po and ~ depend on the magnetic field 
intensity H; v and a are complex numbers with unity 
modulus, and w is the frequency of the alternating field. 
As a result of the action of the first pulse, the system 
of multipoles goes over into the superradiating state. 
Owing to the inhomogeneity of the magnetic or the local 
internal fields, the coherent multipoles go rapidly out 
of phase (it is assumed that the time of this reversible 
relaxation is much shorter than the time of relaxation 
on the impurities). The field inhomogeneity is charac
terized by the parameter .6w = We- wc0 , where Wco 
is the average cyclotron frequency for the system. Con
sequently, the Hamiltonian of the reversible relaxation 
is 

~. = l:Moo,(N + 'f,)cN+cN, L\oo, = L\oo(X, Y,z). (7) 

If the system is subjected to a second pulse, then at 
a time T after this pulse the system of multipoles will 
radiate an echo signal. We note that the influence of the 
relaxation during the time of action of the pulses is 
neglected in the calculations. 

The calculations show that if the interaction of the 
pulses with the sample is only of the dipole type, then 
signals of the induction type are possible and there are 
no echo signals. On the other hand, if the interaction is 
of the quadrupole type or if one pulse is dipole and the 
other is quadrupole, then signal echoes are also pro
duced. Cases are possible, however, when an echo sig
nal can appear after application of two pulses of anal
ternating field with equal carrier frequency w c• This 
may occur, first, in substances which are effectively 
capable of doubling the pulse carrier frequency. Second, 
this can happen in two-quantum excitations of the sys
tem by an interaction of the dipole type. The operator 
of such an interaction is of the form (6b), where 
I gradE I Q0 has been replaced by E0p0 • The value of 
Poe in two-quantum excitation is of the order of 
Po(PoE0 /tiwc) or P0 (p0E0 /ti.6wc), where .6Wc is the 
homogeneous line width. If k1 is the wave vector of the 
field, then af.J. depends on the effective wave vector ko 
= 2k1. On the other hand, if the excitation is by two al
ternating fields with k 1 and (-kd, we get ke = 0. Pos
sible variants of the occurrence of induction and echo 
signals for the case of three pulses are listed in the 
table. 

The first column indicates the types of interaction of 
the coherent external field with matter. The first group 
of lines corresponds to the case when the external-field 
pulses interact only with the electric quadrupole moment 
of the system. The second, third, and fourth groups of 

Coherent Responses 
For quadrupole moment --------~--------~Fo-r~di-po~le-m-om-e-nt ______ __ 

Type of ioteraction Instanto~ I Instant of Wave I appearan Wave vector Response amplitude appearance vector Response amplitude 

I. All pulses quadrupole. - 0 k, I (a+ a+ '/z) sh 46, 
"f ko i (a+ a+ 1/z) sh 46z ch 46, 

2-c 2k,-k, i (a+ a+ 1/z) sh 461sh' 26o 
"fl ka I (a+ a + 1/z) sh 46s ch 46, ch 49o 

"•+-r ka+ks-k,. (i/2) (a+ a +'Ia) sh 481 sh 46, sh 48a 
2-r.-2-c k,.-2ko-2ks t (a+ a+ 1/a) sh 48,·sh3 28o sh' 26a 
2n--c 2ka-ks t (a+ a+ 1/o) sh 48z sh' 29a ch 46, 

2-rt 2ks-k,. I (a+ a+ 1/o) sh 46, sh' 288 ch' 26a 

2. First pulse dipole, second 0 2kt -6,• 0 kt te, 
and third quadrupole. "f ks i [(a+a + 1/1) sh 46o + e,• sh 48o) 2-r ks-1<,. e.sh 26a 

2-r 2ka-2kt e.• sh1 26o 2-r,-2-r k•-ks+ks !81 sh 28o sh 20s 
-r, ks i [(a+a + i/z) ch 48z + lh' ch1 28o) sh 46a 2-r, ka-kl e, sh 26a ch 28o 

"ft+-r ka+ko-21<,. (1/o) e.• sb 46o sh 46a 
2-r,-2-r 2k,.-2ko+ 2ka - e,• sh' 28ash' 28, 
2-r.--r 2ka-ks t [(a+ a+ 1/o) + e,•]sh 46a sh' 28a 

2-r, { 
2ka- 2kt e,• sh1 26a ch' 26o 

ka te,• sh' 28o sh 49a 

3. First pulse dipole, rust and 0 k, i (a+ a+ '/•) sh 46, I "f ks i6o 
third quadrupole. "f 2kz -e..J• 2-r,--r ks-ko Bosh 26o 

"fl ka i (a ... a+ 1/o) sh 46a ch 48, 
2-rt-"f 2ks-2ks 6o'sh1 26a 

2-r, { 
2ko-kl I (a+ a+ 1/o) sh 46, sh1 26o 

ks t6o1 sh 46a 

4. Third pulse dipole, rust I 0 k, i (a+ a + 1/o) sh 46t 

I 
-r, ka i!la 

and second quadrupole. 

I 
"f ka t (a ... a + 1/o) sh 48z ch 481 
2-r 2ko-kl (a ... a + 1/o) sh 46, sh1 29a 
"ft 2ks -ea• I 
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lines correspond to excitation of the system via differ
ent combinations of the dipole and quadrupole action. 
The second, third, and fourth columns contain param
eters that pertain to excitation of the superradiating 
state of a system of electric quadrupole moments. The 
last columns indicate the corresponding parameters for 
a system of electric dipole moments. The third and 
sixth columns indicate the wave vectors relative to 
which the system turned out to be in the superradiating 
state as a result of the action of the external-field 
pulses. The last column (response amplitude) contains 
the diagonal terms in the expressions for the dipole 
moment p•(t) =a•(t) and quadrupole moment Q•(t) 
=[a+ (t)] 2 (see below). The following notation is used: 
if an alternating-field pulse interacts with a dipole mo
ment, then IJy = n -1 E0p0 ~ty; for action on a quadrupole 
moment we have IJy = n-11 grad E I~ ~ty. 

Let us make a few remarks concerning the depend
ence of the echo signals on the direction of the wave 
vector of the exciting pulses. When all the pulses are 
of the quadrupole type, a response at the instant of time 
2 T is possible only if k1 II k2 , since the lengths of the 
vectors k, k1, and k2 are equal. If the first pulses of 
the dipole type, an echo from either the dipole or the 
quadrupole moment is likewise possible after two pulses, 
provided that k1llk2 ( lk2l = 21k1l ). As seen from the 
table, when the first or second pulse is of the quadru
pole type, then two quadrupole-echo signals are pro
duced at the instant of time 2T1. One of them is possi
ble when k3 II k1, the other at any orientation of ks, and 
both responses merge when k3 II k1. 

We note that from the point of view of the theory the 
presence or absence of echo signals is connected with 
the fact [3 l that the dipole-interaction operator gives 
rise to a resolvable Lie algebra, and the quadrupole
interaction operator to a nonresolvable algebra. As 
seen from the table, some induction and echo signals 
due to certain alternating field signals depend strongly 
on the values of the preceding pulses which do not gen
erate the signals directly. For example, the intensity 
of the induction signal from the quadrupole moment of 
the system at t = T, when all the pulses are of the quad
rupole type, depend on the value of the first pulse like 
cosh2 41J1. The echo signal from the quadrupole moment 
at t = 2 T1 , due to the first and third pulses of the quad
rupole type, depends on the second pulse like cosh4 21J2, 
etc. Thus, the echo-signal intensities can be increased 
by the action of the preceding pulses. We note that in 
case 1, when all the pulses are of the quadrupole type, 
the times of appearance of the signals and the corre
sponding wave vectors coincide exactly with the analo
gous results obtained for the spin operators. [a l As to 
the response amplitudes, they are obtained from the 
corresponding results for the spins by replacing the 
trigonometric functions by hyperbolic. This is the con
sequence of the fact that the operators a• 2, a2, and a•a 
form a Lie algebra of three terms, as do the spin opera
tors s., S_, and Sz. The commutation rules for these 
algebras differ only in the signs of the corresponding 
commutators, which is indeed the reason for the ap
pearance of the hyperbolic functions in place of the 
trigonometric ones. In the cases 2-4, when the system 
is excited by a combination of pulses of the dipole and 
quadrupole type, the response of the system no longer 

duplicates the results of this type for the spin opera
tors. 

It is seen from the table that certain responses do 
not depend on the initial population of the energy levels. 
They recall the buildup of a classical oscillator under 
the influence of a driving force, and can therefore be 
called macroscopic quantum signals. Other signals, on 
the other hand, contain also parts which depend on the 
initial degree of excitation of the system, as is indeed 
the case upon excitation of ordinary spin-echo signals. 

The intensity of the response signal is determined 
by the formula 

J(t) = J,(k)Sp(F•(t)F(t)p,}, F(t) = [.P(t)]-'F.P(t), (8) 

where F is the operator of the observable quantity; for 
the dipole and quadrupole moments of the system we 
have respectively 

(9a) 

(9b) 

The evolution operator L = L (t) is determined by for
mulas (5)-(7), and the equilibrium density matrix is 

Po= [Sp exp {-~(de,-~,)}]-' exp{- ~(de,- sN,)}, 

~ = 1/'ksT, (10) 

where N1 is the particle-number operator and where 
we neglect the electron-impurity interaction. fo(k) in 
(8) is the intensity of radiation of one multipole in the 
direction of the vector k. 

Let us examine in greater detail the quadrupole
moment response for the case when all pulses are of 
the quadrupole type. The evolution operator for a two
pulse echo is 

.P (I)= exp(- ili-'de,t) exp{- iii-' t [de' (t') + de,(t') ]dt'} 

x exp(- ili-'M,J'e,(t) )exp {- ili-'J [de' (t') + de,(t') ]dt'} 
0 

x exp (- iii-' M,de, ( t)), 

de (t) = exp ( i!i-'de,t) de exp ( -ili-'de,t). ( 11) 

Writing all the operators in the occupation-number rep
resentation and performing all the bounding for (9b), we 
obtain for the echo signal 

J(t) = J,(k)sh' 26,{ sh' 26, L, (N + 2) (N + 1)fNH(1- {N) . 
+ sh' 481 L, (N + '/,) fN~.a.,a,;' (exp{- ill>w} )(exp{i<I>,}) 

.. 
x (exp {ill>, •. } )(exp{- ill>, •• } )exp{- i2(t- 2't) ~ro.·}. (12) 

Here IJy =li-1 [grad El~~ty, fN is the Fermi distri
bution for the state (N, pz, X), and the coefficients ay 
and {3 are given by 

~11 = ~ 0 eH.:R11, a'l'u. = ao.,eiki'R).t, I aov I = I ~o I= 1, 

R. = r ·- r,. =(X, Y, z). (13) 
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The quantities (exp { ± iiP12}) are correlation fundions 
that characterize the attenuation of the signal as a re
sult of relaxation by the impurities; the angle brackets 
denote averaging over the impurities. As shown by 
Miyake, [s 3 for the case r c <<a (rc ~ l is the dimen
sion of the cyclotron orbit, a is the action radius of the 
impurity), the influence of H honad in H' can be neg
lected compared with Had· We then have 

(exp {± i<D._}) = ( exp{ ± iJII,(X, Y,z)dt}) , 
0 

( exp { ± i<D,.}) = ( exp{ ± i J 1\,(X, Y, z)dt}) (14) . 
Here 

Nx 

1\,(X, Y, z) = r,ll,;(X, Y, z) = l'U•+-• 
,_, 

the index t denotes the time dependence resulting from 
the noncommutitivity of H 0 and Had· Assuming that 
the modulation of the cyclotron frequency by the impuri
ties is a Poisson process, we obtain in the approxima
tion of the impact theory ( T >> td, where td is the 
characteristic time of modulation or the collision time) -

(e'"'••> = exp [nd v, I 't J2nb db {exp ia( b, v,)- 1} J 
0 

-
a,(v,)= Jznbdb[i-cosa(b,v,)], 

0 

-
a,(v,)= Jznbdblv,lsina(b,v,), a(b,v,)= Jll,(t)dt. 

0 

(15) 

(16) 

ni is the impurity concentration, b is the impact pa
rameter, and Vz is the electron velocity along the mag
netic field. 

It is seen from (12) that the intensity of the signal is 
maximal in the direction k = 2k2- k1. To calculate this 
intensity, let us consider the case of the ultraquantum 
limit fiwc >> s (or kJ3T), when only the level N = 0 is 
populated: 

l(t = 2-r) = /,(k)nsh'26,[2ch'28, + 1/ 4 sh'48 1 

+ 1/.(n-1)sh'48,exp {-4n,-rlv.la,(v,)}]. (17) 

If we introduce the time of electron-impurity relaxation 
T 2I, then the expression for the coherent response be
comes 

100J[t = 2,;) = 1/.I,(k)n(n- 1}sh'48,sh'2S,e-"iT,,, 

Tu=1/n 1 lv,la1• (18) 

We have calculated also the intensities of the echo 
signals after three pulses. Without giving the concrete 
calculations, we note only the following singularity of 
the stimulated-echo signal that appears at the instant of 
T1 + T ( T1 >> T). It turns out that the impurity relaxa
tion in the adiabatic approximation act effectively only 
during the time from zero to T and from T 1 to T 1 + T, 

and does not act in the interval between the second and 
third pulses (during the time T 1- T). One can therefore 
expect the intensity of the stimulated echo to be of the 
same order as that of a two-pulse echo. 

An analogous calculation of the two-pulse echo of the 
dipole moment of the system, when the first pulse is of 
the dipole type, yields 

I(t) = I,(k)sh'2e,{ L, (N + 1)/N(i- IN+•>+ e,'LJN 
" " 

+ 8.' L,tJ, exp[i(k + k,- k,) (R,.- R,) ]exp[i(~w.- ~w,) (t- 2T)] 
f.i:;i::V 

(19) 

The correlation functions have the same form as before, 
with the exception of the fact that the quantities if? are 
now half as large. As seei1 from (19), the coherent sig
nal does not depend on the temperature and for 
k = k2- k1 <lk2l = 2lk11) itis equal to 

[00h(t = 2-r) = /,(k)sh'28,8,'n(n -1) exp {-4t / T'u}. (20) 

Let us discuss the possibility of experimentally ob
serving the phenomenon in question. To detect the sig
nal it is necessary to satisfy the following conditions: 
t.ty<< T~ < T, T1 < T2; T~ and T2 are the times of 
reversible and irreversible relaxation, respectively. 
The main difficulty is raised by the smallness of the 
relaxation time T2 of the electron pulse. To increase 
it is necessary to work at sufficiently low temperatures, 
so as to suppress the electron-phonon relaxation and to 
attain high purity of the samples. The use of strong 
magnetic fields should also lead to a lengthening of the 
relaxation time, since the nonadiabatic relaxation be
comes ineffective in this case. With increasing mag
netic fields, the localization of the carriers increases 
and the drift (diffusion) of the carriers decreases in 
both the longitudinal [ 4l and the transverse direction. 
As a result of the drift, the electrons fall into other lo
cal fields, which also leads to a loss of the phase mem
ory and to a shortening of T2. It was found in a recent 
paper (7J that in the infrared region of the spectrum of 
cyclotron resonance in n-InSb, the line becomes much 
narrower with increasing magnetic field intensity. 

In conclusion we present estimates of the signals of 
dipole and quadrupole echo, using n-InSb as a sample. 
For a magnetic field H = 2 x 104 G and an effective 
mass m = 0.015ffio we have We = 2 x 1013 sec - 1. Let the 
pulse duration t.ty ~ 10-11 sec. 

1) Response of the quadrupole moment of the system. 
The quadrupole moment is Q0 = fic/H ~ 1.5 x 10-21 cgs 
esu. In order to have () = fi - 11 gradE IQ0 t.t ~ 1 at a 
wavelength ,\ 1 = "-/2 = 3~.2 x 10-4 em, we need a field 
with amplitude E0 =50 cgs esu ("- = 78.4 x 10-4 em is 
the emission wavelength of an H20 laser). The radiation · 
intensity of one quadrupole is Ia ~ fi2e2w4/m2c5 

~ 10-13 erg/sec, and the total radiation intensity of the 
sample with volume 3 x 3 x 3 mm3 at a carrier density 
Do= 1014 cm-3 is I~ n2 Ia"-i/S ~ 108 erg/sec. HereS 
is the area of the end face of the sample. 

2) Response of dipole moment of the system. The 
dipole moment is p0 = el = 8 x 10-16 cgs esu. To have 
() 1 = fi-1 E0p0 t.t ~ 1, we need a field with amplitude E0 

~ 0.1 cgs esu. The radiation intensity of one dipole is 
Ia = fie2 w~ /4 JTmc 3 ~ 5 x 10 -w erg/ sec, and then the 
emission intensity of a sample with the parameters 
given above is I~ n2 Ia"-2/S ~ 1012 erg/sec. 
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The foregoing estimates show that cyclotron echo at 
infrared frequencies can be observed experimentally in 
semiconductors. A study of this phenomenon can yield 
additional information on the interaction of the band 
carriers with one another and with lattice inhomogene
ities. The theory proposed here can be generalized to 
describe cyclotron-echo signals of holes in p-semi
conductors. 
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